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Abstract

This article refers to the Computer Aided Diagnosis of the melanoma skin cancer. We

derive wavelet-based features of melanoma from the dermoscopic images of pigmental skin

lesions and apply binary C-SVM classifiers to discriminate malignant melanoma from dys-

plastic nevus. The aim of this research is to select the most efficient model of the SVM clas-

sifier for various image resolutions and to search for the best resolution-invariant wavelet

bases. We show AUC as a function of the wavelet number and SVM kernels optimized by

the Bayesian search for two independent data sets. Our results are compatible with the pre-

vious experiments to discriminate melanoma in dermoscopy images with ensembling and

feed-forward neural networks.

Introduction

Melanoma, the neoplasm of the pigment cells of the skin, is still a challenge both for clini-

cians and CAD (Computer Aided Diagnosis) specialists. Observations with the naked eye

and with instruments, especially with popular optical or even with digital dermoscopes

require long-term experience which is hard to achieve not only for general practitioners but

also for dermatologists. Diagnosis of mature melanoma moles, due to asymmetry, variety in

colors or border irregularity, may not be difficult, which is quite the contrary to early mela-

noma lesions that lack those indications. Effective treatment of melanoma i.e. a high (>95%)

5 or 10-year survival rate consists in early detection and resection of the malignant skin

lesion [1]. When not excited at an early stage, melanoma penetrates deep from epidermis to

the skin and finally transfers to the lymph nodes and other internal organs by metastasis. At

this stage the mortality rate is extremely high and especially for at least a decade has become

a medical problem. This problem refers to all countries but particularly these where mela-

noma morbidity rate is elevated. Statistics says that women got melanoma moles on the legs

and men on the back.

Crucial for improving the patient survival rate is early detection and for that the only reli-

able method is biopsy. For obvious reasons (surgical complications, ANS-Atypical Nevus Syn-

drome, economic reasons) excision cannot be a diagnostic tool or standard mass treatment.

The key role is precise detection of the tumor.
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Clinical diagnosis of early or micro-melanoma is extremely difficult even for experts. A dif-

ferentiation between pigment and non-pigment skin lesions may be a challenging task but

classification of different forms of pigment (melanocytic) lesions can be very complex. From

the clinical point of view three forms of pigment lesions can be misdiagnosed: benign nevus,

dysplastic (atypical) nevus and melanoma. The dysplastic nevus may be a precursor to malig-

nancy and often exhibits features visually identical or close to melanoma [2].

On that account melanoma CAD systems are very popular and of key importance. They

help in the early diagnosis of the skin lesions and support non-invasive methods in dermatol-

ogy. The CAD methods implement machine learning paradigms and are based on data sets of

(histopatology or expert ground truth) known cases. Unfortunately such data sets are sparse

and with limited statistics of events and perhaps limited or unknown quality (e.g. image reso-

lution, compression).

Recognition of melanoma with such computer systems can be divided into: i) direct

machine learning (ML) to recognize melanoma from its features, and ii) ML of specific skin

lesion patterns/structures that are indicative of melanoma (lesion border, blue veil, geometric

asymmetry etc.). The main feature types classified in the melanoma recognition systems

include color and/or geometry-based features, histogram-like features, wavelet-based features

and other less common (e.g. Gabor etc.). Literature on the melanoma CAD is ample and deal

with all the steps: accuracy of clinical and histopathological examinations (i.e. the ground

truth), dermoscopy and digital acquisition of lesion images, preprocessing (removal of arti-

facts, filtering), and finally pattern recognition and machine learning of melanoma. The

majority of articles refer to dermoscopy and/or digital imaging of melanoma, since spectral,

trans-illumination, ultrasonography or tomography systems, although promising, are not

mass skin diagnostic systems.

In 2013 Masood et al. [3] described the state of the art of the melanoma classification of der-

moscopic images with statistics, plus they compared and discussed the results and conditions

that affected the analyzed techniques. Later on we refer to this work to scrutinize our results.

The latest review on computational methods and their applications as well as trends for

automatic melanoma diagnosis was published in 2016 [4]. It was focused on feature extraction,

feature selection, classification algorithms and evaluation procedures.

Overview of statistics and results from the melanoma CAD and segmentation issues can be

also found in [5, 6].

The main achievement of this work is first quantification of the C-SVM classification

performance of melanoma (in terms of AUC) over a broad range of wavelet bases and

SVM kernels. This article is a continuation of our latest research on wavelet-based features

of melanoma, derived from dermoscopy images, and classified with various ML paradigms

[7, 8]. Our motivation is driven by a systematic search for resolution invariant features

and learning methods contributing to the computer pattern recognition of cutaneous

melanoma.

