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ABSTRACT Genomic selection (GS) is a breeding tool that estimates breeding values (GEBVs) of individuals
based solely on marker data by using a model built using phenotypic and marker data from a training
population (TP). The effectiveness of GS increases as the correlation of GEBVs and phenotypes (accuracy)
increases. Using phenotypic and genotypic data from a TP of 470 soft winter wheat lines, we assessed the
accuracy of GS for grain yield, Fusarium Head Blight (FHB) resistance, softness equivalence (SE), and flour yield
(FY). Four TP data sampling schemes were tested: (1) use all TP data, (2) use subsets of TP lines with low
genotype-by-environment interaction, (3) use subsets of markers significantly associated with quantitative trait
loci (QTL), and (4) a combination of 2 and 3. We also correlated the phenotypes of relatives of the TP to their
GEBVs calculated from TP data. The GS accuracy within the TP using all TP data ranged from 0.35 (FHB) to 0.62
(FY). On average, the accuracy of GS from using subsets of data increased by 54% relative to using all TP data.
Using subsets of markers selected for significant association with the target trait had the greatest impact on GS
accuracy. Between-environment prediction accuracy was also increased by using data subsets. The accuracy of
GS when predicting the phenotypes of TP relatives ranged from 0.00 to 0.85. These results suggest that GS
could be useful for these traits and GS accuracy can be greatly improved by using subsets of TP data.
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The improvement of high-throughput marker technology and the
ability to generate inexpensive and abundant marker data can allow
the use of molecular markers to reshape breeding and aid breeders
inmaking faster genetic gains thanusing only phenotypic data. Traits
of great economic importance in soft red winter wheat include grain
yield, resistance to Fusarium Head Blight (FHB, causal agent Fusar-
ium graminearum), and various quality traits. While QTL have been
identified for these traits in soft red winter wheat (Cabrera et al.
2015; Hoffstetter et al. 2016; Liu et al. 2007, 2012; Smith et al. 2011)
most have small effects suggesting that marker-assisted selection
(MAS) for individual QTL will likely be ineffective.

An alternative toMAS is genomic selection (GS), which is amarker-
based breeding tool that estimates all marker effects simultaneously and
uses allmarkers tomodel the genomic estimatedbreeding value (GEBV)
of individuals (Meuwissen et al. 2001). Genomic selection uses a train-
ing population (TP) that has been genotyped and phenotyped to de-
velop a model that can be used to calculate the GEBVs of additional
related individuals based solely on their genotype (Jannink et al. 2010).
Individuals with desirable GEBVs can be used as parents to initiate a
new cycle of breeding and to enter phenotyping trials. Genomic selec-
tion has been used in animal breeding to select sires and dams based on
their GEBVs and is implemented routinely.

The use of GS in plant breeding has lagged behind its use in animal
breeding in part because the commercial value in animal breeding
is an individual’s breeding value whereas in crops the value is the
individual’s performance per se. In addition GS requires genome-
wide, high-throughput, low cost genotyping of 1000s of individuals
and this technology has been lacking for many crops. In wheat, studies
have shown that GS can accurately model quantitative traits. In a soft
red winter wheat population, Heffner et al. (2011b) found GS accuracy
for grain yield was 0.20 while the accuracy of predicting flour quality
traits and heading date was high (0.66 to 0.76). Huang et al. (2016) also
studied GS accuracy in soft red winter wheat for agronomic and quality
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traits and reported GS accuracy ranging from 0.33 to 0.75. Other wheat
studies have found prediction accuracy for grain yield ranging from 0.32
to 0.64 (Crossa et al. 2010; Heslot et al. 2012; Poland et al. 2012). Others
are working to determine the use of GS at improving disease resistance
in wheat. The GS accuracy for predicting adult stem rust in wheat was
0.61 (Rutkoski et al. 2014) while the accuracy for FHB incidence and
severity in wheat was 0.56 and 0.64, respectively (Rutkoski et al. 2012).

Research is being conducted to determine the optimum number of
markers and lines in theTP to estimateGEBVs.Bernardo andYu (2007)
used simulations and found increasing the number of markers in-
creased accuracy when heritability was high, but not when trait heri-
tability was low. Empirical studies have also shown that increasing the
number ofmarkers can increase prediction accuracy. In both biparental
and multiparental wheat populations, the highest prediction accuracy
was found using the largest marker set (Asoro et al. 2011; Heffner et al.
2011a, b) though Lorenz et al. (2012) reported that increasing the
number of markers did not result in increased accuracy.Most empirical
studies also show that increasing the TP size improves prediction ac-
curacy (Heffner et al. 2011a,b; Lorenz et al. 2012).

These studies have investigated the effect on GS accuracy of mod-
ifying the TP by randomly deleting (or adding) lines andmarkers while
little research has been done on optimizing GS accuracy by systemat-
ically selecting or eliminating TP lines or markers. Isidro et al. (2015)
optimized a TP of 1127 soft winter wheat lines by using three methods
to eliminate TP lines. Their results showed that by using a systematic
approach a small population can be created that produces a GS accu-
racy that is similar to that obtained by using a large population.

There has been research in animals comparing GS accuracy using
high- and low-density SNP chips in GS as the cost of the high-density
chips can limit population size (Weigel et al., 2009).Weigel et al. (2009)
used a population of Holstein bulls and reduced the number of SNPs
from 32,518 to subsets of 300 to 2000 SNPs based on the absolute value
of the allele effect or even spacing along the chromosome. Using the
markers subset based on allele effects provided a higher accuracy than
evenly spacing markers; however both produced somewhat lower ac-
curacy than using all markers. Vazquez et al. (2010) used a similar
approach and got similar results.Moser et al. (2010) reported that small
subsets of markers selected based on allele effects gave a similar accu-
racy to that obtained using all markers. In a population of chickens,
Abdollahi-Arpanahi et al. (2014) partitioned 350,000 markers into five
groups based on the absolute value of their allele effect. Across all three
traits the group of SNPs with the greatest allele effects provided com-
parable or higher accuracies than using all 350,000 SNPs. Schulz-
Streeck et al. (2013) worked with two maize populations and formed
subsets of markers based on consistency of marker effects over envi-
ronments. They reported that even subsets with 50 markers could pro-
vide similar accuracy to that obtained using the full set of 768 markers.

A few studies have been conducted to determine the prediction
accuracyofGSmodelsbuiltusing theTPdata topredict thephenotypeof
lines from independent data sets. Lorenz et al. (2012) evaluated the
accuracy of GS models built using data from one or two populations to
predict the third population for FHB resistance and deoxynivalenol
concentration in barley.When using one population to predict another,
the prediction accuracies ranged from 0.47 to 0.77 for FHB and from
0.41 to 0.58 for deoxynivalenol concentration. The combination of two
populations to predict the third population resulted in the highest pre-
diction accuracies for both traits (Lorenz et al. 2012). Little research has
been published using phenotypic data from one environment to predict
phenotypes in another environment.

