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Amounts of empirical evidence, ranging from microbial cooperation to collective hunting, suggests public
goods produced often nonlinearly depend on the total amount of contribution. The implication of such
nonlinear public goods for the evolution of cooperation is not well understood. There is also little attention
paid to the divisibility nature of individual contribution amount, divisible vs. non-divisible ones. The
corresponding strategy space in the former is described by a continuous investment while in the latter by a
continuous probability to contribute all or nothing. Here, we use adaptive dynamics in finite populations to
quantify and compare the roles nonlinearity of public-goods production plays in cooperation between these
two contribution mechanisms. Although under both contribution mechanisms the population can converge
into a coexistence equilibrium with an intermediate cooperation level, the branching phenomenon only
occurs in the divisible contribution mechanism. The results shed insight into understanding observed
individual difference in cooperative behavior.

E
volutionary game theory is a basic and general mathematical tool for studying the emergence of coopera-
tion, which mostly centers on the prisoner’s dilemma game and the public goods game. The prisoner’s
dilemma game has been widely employed to elucidate the cooperation conundrum between individual and

group interests through pairwise interactions1–3. However in many realistic situations ranging from cellular
organisms to hunter business to national negotiations, group activities with multiple agents instead of two
individuals are usually involved, where the public good is produced to non-exclusively benefit all group members
irrespective of whether or not they have contributed to its production. Such group activities can be succinctly
characterized by public goods games4–9.

In simplest public goods games, each player belonging to a community is provided with the same endowment
and adopts one of two feasible actions, say full cooperation (contributing all) and full defection (contributing
nothing). The sum of contributions collected from the community is augmented by an enhancement factor and
then equally distributed among individuals in the community irrespective of their actions. It is clear that groups
full of cooperators are better off than groups full of defectors, whereas a defector always outperforms a cooperator
in any given mixed group. In this case, players pursuing their own immediate self-interest do harm groups’
interest and thus a social dilemma arises.

So far, amounts of studies have investigated the evolutionary dynamics of simplest public goods games, where
the production function, linking the average contribution of the group to the ultimate amount of public goods
produced, is linear. However, nonlinear production functions are abundant ranging from microbes to high-
advanced organism to human society10–16. For example, nonlinear production of public goods has been uncovered
in both Myxococcus and an engineered Escherichia coli system10,11. Nonlinear relationships between carnivore
hunting success and group size are revealed in many empirical studies12–15. In addition, sigmoid production
functions are widely used in economics16, which accelerate at the beginning of production and then decelerate.
The effect of nonlinear production functions on the evolutionary dynamics of public goods games deserves
further and intensive investigations due to its ubiquity.

To date, public goods games adhering to nonlinear production functions are usually probed among binary
strategy, all or nothing4–8. However, the continuous strategy may better capture the flexibility of behavior. One
typical continuous strategy, termed the cooperative investment, represents the fraction of the endowment con-
tributed. Obviously, it is reasonable for the divisible endowment, e.g., the time and effort spent in producing the
public good. But when individuals ‘probabilistically’ change their contribution according to environments and
risk orientation, it is natural to assume that a player performs his actions with a fixed probability, i.e., the
cooperative probability that a player invests all and otherwise invests nothing. In fact, the cooperative investment
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and the cooperative probability can be envisaged as two different
contribution mechanisms, both ubiquitous in real life. Nonetheless,
their adaptive dynamics in finite populations remains unclear.

In this paper, we will compare the roles nonlinear production
functions play in the evolution of both the cooperative investment
and the cooperative probability in finite populations. Throughout,
r(y, x) and p(y, x) separately represent the fixation probability and
the payoff of a single mutant with y in a resident population that is
monomorphic for x, x9(t) is the first-order derivative of x(t) with

respect to t,
Lmf y,xð Þ

Lym
is the m-order partial derivative of f(y, x) with

respect to y, and
Lm

Lym y~xf y, xð Þ
�
� represents that y in

Lmf y,xð Þ
Lym

is
replaced by x.

Results
Model description. Consider a population of size N, from which
groups of size n are randomly chosen to play public goods games.
Each individual is initialized with the same endowment (1 for
simplicity), which is then allocated according to his strategy x g
[0, 1]. The strategy x may represent the amount of an individual
contributing in a game. In this situation, x is the cooperative
investment. In addition, the strategy x may as well indicate the
probability that a player invests 1 and otherwise invests 0. At this
time, x is the cooperative probability. The production function,
describing the relationship between the average investment per
person in a group and public goods produced, is denoted by g(s).
Similar to games in economics9, the initial endowment is added to the
payoff and the remaining function denoted by h(s) is used to describe
the link between the investment and the remaining endowment (i.e.,
the initial endowment minus the cost incurred by his investment).
The production function g(s) is assumed to increase satisfying g(0) 5

0, and the remaining function h(s) decrease satisfying h(0) 5 1 and
h(1) 5 0.