Motivation

The first and still important approaches to the melanoma detection were segmentation tech-

niques [4–6, 9]. Since dermoscopy images can be taken under different conditions, such tech-

niques can suffer from unstable image illumination, different optical magnification, different

skin complexions and presence of artifacts (hairs, reflections, bubbles of immersion fluid etc.).

Under such circumstances successful pattern recognition is still possible, but may be limited in

performance or strongly sensitive to datasets. Identification methods based on spatial and fre-

quency information found in the skin texture can be a promising alternative.

Melanoma recognition by wavelet features and SVM classifiers
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Application of the wavelet- and wavelet-packet- transform to human skin data was first

applied in [10]. Patwardhan et al. [11] studied wavelet packets to decompose the sub-bands of

the pigmented skin texture, which proved to derive features sensitive to the class of the dermo-

scopy image [7, 8, 12] and then be subject to appropriate machine learning methods. Some

WPT attempts are also shown here [13–15].

Most of the melanoma wavelet-based classifiers quoted in the literature used only a single

wavelet base (usually Daubechies 3 or 4 [11, 16]) to build classification models. In our latest

research all popular and well defined wavelets are used. We showed that some selected wavelet

bases prove to be more efficient and robust for the machine learning of dermoscopic images

than the others. They also keep high classification efficiency in the downgraded image resolu-

tions, that is exhibit resolution invariance.

In [7] this was analyzed in the ensemble of different model types, and in [8] in simple back-

propagated neural classifier setups. In this work we specifically study SVM classifiers of the

wavelet-based features for the melanoma detection to analyze how wavelet bases can affect

the quality of the margin-maximization learning paradigm. The choice of SVM is due to the

inherent advantages of the method: i) the ability to generalize well as it maximizes the margin

between the classes, ii) no local minima, and iii) flexibility of kernel selection within a unified

architecture.

Although in this article we want to study and compare with the previous works and litera-

ture the SVM classifiers (our work is the first quantification of the C-SVM classification per-

formance of melanoma over a broad range of wavelet bases and SVM kernels), our primary

objective is to contribute to optimal feature extraction methods. We believe that adequate

wavelet base(s) representation can both yield high classification efficiency and be robust and

efficient in worse or reduced resolution environments. For that objective we study one by one

different learning paradigms, SVM included.

Computational (memory, time) aspects of any machine learning experiment (not particu-

larly SVM) are important factors which should be carefully planned. This is not only the algo-

rithm convergence and regularness that matters, but if the developed classifier is to be used

e.g. to support medical diagnosis (in CAD this is the ultimate goal), practical aspects play a

role. Computer parts and systems constantly evolve. Nowadays personal smartphones with

ARM-based processors are widely used as medical diagnostic tools, the melanoma CAD

included (e.g. [17], see [18] for a review). Since (usually) ML algorithms for image recognition

demonstrate high complexity, and small hand-held devices have limited processing power

and memory (and the battery capacity), it is of great importance both to: efficiently probe the

parameter space of the solution, and to look for features and learning paradigms that preserve

high efficiency also in lower image resolutions. In this work our objective is to select the best

wavelet bases in terms of AUC classification performance of the SVM binary classifiers of

melanoma/dysplastic lesions and analyze how those wavelet bases perform with the reduced

image resolutions.

Materials and methods

Experimental data

Data sets that are subject to our analysis are available on-line:

Data set A: https://doi.org/10.17026/dans-zue-zz2y,

Data set B: http://www.fc.up.pt/addi/ph2%20database.html.
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Because of concerns related to patient privacy and permissions set by the clinic that col-

lected the data, some access restrictions apply to data set A.

Data set A was collected in Poland from anonymous dermoscopy patients in 2012-2013

[19]. There were 102 malignant melanoma (M) and 83 dysplastic nevus (D) cases (altogether

185 images). Most (not all) of the JPEG images were annotated with some patients data like:

sex, age, and location of the lesion (this kind of information is not used in this study). All of

the images referred to lesions that were resected and examined under microscope in a histo-

pathological lab. All the histopathological examinations were performed by one experienced

team of pathologists, which could prevent from contingent false positives in the sample (we

investigated this problem earlier and found few misdiagnosed cases by inexperienced special-

ists). This is important, since the histopathological examination is the ground truth which

affects assignment of the class labels.

The images were collected with resolution of 2272x1704 by Minolta Z5 digital camera with

an extra dermoscopy extension and then JPEG-compressed as 3x8-bit RGB components. No

magnification details were available.