Genomic selection will have the greatest impact on plant breeding
whentheTPhasbeenoptimized toproduce thegreatestGSaccuracyand

when phenotypic data from one set of environments can predict
performance in a different set of environments. Our objectives were
to (1) determine the prediction accuracy of different GSmodels for four
economically important traits of SRWW, (2) determine the ability of the
GS model built on TP data to predict the phenotype of different
populations of SRWW with varying relationships to the TP, (3) de-
termine the effect of using subsets of TP lines and markers on GS
accuracy, and (4) assess the accuracy of a GS model built on data from
one environment to predict performance in a different environment.

MATERIALS AND METHODS

Plant material
Three populationswere used in this study. The first population is the TP
and was previously described by Hoffstetter et al. (2016). The TP con-
sisted of 470 F4-derived lines from The Ohio State University SRWW
breeding program and is derived from 47 biparental crosses involving
23 parental lines that were selected for desirable GY, FHB resistance,
quality, and pedigree diversity (Supplemental Material, Table S1). Seed
was available for 22 of the 23 parental lines and these 22 lines comprise
the parental population (PP) (Table S2). The third population consisted
of 94 F4-derived lines from The Ohio State University SRWWbreeding
program and is called the validation population (VP) (Table S3). Of the
94 VP lines, 85 share some pedigree relationship to the TP: these 85 are
termed the VP2 set. Seventeen VP lines were half sibs with some of the
TP lines and these 17 are termed the VP3 set.

Phenotypic data
Phenotypic data for the TPwere previously described byHoffstetter et al.
(2016). The TPwas evaluated in the 2009–2010 and 2010–2011 growing
seasons. For GY, lines were grown in an augmented design with one or
two replications at three locations: the Northwest Agricultural Research
Station near Custar, Ohio (N 41� 16.8’W 83� 50.4’), the North Central
Agricultural Research Station near Fremont, Ohio (N 41� 21’ W 83�
7.2), and the Ohio Agriculture Research and Development Center near
Wooster, Ohio (N 40� 46.2’W81� 55.8). Grain yield was obtained using
a plot combine and seed weight per plot was adjusted to 13% moisture.
The FHB index ratings were collected from an inoculated and misted
nursery during June 2010 and 2011 in Wooster, Ohio from a random-
ized complete block design of single row plots with three replicates each
year. Index was determined by visually estimating the percentage of
symptomatic spikelets in a sample of spikes at about Feekes stage 11,
which was about 21 d after heading (Feekes 10.3). A sample consisted of
a handful of spikes (�15 heads per handful) and three areas per plot
were sampled. The SE and FY traits were analyzed using the methods of
Smith et al. (2011) on grain samples taken from one replicate from the
Custar and Fremont Ohio locations in 2010 and 2011. For GS for FHB,
SE and FY we used genotype means over all environments.

Phenotypic evaluation of the PP was conducted during 2010–2011
and 2011–2012 growing seasons. The PP lines were included in part
of a larger trial that was grown in an augmented design with either
one or two replications at the same three locations as the TP (Custar,
Freemont, andWooster, Ohio). In 2010–2011 there was one replicate at
each location and in 2011–2012 there were two replicates in Custar
and one replicate inWooster, Ohio. The augmented design consisted of
five blocks per replication each with 38 unique lines and two checks
(‘Malabar’ and ‘Pioneer 25R47’). Planting and harvest dates as well as
nitrogen application are the same as described by Hoffstetter et al.
(2016) for the TP. Heading date, height, FHB, SE, and FY data were
collected as described for the TP. The VP lines were phenotyped during
the 2011–2012 growing season in Custar and Wooster, Ohio using an
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augmented design with one replicate in each environment. The design
consisted of three blocks eachwith 37 unique lines and three checks per
block (Pioneer 25R47, ‘Bromfield’, and Malabar). Planting and harvest
dates as well as fertilizer applications were the same as described by
Hoffstetter et al. (2016). Height, HD, and FHB were also recorded as
described for the TP. The SE and FY data were analyzed on grain
samples from the trial in Wooster, Ohio.

Best linear unbiased predictions (BLUPs) of line effects were
obtained as described by Hoffstetter et al. (2016). For grain yield,
BLUPs were obtained over all environments (GYA) and just theWoos-
ter (GYW) environments for all populations. BLUPs were also obtained
over the combined data of Custar and Fremont (GYN) environments
for the TP only. The BLUPs for FHB, FY, and SE were obtained over all
environments for all populations. To normalize the TP FHB data, a
square root transformation was conducted and BLUPs of these values
were obtained for all lines. Subsets of TP lines with low genotype-by-
environment (GEI) variance and high heritability, as described by
Hoffstetter et al. (2016), were also used for each trait. Within each trait,
the GEI variance for each line was plotted from lowest to highest and
the “elbow” of the curve was visually estimated and then further iden-
tified by evaluating the difference between the GEI variance for con-
secutive lines in the data file: the elbow occurs where the slope of the
two lines changes and that occurs where the difference between con-
secutive lines increases. Lines having a GEI variance greater than the
elbow point were eliminated from the analysis. This created a subset of
lines for GYA, GYW, and GYN containing 400 lines, a subset for FHB
containing 440 lines, and a subset for quality traits containing 447 lines.

Genotypic data
DNA for genotyping was extracted from a sample of lypholized leaves
collected from two 2-wk-old seedlings per line using a 96-well format
(DNAeasy 96 Plant Kit, Qiagen Group, Valencia, CA). All three
populations were genotyped using genotyping-by-sequencing technol-
ogy by Triticarte Pty Ltd Yarralumla, ACT, Australia (http://www.
triticarte.com.au). The genotyping produced 4858 biallelic SNP
markers and 28,311 dominant DaRT markers that were scored in
the TP. For most of the GS work we only used the 4858 SNPs. Of the
4858 SNPs, 2442 SNP markers were scored in common between the
PP, VP, and the TP. When using the TP data to develop GEBVs for
the VP and PP lines, we only used the 2442 common markers. All
markers used in the analysis had a call rate of at least 70%. Missing
data in the TP were imputed based on the average marker score of
lines from the same cross. Missing values were imputed as 1 if the
average genotype score for other lines from that family was greater
than 0 or as21 if the average was,0. Missing data in the PP and VP
populations were imputed as the common allele.