Comparison of two contribution mechanisms. The adaptive dyna-
mics of the cooperative investment seems much different from that
of the cooperative probability (see Supplementary Information).
Nonetheless when linear production function g(s) and linear
remaining function h(s) are used, the evolution of the cooperative
investment exactly coincides with that of the cooperative probability,
which is monotonic and yields no singular strategy. If nonlinear g(s)
and nonlinear h(s) are adopted, the difference between the evolution
of two contribution mechanisms becomes striking.

As to the cooperative investment, the adaptive dynamics with
quadratic production and remaining functions generates at most
one singular point, whereas that with cubic production and remain-
ing functions yields at most two singular points. The corresponding
examples are shown in figure 1: (a) A unique branching point x* 5

0.5. The initially uniform population first converges to x*, and sub-
sequently splits into two clusters, one full of cooperators and the
other full of defectors. (b) A unique CESS x* 5 0.5. All individuals
from an initially uniform population eventually contribute x* to the
production of public goods. (c) A unique repeller x* 5 0.5.
Depending on the start-up strategy, the initially uniform population
evolves to all cooperators or to all defectors. Owing to the co-occur-
rence of a repeller and a branching point in (d) and (e), whether the
initially uniform population undergoes evolutionary branching is up
to the initial strategy. The evolutionary branching forms a cooperator
branch consisting of individuals contributing 1 and a defector branch
consisting of individuals contributing 0. Due to the existence of the
cooperator branch in (d) or the defector branch in (e), the repeller
can not block the proceeding of the defector branch in (d) or the
cooperator branch in (e). We note that the trajectory obtained by the
Monte Carlo simulation is completely accordant with the ‘‘pairwise
invasibility plot’’ (see Method for PIP).

In contrast with the adaptive dynamics of the cooperative invest-
ment, all three types of singular points don’t emerge but instead just
the CESS and the repeller emerge from that of the cooperative prob-
ability17. The unique singular point coming from the adaptive
dynamics with convex g(s) is a repeller (figure 2a), and the unique
singular point from that with concave g(s) is a CESS (figure 2b). The
evolutionary outcome induced by a unique repeller of the coopera-
tive probability is exactly the same as that of the cooperative invest-
ment. However, a unique CESS of the cooperative probability
statistically leads to the coexistence of cooperators and defectors.
This is completely different from the evolutionary result induced
by a unique CESS of the cooperative investment. The co-occurrence
of a repeller and a CESS can be observed for sigmoid g(s) which is first
convex and then concave (figure 2c) or inverse sigmoid g(s) which is
first concave and then convex (figure 2d). Here, the trajectory
obtained by the Monte Carlo simulation exhibits perfect agreement
with the ‘PIP’.

We illustrate the link between the adaptive dynamics of continu-
ous strategy and the Markov process of binary strategy by consider-
ing local games between a strategy x and his nearby strategy x 1 s
(small s). In a small population of size N, four types of selection
scenarios may occur among two strategies: (i) selection favors x
replacing x 1 s but acts against x 1 s replacing x (i.e.,

r x, xzsð Þw 1
N

and r xzs, xð Þv 1
N

), (ii) selection acts against x

replacing x 1 s but favors x 1 s replacing x (i.e., r x, xzsð Þv 1
N

and r xzs, xð Þw 1
N

), (iii) selection favors both x replacing x 1 s and

x 1 s replacing x (i.e., r x, xzsð Þw 1
N

and r xzs, xð Þw 1
N

), (iv)

selection acts against x replacing x 1 s and x 1 s replacing x (i.e.,

r x, xzsð Þv 1
N

and r xzs, xð Þv 1
N

).