Unique subsets of the 4858SNPs and the 28,311DaRTmarkers from
the TP were made for each trait using results from an association
analysis (Hoffstetter et al. 2016) that was conducted using the sub-
sets of TP lines with low GEI for each trait. Marker set 1 was the
same for all traits and consisted of all the 33,169 DaRT and SNP
markers scored in the TP. Marker subset 2 varied by trait and con-
tained markers that were significantly associated with the trait at
P , 0.05. For GY, marker subset 2 contained 2902 markers with a
P , 0.05 for GYW or GYN: the correlation of marker effects for
GYN and GYW was r = 0.64 (Hoffstetter et al. 2016). Marker subset
3 varies by trait and for grain yield it included markers from subset
2 but excluded markers with a high residual variance. The residual
variance of markers ranged from21.42 to 1.69. Huber weights were
used to remove markers with a high residual variance using the
‘MASS’ package and rlm of R.3.0.1. The criteria for marker subset

3 for FHB and quality differ from grain yield because marker effects
were estimated over environments for these traits and not individual
environments as for grain yield (e.g., GYN and GYW). Marker subset
4 varied by trait and included markers associated with each trait at a
P, 0.01. For GY, this subset included 604 markers with a P, 0.01 for
GYN or GYW. Marker subset 5 varied by trait and contained markers
with a P, 0.005 for each trait. Finally, marker subset 6 was created for
grain yield only and included 362 markers with P, 0.01, a low residual
variance, and the average of the absolute value of allele effects for GYN
and GYW greater than 30 kg hectare-1. The number of markers in each
set for each trait is shown in Table 1.

Population relatedness
The degree of relationship between the TP and the VP was calculated
using the 2422 SNPmarkers scored in both theTPandVP.Relationship
was calculated as a simple matching coefficient which is equal to the
probability that alleles randomly sampled from two individuals are
identical by state. The simple matching coefficient was calculated using
PROCIML in SAS 9.1. The relationship between theVP and the TPwas
visualized using a principal component analysis (PCA) conducted in R
3.0.2 using the function ‘eigen’. The scores of the first and second
principal components were plotted to create a PCA graph to show
how the VP lines grouped with the TP lines.

Genomic selection
ThreeGSmodelswereused in theTPwith the4858SNPmarkers:Ridge-
RegressionBLUP(RRBLUP),BayesianLASSO,andRandomForest. For
each model ten-fold cross-validation was used to estimate GEBVs and
the accuracyofGS. For cross -validation theTP lines in theprediction set
were randomly selected without replacement allowing GEBVs of all
470 lines to be predictedwithin one cycle. Eachmodelwas implemented
in R 3.0.2 (RDevelopment Core Team 2011) using aWindows 2008 64-
bit virtual machine with a 3.46 GHz Intel(R) Xenon(R) CPU processor
and 32.0 GB of RAM.

RRBLUP was conducted using the ‘rrBLUP’ package 4.2 in R
(Endelman 2011). The function mixed.solve was used, which uses a
mixed model in the form of:

y ¼ Xbþ Zuþ e

u � N
�
0;Ks2

u

�
;

where X is the design matrix for the fixed effects b, Z is the design
matrix for the random effects u, u are the random effects,K is a positive
semidefinitematrix that accounts for the relatedness among individuals
based on markers, and s2

u is the additive variance (Endelman 2011).
The residuals are normal with a constant variance and variance com-
ponents were estimated by REML using the spectral decomposition
algorithm of Kang et al. (2008). A marker-based formulation was used
to estimate GEBVs for each marker, which were then multiplied by the
marker matrix to give the resulting GEBVs of the individuals in the
prediction set. Bayesian LASSO predictions were performed using
the ‘BGLR’ package for R, version 1.0.4, and hyper-parameters chosen
based on the guidelines of Perez et al. (2010). The residual variance was
calculated using df e = 3 and the equation:

Se ¼ Veðdf e þ 2Þ;
where Ve was chosen to reflect the expectation of the model’s residual
variance. To calculate the variance of the infinitesimal effect of the
df e = 3 and the equation:
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Su ¼ Vuðdf e þ 2Þ
�a

;

where �a is the average of the diagonal value of A, the kinship matrix,
and Vu is the prior expectation of �as2

u. Finally, lambda was calculated
with the following equation:

l̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2s2

eV
21
L

XpL
j

x 2
Lj

vuut ;

wheres2
eVL ¼ 1 and

XpL
j

x 2
Lj is the sumof squares (overmarkers) of the

average genotype (Perez et al. 2010). Random Forest predictions were
made using the ‘randomForest’ package version 4.6-10 in R (Liaw and
Wiener 2002). The RRBLUP and Bayesian LASSO models were con-
ducted using 1500 cycles while the RandomForestmodel was conducted
using only 500 cycles due to computational intensity. All six traits in the
TPwere analyzed (GYA, GYW,GYN, FHB index, SE, and FY) and FHB
index was also transformed using a square root transformation to bring
the data into normalcy (FHB_SQRT).

The accuracy of a GS model was determined using a Pearson’s
correlation between the GEBVs of all lines and their phenotypic BLUP.

The relative efficiency per cycle of GS as compared to a cycle of phe-
notypic selection (REc) was calculated as r = ffiffiffiffi

H
p

where r is the accuracy
of themodel andH is the heritability of the trait (Hoffstetter et al. 2016).
Relative efficiency of GS per year (REy) was determined by multiplying
the REc by the ratio of years to complete one cycle of phenotypic
selection vs. years to complete one cycle of GS for each trait. In our
program it is estimated to take 7 yr for one cycle of phenotypic selection
for grain yield and 5 yr for one cycle for FHB, FY, and SE. One cycle of
GS can be completed in 1 yr in winter wheat. Finally, proc.time was
used to determine the length of time to complete 300 cycles of 10-fold
cross-validation for each GS model.

The six marker subsets described above were used to create GS
models for each trait using RRBLUP. We then used 10-fold CV to
determine the accuracy for GS for each trait andmarker subset. Marker
subsets were used to build GS models using the TP data and then
determine the accuracy of GS for eachmarker subset/trait combination
using either all 470 TP lines or the subsets of lines with low GEI.