We here come to some conclusions for general adaptive dynamics
(see Supplementary Information). If the strategy x is away from a
singular strategy, the adaptive dynamics of x is directional and local
game between x and x 1 s is of either type (i) or type (ii).
Furthermore if an attracting singular point emerges, of x and x 1

s, the one closer to the attracting singular strategy replaces the other
with a greater probability than the reverse situation. If x is a singular
strategy, local games among two strategies x and x 1 s can exhibit
very rich evolutionary dynamics. A branching point and its nearby
strategy must be favored by selection to replace each other and thus
their local game is of type (iii). In contrast, local game between a
CESS and its neighboring point may be of either type (i) or type (iv)
in which selection acts against the CESS being replaced by its neigh-
boring point. In addition, if x is a repeller, three generic games except
type (i) can describe the evolutionary dynamics among two strategies
x and x 1 s.

In particular, all above four generic selection scenarios (i)–(iv) can
appear in local games among two similar cooperative investment
levels but just selection scenarios (i) and (ii) emerge in local games
among two similar cooperative probability levels. In terms of the
cooperative probability, local game between the CESS and its nearby
strategy is only of type (i) and local game between the repeller and its
neighboring point is only of type (ii). Moreover, the evolution of the
cooperative probability can’t result in a branching point. Since it is
just local game between the singular point and his nearby point that
can exhibit selection scenarios (iii) and (iv), evolutionary game
dynamics described by type (iii) and type (iv) cannot appear in local
games among two similar cooperative probability levels.

In large populations, we consider two types of adaptive dynamics,
where the ‘invasion fitness’ is either p(y, x) 2 p(x, x) or r(y, x) 2 r(x,
x) (see Supplementary Information). They exhibit consistence upon
nonsingular points and their evolutionary direction. Further they
display consistent convergence but inconsistent stability of a given
singular point. From the view of the evolution of the coope-
rative probability, these two types of adaptive dynamics yield no
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inconformity. However, as to the cooperative investment, a branch-
ing point obtained by p(y, x) 2 p(x, x) may turn into a CESS if r(y, x)
2 r(x, x) is used.

Discussion
We consider the adaptive dynamics of both the cooperative invest-
ment and the cooperative probability in finite populations. In
principle, the singular point, resulting from the evolution of the
cooperative investment or the cooperative probability, seems to open
up the possibility of a branching point, a CESS or a repeller. These
three possibilities indeed occur in the adaptive dynamics of the coop-
erative investment, but it turns out that just either a repeller or a CESS
exhibits in that of the cooperative probability.

Previous theoretical studies have examined the effect of nonlinear
production functions on the evolutionary dynamics4–8,18,19. In con-
trast to our present model, some of previous models make a survey
upon binary strategy4–8. Continuous strategy, however, can better
capture the flexibility of behavior in real life. Therefore in our model,
the adaptive dynamics of continuous strategy is investigated and is
further connected with the evolutionary dynamics of binary strategy

by considering local game among two similar strategies. In fact, some
of previous models have probed the adaptive dynamics of the coop-
erative investment in infinitely large populations18,19. It is not a priori
clear under which circumstances adaptive dynamics in infinitely
large populations is a good approximation of the dynamics in a
realistic system which is finite and subject to fluctuations. Unlike
these models, we allow the population is finite and determine the
adaptive evolution of the cooperative investment. A second set of
previous models consider adaptive dynamics of the cooperative
probability in not only infinite but also finite populations20–22. We
note that they only apply to two-person games and involve no non-
linear benefit functions. In contrast with these models, we show how
nonlinear production functions exert influence on the adaptive
dynamics of the cooperative probability in public goods games.

Our work provides a natural explanation for the emergence of
individual difference in cooperative behaviors (i.e., the amount of
contribution varies from person to person). Individual variation in
cooperative behaviors is ubiquitous among many species ranging
from cellular microbes to high-advanced organisms to humans23–29.
For example, social amoebaes communally form a fruiting body
where spore cells selfishly promote their own reproduction at the

Figure 1 | The adaptive dynamics of the cooperative investment with varying production and remaining functions g(s) and h(s). The left column shows

the trajectories obtained by numerical simulations (see Supplementary Information), the middle column the PIP. The singular strategies (dashed

horizonal lines) are indicated where appropriate. The right column shows the production function g(s) (increasing) and the remaining function h(s)

(decreasing) accrued in homogeneous populations. (a) A branching point 0.5. (b) A CESS 0.5. (c) A repeller 0.5. (d and e) Two singular strategies; in (d), a

branching point 0.67 along with a repeller 0.29; in (e), a branching point 0.31 together with a repeller 0.69. We adopt the fixation probability r(y, x) 2 r(x,

x) as the ‘invasion fitness’ and perform a single simulation in (a) and two distinct simulations in (b)–(e). The abscissa ‘time’ represents the number of

updating steps divided by 5 3 103. Parameters: n 5 10, N 5 100, s 5 0.00005, u 5 0.01, (a) g(s) 5 211s2 1 22s and h(s) 5 0.8s2 2 1.8s 1 1, (b) g(s) 5 s2 1