Amodelwasbuilt using the2442SNPs thatwere scored in common in
theTP,PP,andVPandusedtocalculate theGEBVsof theVPandPPlines.
These GEBVs were then correlated to the phenotypes of the PP and VP
lines. Phenotypic information from the TP together with markers scored
in common between the TP and PP and RRBLUP were used to calculate
the GEBVs for the 21 PP lines. The TP is composed of progeny of the PP

n Table 1 Accuracy of genomic selection for grain yield (all environments, GYA; Wooster Ohio, GYW; Northwest Ohio, GYN), Fusarium
Head Blight resistance (FHB), softness equivalence (SE), and flour yield (FY) using either all TP data (470 lines and 33,169 markers) or
subsets of lines (n < 470) chosen for low genotype-by-environment interactions, and subsets of marker data (M2–M6) chosen based on
significance criteria (see Materials and Methods)

Trait M1 M2 M3 M4 M5 M6

No. markers for GYA, GYW, GYN 33169 2902 2524 664 293 362
GYA, n = 470 0.45 0.77 0.76 0.73 0.74 0.73
GYA, n = 400 0.43 0.82 0.82 0.81 0.79 0.79
GYW, n = 470 0.57 0.79 0.79 0.77 0.77 0.75
GYW, n = 400 0.35 0.60 0.60 0.57 0.55 0.57
GYN, n = 470 0.41 0.36 0.36 0.27 0.21 0.28
GYN, n = 400 0.33 0.77 0.73 0.73 0.70 0.59
GYW to predict GYN, n = 470 20.07 20.10 20.09 20.08 20.06 20.08
GYW to predict GYN, n = 400 0.13 0.31 0.32 0.33 0.35 0.37
GYN to predict GYW, n = 470 20.10 20.16 20.15 20.15 20.14 20.15
GYN to predict GYW, n = 400 0.13 0.28 0.29 0.29 0.30 0.37
No. markers for FHB 33169 1556 1031 286 134
FHB, n = 470 0.35 0.64 0.62 0.62 0.58 —

FHB, n = 440 0.37 0.81 0.79 0.78 0.72 —

2010 FHB to predict 2011 FHB, n = 470 0.13 0.17 0.17 0.17 0.21 —

2010 FHB to predict 2011 FHB, n = 440 0.13 0.17 0.18 0.16 0.20 —

2011 FHB to predict 2010 FHB, n = 470 0.15 0.32 0.31 0.32 0.36 —

2011 FHB to predict 2010 FHB, n = 440 0.16 0.38 0.37 0.38 0.42 —

No. markers for SE 33169 1672 1133 330 151
SE, n = 470 0.51 0.87 0.85 0.83 0.80 —

SE, n = 447 0.51 0.89 0.87 0.85 0.82 —

2010 SE to predict 2011 SE, n = 470 0.33 0.57 0.53 0.59 0.59 —

2010 SE to predict 2011 SE, n = 447 0.32 0.58 0.53 0.59 0.50 —

2011 SE to predict 2010 SE, n = 470 0.24 0.32 0.30 0.33 0.37 —

2011 SE to predict 2010 SE, n = 447 0.24 0.32 0.31 0.33 0.26 —

No. markers for FY 33169 1632 968 316 166
FY, n = 470 0.62 0.91 0.88 0.87 0.84 —

FY, n = 447 0.62 0.91 0.88 0.87 0.84 —

2010 FY to predict 2011 FY, n = 470 0.56 0.70 0.68 0.7 0.70 —

2010 FY to predict 2011 FY, n = 447 0.59 0.74 0.72 0.74 0.74 —

2011 FY to predict 2010 FY, n = 470 0.47 0.49 0.49 0.49 0.49 —

2011 FY to predict 2010 FY, n = 447 0.48 0.50 0.50 0.5 0.50 —

Accuracy is shown for the trait itself using cross-validation and when using data from one set of environments to predict the phenotype from the other set of
environments. Also shown is the number of markers in each marker subset for each trait.
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lines therefore the true breeding value (TBV) of each of the PP lines could
be calculated to assess the ability of theGSmodel to predict theTBVs.The
TBV of the ith PP line was calculated for each trait using the equation:

TBVi ¼ 2ðm92mÞ
where m’ is the mean of the offspring of the ith parent, and m is the
mean of the TP. Both the phenotype and TBV of the PP lines were
then correlated to their GEBV using unweighted and weighted cor-
relations. A weighted correlation was used to account for the fact that
some PP lines contribute more parentage to the TP than others. The
weighted correlation used the proportion of TP parentage from each
PP line as a weighting factor and was calculated using the equation:

r ¼
X �

w � ðx2 �xÞ � ð y2�yÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihX

ðx2 �xÞ2 � w
i
�
hX

ð y2�yÞ2 � w
ir

where w is the weight of each parent, x is the GEBV for each PP, �x is
the mean GEBV of all PPs, y is the phenotype or TBV of each PP, and
�y is the mean phenotype or TBV of all PPs.

TheRRBLUPmodelwas retrainedusing theTPphenotypic anddata
from markers that were scored in both the TP and the VP to obtain
GEBVs of each VP line using the same method as described for the PP
population. The prediction accuracy was determined using a Pearson’s
correlation between the GEBVs of the VP lines and their phenotypic
BLUPs. Accuracy was determined using the entire VP data set, as well
as for the VP2 and VP3 subsets.

Data availability
The authors state that all data necessary for confirming the conclusions
presented in the article are represented fully within the article.

RESULTS

Phenotypic data
Phenotypic data from the TP were previously described by Hoffstetter
et al. (2016) and are briefly recapped here for convenience. For GY,
each of the environments (location/year combination) produced a wide
range of values for each trait. The GEI pattern among the six test sites
showed that the two Wooster environments clustered together and
provided different results than the Northwest Ohio (Custar and Fre-
mont) environments (Hoffstetter et al. 2016). The entry-mean herita-
bility for yield over all environments (GYA) was 0.60, in the Wooster
environments (GYW) was 0.69, and in the Northwest environments
(GYN) was 0.51. Heritability was 0.59, 0.85, and 0.92 for FHB, FY, and
SE, respectively. For all traits there were lines in the TP, PP, and VP
with numerically superior phenotypes to the elite check for each trait.
Thus like the TP, the PP and VP can be considered elite, adapted soft
red winter wheat populations.

Training population (TP) cross-validation
Using only RRBLUP we obtained nearly identical accuracy using all
33,169 markers or just the 4858 SNPs. We decided to use just the
4858 SNPs to compare the accuracy ofGSwith differentmodels as some
models can take far too much time with 33,169. Using 10-fold cross-
validation the RRBLUP and Random Forest models had the highest
accuracies for all traits and produced nearly identical results (Table 2).
The Bayesian LASSO model had the lowest accuracy for all traits with
the exception of GYW. Excluding the Bayesian LASSO results, GS
accuracy ranged from 0.34 to 0.63. Accuracies for GYA and GYN were

significantly lower than for GYW. We determined which model was
computationally faster for estimating GEBVs in the TP.When using all
TP lines, 4858 markers, 300 iterations, and 10-fold CV, RRBLUP was
fastest completing the process in 5.6 hr, which was 28.8 hr less than
Random Forest and 80 hr less than Bayesian LASSO. Only results from
using RRBLUP will be discussed further.

The relative efficiency of GS vs. phenotypic selection per cycle (REc)
and per year (REy) was calculated. All assessments of relative efficiency
showed GS to be more efficient than phenotypic selection. The greatest
REy for any grain yield trait was found for GYW (4.8), which was the
grain yield trait with the highest accuracy and the highest heritability.

Using TP data to predict the value of other populations
We assessed the ability of GS to predict the phenotypes of related lines
thatwere phenotyped in independent environments.WeusedRRBLUP
and all TP data to calculate the GEBVs of the PP and VP lines and
estimated accuracy by correlating those GEBVs with the phenotypes of
the PP and VP lines using both unweighted and weighted correlations.
The RRBLUP model was chosen because it was more efficient (lower
computational timeandequalorhigheraccuracies) thanRandomForest
or Bayesian LASSO. The accuracy of GSmodels based on the TP data to
predict thePPphenotypeswas considerablygreater for all traitswhenwe
used a weighted correlation than an unweighted correlation (Table 3).
The accuracy of GS ranged from 20.23 to 0.85 for weighted correla-
tions. Accuracy was low for GYA and GYN but was 0.67 for GYW
using the weighted correlation. On average, the GS accuracy for pre-
dicting the TBV of the PPwas similar or lower than the accuracy for the
PP phenotypes (Table 3). As with the phenotypes, accuracy was gen-
erally higher when using the weighted correlation than the unweighted
correlation. Interestingly, the accuracy for GYA and GYN increased
greatly when using TBV vs. phenotypes while the accuracy for SE and
FHB was greatly reduced. The difference between the mean phenotype
of the top three (T3) and bottom three (B3) PP lines showed that the T3
group was always superior to the mean of the B3 group for all traits and
this difference was significant at P , 0.1 for GYW, SE, and FHB.

In general all accuracies from using TP data to predict the GEBVs of
theVP lineswere lowand allwere lower than thoseobservedwhenusing
the PP phenotypes and weighted correlations (Table 3). Assessing ac-
curacy using data from just 85 VP lines that were related to the TP and
PP did not impact GS accuracy. In the VP, only SE and FHB were
moderately predicted by the TP data with accuracies ranging from 0.22
to 0.33. There was no significant difference between the mean pheno-
type of the top three (T3) and bottom three (B3) VP lines as ranked by
their GEBVs for any trait either (Table 4). The T3 groupwas superior to
the B3 group for GYN, FY, SE, and FHB and this difference was
significant for FY and FHB at P , 0.1.

The results of the simplematchingcoefficient indicate theVPand the
TP populations are related. The average genetic similarity within each
population alone was 0.69, while the average genetic similarity between
theVP andTPwas 0.68. The PCAalso shows a relationship between the
VP lines and the TP lines (Figure 1).

Accuracy of GS using subsets of TP data and
cross-validation
Theaccuracyof theGSmodelwasdeterminedusingdata subsetsderived
fromtheTPby(1) removingTP lineswithhighGEI fromtheTP for each
trait and (2) selecting markers based on results from an association
analysis conducted using the TP data (Hoffstetter et al. 2016). In this
analysis we used all 33,169 markers as they were used by Hoffstetter
et al. (2016) in an association analysis in this population. Relative to
using all TP data, the accuracy of GS for grain yield decreased 23%
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when using data from all markers and a subset of 400 lines with low
GEI, though using only lines with low GEI had little effect on accuracy
for the other traits (Table 1).

TheGS accuracywas increasedwhen using data fromall TP lines and
subsets of significant markers for all traits except GYN (Table 1). Ex-
cludingGYN, GS accuracy for themarker data subsets increased relative
to using all markers by 41% (FY) to 76% (FHB) with the largest gains for
all traits occurring formarker subset 2. The other smallermarker subsets
gave similar accuracies as marker subset 2. Marker subset 5 had the
fewest markers for all traits with, on average, ,1% of the markers in
the full set, yet provided very similar accuracies to those ofmarker subset
2, and provided superior accuracy compared to the full set ofmarkers for
all traits (Table 1). For example, marker subset 5 for FHB had just
134 markers and had an accuracy (0.58) that was similar to that of
marker subset 2 (0.64) with 1672 markers and superior to the accuracy
using the full set of 33,169 markers (0.35). We also evaluated GS accu-
racy using all nonsignificant markers (e.g., all markers minus the subset
2 markers) for each trait. These subsets of nonsignificant markers pro-
duced within-environment GS accuracies that were on average 20%
lower than the accuracy obtained using all marker data, and 46% less
accurate than using marker subset 2 (Table S4).

There was a positive interaction between using subsets of TP lines
and subsets of markers for GYA, GYN, and FHB where the greatest
accuracies were obtained using the combination of a subset of lines with
low GEI and marker subset 2: these accuracies were 75% (GYA), 113%
(GYN), and121%(FHB) greater than the accuracyobtainedusing all TP
data (Table 1). For GYW, using just the subset of low GEI lines de-
creased accuracy, though using the subset of lines and the reduced
marker sets resulted in accuracies that were similar to those obtained
using all data (Table 1). The combination of subsets of low GEI lines
and marker subsets did not increase GS accuracy for SE and FY above
that obtained using just the reduced marker subsets.

Using subsets of TP data to predict phenotypes
between environments
Phenotypic data for grain yield in the TP from only one set of environ-
ments (e.g., GYWdata or GYNdata) were used to build a GSmodel that
was then used to predict the phenotype of the TP lines in the other set of
environments. The accuracies of these between-environment predic-
tions were low and negative when using all TP data (Table 1). Positive
GS accuracies were obtained using the data from the subset of 400 lines
with low GEI and all markers (Table 1), and was even further increased
by using marker subsets (Table 1). The highest between-environment

accuracy (r = 0.37) was found using the 400 low GEI lines and marker
subset 6. This set contained 362 markers that had low residual
variance, were significant for GYW or GYN, and the absolute value
of allele effects for GYW or GYN were greater than 30 kg hectare-1.
Similar, positive accuracies for between-environment predictions
for grain yield were also found with the other marker subsets.
The results were similar when using either GYW or GYN to train
the model and predicting the other environment.

The TP phenotypic data for FHB, FY, or SE collected from 1 yr
(2010or2011)wereused tobuildaGSmodel thatwasused topredict the
phenotype of the TP lines in the other year.When using all marker data
the GS accuracy for between-year was low for FHB (range 0.13 to 0.16)
andmoderate for SE and FY (range = 0.24 to 0.59) when using either all
TP lines or the subsets of lineswith lowGEI (Table 1). TheGSaccuracies
remained low for FHB when using the marker subsets and 2010 data to
build the model. The GS accuracies for FHB increased though when
using the reducedmarker subsets and 2011 phenotypic data to build the
model: the accuracy usingmarker subset 5 and lines with lowGEI, 0.42,
was 180% greater than using all TP data (0.15).

For SE and FY, removing lines with high GEI did not increase
prediction accuracy between years regardless of marker subset (Table
1). Using reduced marker subsets had little impact on between-year
accuracy when using 2011 data to train the model to predict 2010 FY
phenotypes, and produced amodest improvement for predicting 2010 SE
phenotypes. Using the reduced marker subsets with 2010 TP data in-
creased the ability to predict the 2011 phenotypes as GS accuracy in-
creased by an average of 70% for SE and 26% for FY when compared to
using all TP data.