10s and h(s) 5 2s2 1 1, (c) g(s) 5 s2 1 10s and h(s) 5 s2 2 2s 1 1, (d) g(s) 5 2s3 2 2.9s3 1 14.6s and h(s) 5 20.1s3 1 0.54s2 2 1.44s 1 1, (e) g(s) 5 s3 2

5.9s2 1 16.2s and h(s) 5 0.1s3 1 0.25s2 2 1.35s 1 1.
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cost of the stalk cells who are willing to sacrifice reproduction23.
African lions and bottlenose dolphins do not all invest the same
amount of energy but perform consistent different roles in the com-
munal hunt24,25. In predator inspection, some individuals of three-
spined sticklebacks, guppies and African lions lead the approach to
the predator, whereas others lag behind26–28. In experimental eco-
nomic games, participants differ in the amount of contribution29.

Our results show that there are two ways in which the stable co-
occurrence of cooperators and defectors is maintained: (i) A branch-
ing point from the cooperative investment leads to evolutionary
diversification from initially uniform populations to a stable state,
where fixed proportion of the population contribute more consis-
tently and the rest contribute less consistently. (ii) A CESS from the
cooperative probability induces the initially uniform population to
eventually reside in a stable state, in which all individuals randomly
choose to contribute all or nothing with a fixed probability and thus
generate the mix of cooperators and defectors. The former scenario

generates consistent individual difference in cooperativeness and the
latter yields non-consistent individual difference in cooperativeness.
Although a great quantity of studies have investigated the emergence
of consistent individual difference in behavior, few were proceeded
under the framework of evolutionary game theory and and thus there
have been calls to take into consideration such issues under the
framework of evolutionary game theory30,31. Our results just have
bridged the gap between individual difference in cooperative beha-
viors revealed in experimental findings and the adaptive dynamics in
public goods games.

Methods
The powerful tool addressing the evolution of continuous strategy is the adaptive
dynamics32, which says that the evolution of continuous strategy x on
average takes the population up the gradient of ‘invasion fitness’ f(y, x), i.e.

x’ tð Þ~ L
Ly

�
�
�
�

y~x

f y, xð Þ~g xð Þ (see the electronic supplementary material). The point

Figure 2 | The adaptive dynamics of the cooperative probability with varying production functions g(s). The left column shows the trajectories obtained

by numerical simulations (see Supplementary Information), the middle column the PIP. The singular strategies (dashed horizonal lines) are indicated

where appropriate. The right column shows the production function g(s) accrued in homogeneous populations. (a) A repeller 0.67. (b) A CESS 0.35.

(c and d) Two singular strategies; in (c), a CESS 0.73 along with a repeller 0.27; in (d), a CESS 0.16 together with a repeller 0.84. We adopt the fixation

probability r(y, x) 2 r(x, x) as the ‘invasion fitness’ and perform two distinct simulation in (a and b) and three distinct simulations in (c) and (d). The

abscissa ‘time’ represents the number of updating steps divided by 105. Parameters: N 5 100, n 5 10, s 5 0.00001, u 5 0.01, (a) g(s) 5 0 for 0 # s , 1, g(s)

5 3.5 for s 5 1, (b) g(s) 5 0 for s 5 0, g(s) 5 3.5 for 0 , s # 1, (c) g(s) 5 0 for s 5 0, g(s) 5 1.75 for 0 , s , 0.5, g(s) 5 3.5 for s 5 1, (d) g(s) 5 0 for 0 # s ,

0.5, g(s) 5 1.75 for s 5 0.5, g(s) 5 3.5 for 0.5 , s # 1.
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satisfying g(x) 5 0 is a singular strategy whose evolutionary direction needs close

investigations upon g9(x) and
L2

Ly2

�
�
�
�

y~x

f y, xð Þ33. The singular point x* is an attracting

point in the sense that the initially uniform population converges to it if g9 (x*) , 0. In
the opposite case, i.e., g9 (x*) . 0, the singular point is a repeller in that the initially
uniform population evolves away from it and the bistable dynamics occurs. The

subsequent fate of the attracting singular point x* is up to the sign of
L2

Ly2

�
�
�
�

y~x�
f y, xð Þ.