We also evaluatedGS accuracyusing all nonsignificantmarkers (e.g.,
all markers minus the subset 2 markers) for each trait. These subsets of
nonsignificant markers produced between-environment GS accuracies
that were on average 15% lower than the accuracy obtained using all
marker data, and 33% less accurate than usingmarker subset 2 (Table S4).

DISCUSSION

Cross-validation of GS using all TP data
The TP, PP, and VP all consisted of elite inbred soft red winter wheat
breeding lineswith adaptation toOhio. The populations showed a range
of phenotypes, with some lines in each population outperforming the
best checks for each trait. The TP data were previously used to detect
QTL forGY, FHB resistance, SE, and FY (Hoffstetter et al. 2016) though
none of the QTL identified for these traits had a large effect suggesting
the population would be better suited for GS for these traits.

n Table 2 Genomic selection accuracy (r), standard deviation of accuracy (s), relative efficiency per cycle (REc), and relative efficiency per
year (REy) of three genomic selection models using a TP of 470 wheat lines and 10-fold cross-validation for four traits: grain yield over all six
environments (GYA), grain yield at Northwest Ohio environments (4 environments, GYN), grain yield at Wooster, Ohio (2 environments,
GYW), flour yield (FY), softness equivalence (SE), and Fusarium Head Blight index (FHBI)

Ridge-Regression BLUPa Random Forest Bayesian LASSO

Trait r b s REcc REyrd r s REc REyr r s REc REyr

GYA 0.45 0.01 0.58 4.1 0.48 0.01 0.62 4.3 0.12 0.02 0.15 1.1
GYN 0.41 0.01 0.58 4.1 0.42 0.01 0.59 4.1 0.14 0.02 0.20 1.4
GYW 0.57 0.01 0.67 4.7 0.57 0.01 0.69 4.8 0.57 0.01 0.68 4.8
FY 0.62 0.01 0.67 3.4 0.63 0.01 0.68 3.4 0.22 0.01 0.24 1.2
SE 0.51 0.01 0.53 2.7 0.49 0.01 0.52 2.6 0.06 0.02 0.06 0.3
FHB 0.35 0.01 0.46 2.3 0.37 0.01 0.48 2.4 0.17 0.02 0.22 1.1
a
RRBLUP and Bayesian LASSO (BLR) were run for 1500 cycles and RF was run for 500 cycles.

b
Accuracy is the Pearson’s correlation between the phenotype and the genomic estimated breeding value.

c
Relative efficiency per cycle calculated by r=O?� > H.

d
Relative efficiency per year calculated as REc times the ratio of years in a cycle of phenotypic selection to years in a cycle of genomic selection.
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For all traits except GYW, the RRBLUP and Random Forest GS
models produced similar GS prediction accuracy while the Bayesian
LASSO model produced the lowest prediction accuracy (Table 2). This
is consistent with results from other studies which have found that
shrinking all marker effects equally toward 0 and assuming they have
a common variance produces similar or superior results to those mod-
els that do not impose this restriction such as Bayes A and Bayes B
(Heffner et al. 2011a,b; Heslot et al. 2012; Lorenz et al. 2012). The
results of this study also found the RRBLUPmodel to be computation-
ally much faster than the other two models, therefore it was chosen as
the model for all further data analysis. Further discussion will be re-
stricted to the RRBLUP results.

Thecross-validationaccuracies fromtheGSmodelsbuiltusingallTP
data indicate that GS could be a useful tool within this population for
these economically important traits. For grain yield the highest accuracy
was found using data from the Wooster, Ohio (GYW) environment
alone (Table 2). During the 2010–2011 growing season, some plots at
the northern Ohio locations suffered from water damage (Hoffstetter
et al. 2016). This resulted in a lower entry-mean heritability for GYN
(H = 0.51) compared to GYW (H = 0.69) and likely explains why
accuracy for GYN was lower than GYW. The accuracies for grain yield
using all TP lines and marker data ranged from 0.41 to 0.57 (Table 2)
and are generally similar to, and often higher than, the accuracy for
grain yield reported by others. In a soft winter wheat multifamily
population, Heffner et al. (2011b) reported accuracy for grain yield
of 0.20 using RRBLUP as the prediction model. The prediction accu-
racy of RRBLUP for grain yield was 0.36 in another soft winter wheat
population (Heslot et al. 2012). Combs and Bernardo (2013) reported a
prediction accuracy of 0.10 for grain yield using the RRBLUPmodel in
a wheat population. Prediction accuracies of 0.30 to 0.32 for grain yield
were reported in a population of wheat lines fromChile, CIMMYT, and
Uruguay using RRBLUP (Lado et al. 2013). Using two populations of
wheat, Crossa et al. (2014) found the accuracy of GS for grain yield
using RRBLUP ranged from 0.29 to 0.67 in a population of 306 lines,
while in a population of 599 lines the accuracy was 0.42 to 0.45.

The GS accuracy for FHB using all TP data was 0.35, which is lower
thanmost other reports for FHB resistance. In barley, the accuracyofGS
for predicting the percentage of FHB infected kernels ranged from 0.41
to 0.67 (Lorenz et al. 2012) and for predicting FHB severity the accuracy
was 0.30 to 0.39 using RRBLUP (Sallam et al. 2015). In soft winter
wheat, Rutkoski et al. (2012) reported a prediction accuracy of 0.56 and
0.64 for FHB incidence and severity, respectively. The low accuracy of
this study could be because there was low disease pressure in 2011
(Hoffstetter et al. 2016) even though the heritability for FHB in this
study was moderate (H = 0.69). The accuracies of FY and SE with

RRBLUP were 0.62 and 0.51, respectively (Table 2). Heffner et al.
(2011b) reported a GS accuracy of 0.76 and 0.66 for FY and SE, re-
spectively, in a multifamily soft wheat population using RRBLUP. The
accuracy for FY and SE in a biparental population was 0.57 and 0.37,
respectively (Heffner et al. 2011a). The accuracies reported for FY and
SE in our study are in these ranges.

The relative efficiency per cycle (REc) of GS across traits mostly
reflected the GS accuracy. The REc for SE and FY in this study (0.53
and 0.68, Table 2) are comparable to those reported by Heffner et al.
(2011a) in two biparental populations (0.29 to 0.70). Over all traits the
REc values show that a cycle of GS is not as efficient as a cycle of
phenotypic selection. However, the real advantage of GS is it can
shorten the duration of a breeding cycle and improve gain per year
(Goddard and Hayes 2007; Heffner et al. 2009, 2011b; Jannink et al.
2010). In this population the relative efficiency of GS on per year basis
(REy) ranged from 2.4 (FHB) to 4.8 (GYW, Table 2) which indicates
that GS can be an efficient method for making genetic gains for these
four traits by decreasing the breeding cycle time to 1 yr.

Validating the TP GS model in related populations
The ability of the GS models built using all of the TP data to predict the
phenotypes of other related lines varied by trait and population. The best
results were obtained when predicting the phenotype of the PP lines as
these lines were more related to the TP than were the VP lines. For most
traits in the PP population, higher prediction accuracy was found using a
weightedcorrelation thananunweightedcorrelation (Table 3).The reason
the weighted correlation provides a higher accuracy then the unweighted
correlations can be attributed to the fact that each PP line did not con-
tribute equally to the parentage of the TP and weighting the correlation
accounts for this. The models were less predictive of the TBV of the PP
lines than it was of the phenotype of the PP lines. Because the TBV is
estimated based on the performance of the progeny, the TBV of PP lines
with few offspring in the TP is probably poorly estimated. In addition, the
TBV of an individual should be estimated by mating the individual to a
large sample of random individuals from the population. This was not the
mating scheme used in this study, therefore it is likely that all estimated
TBVs in this study have considerable bias. Overall the GS accuracies
found for the PP range from20.15 to 0.85 across all traits and analyses
and shows that the performance of the PP lines can be estimated usingGS
models built using progeny (TP) data. To date, there is little research on
using the progeny to predict the performance of parental lines. Sallam
et al. (2015) used the parental lines to predict the performance of the
progeny in a barley population. Using RRBLUP the accuracy for grain
yield was 0.57. The accuracies found for GYW (0.57 and 0.67, Table 3) in
this study are very close to those reported by Sallam et al. (2015).

n Table 3 Genomic selection accuracy obtained using data from the TP to calculate genomic estimated breeding values (GEBVs) for lines
in the Parental (PP) and Validation (VP) populations and correlating those GEBVs to the phenotypes of the PP and VP lines

PP – Phenotypes PP – True Breeding Values VP – Phenotypes

Trait Unweighteda Weighted Unweighted Weighted All VP Lines 85 Most Related VP Lines

GYA 0.02 0.08 0.44 0.34 20.17 20.19
GYN 20.41 20.23 20.02 0.16 20.17 20.16
GYW 0.57 0.67 0.32 0.31 20.25 20.27
FY 20.15 0.50 0.13 0.55 0.05 0.05
SE 0.10 0.85 0.00 20.22 0.27 0.33
FHB 0.14 0.47 20.05 20.03 0.22 0.22

For the PP we also correlated the GEBVs to the estimates of the TBVs of the PP lines. We used unweighted and weighted correlations in the PP: the weights were the
percentage TP parentage that was derived from each PP line. In the VP the correlation was performed using all VP lines or just the 85 VP lines that had a pedigree
relationship to the TP. The traits are grain yield over all five environments (GYA), grain yield at Northwest Ohio environments (GYN), grain yield at Wooster Ohio
environments (GYW), flour yield (FY), softness equivalence (SE), and Fusarium Head Blight index (FHB).
a
Accuracy is the Pearson’s correlation between the phenotype and the GEBV of the 21 parental lines.
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The GS model built using the TP data were less successful at
predicting the performance of the VP lines than the PP lines even
thoughtheVPandTPappearedquiterelatedbasedonmarker similarity.
This marker-based similarity between the VP and TP occurred despite
having only three immediate parents in common. The poor predictive
performance for the VP sets may also be due to limited phenotyping of
the VP as all phenotypes, except for FHB, were obtained from unre-
plicated trails. Also the VP lines were evaluated in a different year from
the TP and therefore GEI may be affecting the ability to predict the
performance of lines tested in another environment. Collectively, the
results from the PP andVP show aGSmodel built using the TP data can
predict the phenotypes of a highly related population, even when the
phenotypes were obtained from different environments: the degree of
this accuracy though varied by trait.

Accuracy of GS when using subsets of TP data
Most studies and simulations show that increasing the size of theTPand
the number of markers increases the accuracy of GS (Bernardo 2009;
Bernardo and Yu 2007; Heffner et al. 2011b; Lorenz et al. 2012; Poland
et al. 2012). In contrast, we show that the accuracy of GS can be greatly
improved by systematically reducing the number of lines and markers
in the TP data set. Compared to using all lines, removing TP lines with
high GEI from the TP either reduced, or did not impact, prediction
accuracy when we used all markers. When using all TP lines and
systematically reducing the number of markers in the model to include
only those markers significantly associated with the trait at P , 0.05
(marker subset 2), the prediction accuracy was increased for all traits
except GYN (Table 1). Depending on the trait, marker subset 2 con-
tained just 4.7–8.7% of all the markers. The gain in GS accuracy from
using marker subset 2 with all 470 lines ranged from 39% to 83%
(excluding GYN) compared to using all markers. In addition marker
subset 5 had ,1% of the TP markers for any trait and produced GS
accuracies that were similar to those of marker subset 2 and that were
superior to using all markers for all traits except GYN.

Therefore using only markers with statistical evidence of being
associated with QTL increased the accuracy of GS for all traits except
GYNregardlessof thenumberof lines in theTP.Othershave shownthat
selectingagreatly reducedsubsetofmarkersbasedoneffects (Abdollahi-
Arpanahi et al. 2014; Moser et al. 2010; Vazquez et al. 2010; Weigel
et al. 2009) or consistency (Schulz-Streeck et al. 2013) produced GS
accuracies that were similar to those obtained using all markers. Our
results are unique as markers were selected based on significance and
the subsets often produced increased accuracy relative to using all
markers. The fact that marker subset 2 provides the highest prediction
accuracies for most traits could be attributed to this marker set includ-
ing enoughmarkers to represent the genomewhile only including those

with evidence of being linked to QTL controlling the trait. It should be
noted that similar GS accuracies were obtained for all traits withmarker
subset 5 which were likely too small to cover the wheat genome, yet
must be covering the most relevant regions of the genome. It is easy to
understand why a model using only the significant markers is more
predictive than a model using all markers as the effects associated with
the selected markers are larger and more likely reflect the effects of real
QTL than markers that are not significant. Including markers that are
not significantly associated with a QTL lowered the accuracy perhaps
because the effects associated with these regions are poorly estimated
and thus these markers primarily add error or noise to the data set. In
addition RRBLUP distributes variation equally over all markers and
equally shrinks all marker effects toward zero (Meuwissen et al. 2001).
By removing markers not statistically associated with a trait, perhaps
the model can more accurately estimate marker effects and there is less
shrinkage of true marker effects.