If
L2

Ly2

�
�
�
�

y~x�
f y, xð Þw0, evolutionary branching emerges, where the initially uniform

population splits into two strategic clusters after it converges to x*. Otherwise, the
attracting point x* is a convergent evolutionary stable strategy (CESS) in the sense
that the population remains at x* after it approaches infinitely to or reach x*.

As a convenient graphical means to indicate the sign of f(y, x) 2 f(x, x) for all
possible values of x and y, we use the ‘‘pairwise invasibility plot’’ (PIP) where the
horizontal axis is the resident strategy x and the vertical axis is the mutant strategy y.
In PIP, the region with f(y, x) 2 f(x, x) . 0 is marked by ‘1’, the region with f(y, x) 2

f(x, x) , 0 is marked by ‘2’, and the intersection of the diagonal with another line on
which f(y, x) 5 f(x, x) corresponds to the singular strategy. If the singular point x* is
an attracting point, in PIP, there is a ‘1’ region above the diagonal on the left and
below the diagonal on the right of x*. If the singular point x* is evolutionary stable, in
PIP, the vertical line through x* lies completely inside a ‘2’ region,

1. Fu, F., Tarnita, C. E., Christakis, N. A., Wang, L., Rand, D. G. & Nowak, M. A.
Evolution of in-group favoritism. Sci. Rep. 2, 460 (2012).

2. Nowak, M. A., Sasaki, A., Taylor, C. & Fudenberg, D. Emergence of cooperation
and evolutionary stability in finite populations. Nature 428, 646–650 (2004).

3. Wu, T., Fu, F. & Wang, L. Moving away from nasty encounters enhances
cooperation in ecological prisoner’s dilemma game. PLoS ONE 6, e27669 (2011).

4. Bach, L. A., Helvik, T. & Christiansen, F. B. The evolution of n-player cooperation
– threshold games and ESS bifurcations. J. Theor. Biol. 238, 426–434 (2006).

5. Hauert, C., Michor, F., Nowak, M. A. & Doebeli, M. Synergy and discounting of
cooperation in social dilemmas. J. Theor. Biol. 239, 195–202 (2006).

6. Pacheco, J. M., Santos, F. C., Souza, M. O. & Skyrms, B. Evolutionary dynamics of
collective action in N- person stage hunt dilemmas. Proc. R. Soc. B 276, 315–321
(2009).

7. Souza, M. O., Pacheco, J. A. & Santos, F. C. Evolution of cooperation under N-
person snowdrift games. J. Theor. Biol. 260, 581–588 (2009).

8. Archetti, M. & Scheuring, I. Coexistence of cooperation and defection in public
goods games. Evolution 65, 1140–1148 (2011).

9. Eldakar, O. T. & Wilson, D. S. Selfishness as second-order altruism. Proc. Natl
Acad. Sci. USA 105, 6982–6986 (2008).

10. Chuang, J. S., Rivoire, O. & Leibler, S. Cooperation and Hamilton’s rule in a simple
synthetic microbial system. Mol. Syst. Biol. 6, 398 (2010).

11. Smith, J., van Dyken, J. D. & Zee, P. C. A generalization of Hamilton’s rule for the
evolution of microbial cooperation. Science 328, 1700–1703 (2010).

12. Packer, C. & Ruttan, L. The evolution of cooperative hunting. Am. Nat. 132,
159–198 (1988).

13. Kim, K. W., Krafft, B. & Choe, J. C. Cooperative prey capture by young subsocial
spider I. Functional value. Behav. Ecol. Sociobiol. 59, 92–100 (2005).

14. Boesch, C. Cooperative hunting in wild chimpanzees. Anim. Behav. 48, 653–667
(1994).

15. MacNulty, D. R., Smith, D. W., Mech, L. D., Vucetich, J. A. & Packer, C. Nonlinear
effects of group size on the success of wolves hunting elk. Behav. Ecol. 23, 75–82
(2011).

16. Heckathorn, D. D. The dynamics and dilemmas of collective action. Am. Sociol.
Rev. 61, 250–277 (1996).

17. Zhang, Y. L., Wu, T., Chen, X. J., Xie, G. M. & Wang, L. (in press). Mixed strategy
under generalized public goods games. J. Theor. Biol. (2013).

18. Doebeli, M., Hauert, C. & Killingback, T. The evolutionary origin of cooperators
and defectors. Science 306, 859–862 (2004).

19. Cornforth, D. M., Sumpter, D. J. T., Brown, S. P. & Brännström, Å. Synergy and
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