GS accuracy between environments
Using data from one set of environments to predict the performance in
independent environments is the crux of plant breeding. The GS pre-
diction accuracy between environments for grain yield was very low
(Table 1) when using all markers and lines. However, the accuracy of
between-environment predictions for grain yield was increased consid-
erably when using the subset of lines with low GEI and subsets of
markers associated with grain yield in either environment. The highest
prediction accuracy for grain yield between environments (r = 0.37)
was found using the subset of 400 lines with lowGEI andmarker subset
6 (362 markers significant at P , 0.01 and with marker effects whose
absolute value was.30 kg hectare-1, Table 1) and was greater than the
phenotypic correlation of GYW and GYN (r = 0.20). The majority
(99%) of the markers in subset 6 are not in linkage disequilibrium
(LD) with one another suggesting these markers are likely mostly tag-
ging independent QTL.

As with grain yield, the between-environment prediction accuracies
for FHB, SE, andFYwere lower thanwhenusingdata fromboth years to
build themodel and it varied depending on which year’s data were used
to build the model. For these traits using a subset of lines with low GEI
had little impact on improving accuracy (Table 1). Using subsets of
markers did improve the between-environment accuracy especially
when using 2010 data to build the model to predict 2011 FY or SE
phenotypes and using 2011 data to predict 2010 FHB phenotypes
(Table 1). Thus, as for grain yield, the ability of the data from one
environment to predict the other, and the impact of using subsets of
TP data, varied by which environment’s data were used to build the
prediction model. For every prediction scenario the greatest GS accu-
racy was attained by using either a subset of lines and/or a subset of

n Table 4 Average phenotype of the top three (T3) and bottom three (B3) of the 21 parental lines (PP) and validation population lines (VP)
as ranked based on their genomic estimated breeding values (GEBVs) that were predicted using data from the training population (TP) and
the Ridge-Regression BLUP model

PP VP

Trait Avg. T3 Avg. B3 T3-B3 P-value Avg. T3 Avg. B3 T3-B3 P-Value

GYA 4782 4600 181 0.45 5100 5442 2343 0.52
GYN 4529 4450 78 0.67 4074 3955 119 0.34
GYW 5496 4616 880 0.06 5846 5908 263 0.84
FY 69.0 68.9 0.13 0.92 69.0 64.4 4.6 0.02
SE 58.7 57.4 1.3 0.09 58.7 56.4 2.3 0.46
FHB 16.4 24.2 27.8 0.07 9.6 16.5 26.9 0.06

Values are shown for grain yield over all environments (GYA, kg hectare-1), grain yield at Northwest, Ohio environments (GYN), grain yield at Wooster, Ohio
environments (GYW), flour yield (FY), softness equivalence (SE), and Fusarium Head Blight index (FHB).
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markers (Table 1). The greatest GS accuracy between environments for
FHB (r = 0.42) was greater than the correlation of FHB pheno-
types between environments (r = 0.32). However, for SE the highest
accuracy between environments was lower than the correlation of phe-
notypes between environments (r = 0.81) and for FY was equal to the
correlation between environments (r = 0.72).

For grain yield, removing lines with high GEI likely allowed the
model to more accurately estimate genetic effects and GEBVs. A
line’s mean phenotype within an environment is due in part to its
genetic effect and in part to the GEI of that line with the environ-
ment: the calculated GEI is due in part to true GEI but also in part
to experimental error that may be confounded with that line and
that environment. It is interesting that the accuracy of GYA and
GYW decreased (relative to using all TP data) when using a subset
of lines, but increased when using subsets of markers. In contrast,
the GS accuracy for GYN and the between-environment GS accu-
racies only increased when using both the subset of lines and sub-
sets of markers. This could be due to the error (noise) present in the
phenotypic data for GYN, likely caused by the water damage to
these plots. Most of the 70 lines with high GEI variance that were
removed had negative GEI with the GYN environment and positive
GEI with Wooster. This likely led to underestimating the true yield
potential of these lines in the GYN environments while data from
the Wooster environments were more indicative of their true ge-
netic value. Including these high GEI lines in any analysis adds
noise to the GYN data set and that reduces our ability to predict
GYN, or the ability of GYN data to predict grain yield elsewhere.
Thus GS accuracy is low for GYN and between-environment pre-
dictions when using data from all TP lines even with the reduced
marker subsets. This is not a problem when using GYW or GYA
data (GYW is a component of GYA) as the GYW phenotype data
likely more accurately reflected true genetic values than did the
GYN phenotypic data. Prediction accuracy for GYA and GYW in-

creased using just subsets of markers as the markers were selected
for significance for GYW or GYN, which means they were discern-
ing genetic effects from noise.

The GS accuracy and REy observed for these traits in the TP indicate
that GS could be very useful for improving these traits. This conclusion
is further supported by the ability of the TP data and GS model to
predict the performance of the parents of the TP. For all traits, the
accuracy of GS can be greatly increased by using subsets of markers
that are significant for the trait. The increase can be even greater
when also using a subset of lines with low GEI for some traits. Increases
of GS accuracy within the TP using cross-validation of up to 131%
were attained by using data subsets. Even using marker subsets
containing,7% of the total markers produced greater accuracies than
using all markers. The increase in accuracy from using subsets of TP
lines and/or markers is similar to what other studies have shown one
would expect by increasing the TP size and number of markers
(Bernardo and Yu 2007; Heffner et al. 2011a,b; Lorenz et al. 2012;
Poland et al. 2012). Perhaps even more important is the finding that
predicting the performance of lines in one set of environments by using
only TP data from a second set of independent environments was
significantly improved by using subsets of lines and markers.

It is now relatively easy and economical to generate lots of marker
data using genotyping-by-sequence (GBS). However, our results
suggest that a small subset of selected markers can provide more
accurate GS predictions than a large number of markers. It is
important to note than one must have a large number of markers
and TP lines to begin with to have accurate estimates of genetic
effects and genome coverage. From the large set of markers you can
systematically select lines and markers to form a small and more
informative subset that produces the greatest accuracy for use when
implementing GS. These small marker subsets may allow the use of
alternative genotyping platforms that are less expensive and more
repeatable than GBS in future cycles of GS initiated from the TP. In
plant breeding it is difficult to add more lines to a TP to increase the
accuracy of GS as this greatly increases phenotyping resources. The TP
size must allow for efficient phenotyping over multiple environments
in order to accurately estimate GEI and marker effects. This study
removed 5 to 17% of the TP lines based on GEI: the remaining lines
must form a TP of sufficient size to provide robust estimates of genetic
effects. These results suggest that starting with a large number of lines
and markers in the TP allows one to select for the most informative
ones to use in generating GS models with improved accuracy that can
then be used when implementing GS.
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Figure 1 Principal component analysis of the 470 wheat lines of the
training population (TP) and the 94 lines of the validation population
(VP) using data from markers scored in both populations. Five groups
of TP lines were defined by Cabrera et al. 2014 and are identified as
groups 1 to 5. The VP are identified by the “+” and the “�” where the
“+” represents the 85 lines with varying relationship to the TP and the
“�” represent the 17 VP lines that are half sibs of the TP.
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