On the dermoscopic images no pre-processing tasks took place. This was due to the lack of

rough artifacts (black borders, hairs, droplets of immersion fluid, etc.), but also to eliminate

any bias on the final wavelet base selection.

To be capable of performing the wavelet transform, the RGB representation (three integers

per pixel) had to be translated into an indexed representation. This was done by linear, mono-

tonic color mapping.

Data set A was used to prepare two derived data sets of the same size by (recursively) aver-

aging neighbor pixel values in 2x2 blocks:

Images in the data set A2 had resolution of 1136x852.

Images in the data set A4 had resolution of 568x426. Since each iteration of the wavelet

decomposition downscales the input image by a factor of 2 both in rows and columns, to allow

for three wavelet iterations the 568x426 set was padded with zeros (rows 427 and 428).

Data set B was downloaded from the public database PH2 of the Automatic computer-

based Diagnosis system for Dermoscopy Images (ADDI) in Portugal [20]. The PH2 database

contains 200 dermoscopic images of melanocytic lesions (80 common nevi, 80 atypical

nevi, and 40 melanomas) with medical annotations of expert dermatologists. The annotations

refer to the dermoscopic criteria (Asymmetry: 0 = Fully Symmetry, 1 = Asymmetry in One

Axis, 2-Fully Asymmetry; Pigment Network: AT = Atypical, T = Typical; Dots/Globules:

A = Absent, AT = Atypical, T = Typical; Streaks: A = Absent, P = Present; Regression Areas:

A = Absent, P = Present; Blue Whitish Veil: A = Absent, P = Present; Colors: 1 = White,

2 = Red, 3 = Light-Brown, 4 = Dark-Brown, 5 = Blue-Gray, 6 = Black), and clinical/histological

diagnosis (0 = Common Nevus, 1 = Atypical Nevus, 2 = Melanoma). For most of the images

binary masks from lesion segmentation is available.

The PH2 images were taken during follow-up examinations at the Dermatology Service of

Hospital Pedro Hispano (Matosinhos, Portugal) through Tuebinger Mole Analyzer with mag-

nification of 20x. They are 3x8-bit RGB color images with a resolution of 768x560 pixels. The

image size was cropped centrally to 760x552 pixels for the sake of the aforementioned wavelet

recursive transformation.

Since data set A contained only melanoma and displastic (atypical) lesions, we limited data

set B to similar (not identical) medical cases. Finally data set B had the following structure:

40 melanomas (33 from clinial + histopathological, 7 lesions from only clinical examination),

77 common/dysplastic nevi (5 from clinial + histopathological, 72 lesions from only clinical

examination). Altogether in B 113 lesion images were analyzed.

Melanoma recognition by wavelet features and SVM classifiers
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In order to directly compare the efficiency of the SVM classifiers between data set A and B,

the latter was additionally resized to resolutions A/A2/A4 and a series of experiments with the

mixed data set A + B was done.

Clinical statistics show that the incidence rate of melanoma is up to 5% (on average) within

all ‘suspicious’ pigment lesions [21]. This means that the melanoma class is the minority class

and is under-represented compared to the benign class. This status holds in the clinic, whereas

in the melanoma CAD scientists attempt either to balance the number of cases from both clas-

ses (data set A is about this status) or to introduce sub- or over-sampling techniques [22] (this

is required in B).

In this work we took for both the data sets A and B the whole statistics for the minority

class (melanoma) and experimented with different sub-sampling ratios [23] of the benign

lesions. As in [8] for the data set A no major change in the classification performance (<5%

for B) was observed. This estimation allows us to conclude that the data imbalance problem

in our experiment does not impact noticeably. In fact, in B the class ratio is 1:2, which is not a

dramatic imbalance.

Disregarding the way how imbalance is removed/controlled in this or (generally) other ML

experiments, the problem in the clinic still holds, because a question arises how majority cases

are picked out for the data set. It follows from our experience that usually those images are

selected which visually fits in very well with the set of benign (dysplatic) cases. This may, how-

ever, seriously impact ‘production’ classifiers. We conclude that bias comes preferably from

the ‘clinical’ source and not our data statistics or procedures.

Wavelet features

Skin is texture that manifests repetitive patterns, pigment network and different structures

(globules, streaks, etc.). This reality can be analyzed in a range of frequencies and spatial scales,

which goes beyond pure Fourier analysis. In this section we introduce wavelet features that are

used in this work.

The Discrete Wavelet Transform (DWT) decomposes a signal into a coarse (average) signal

and a signal of details. This can be interpreted, after Mallat [24], in terms of lowpass (L) and

highpass filters (H). The subsequent levels of DWT operate recursively on the lowpass (scaling)

part of the output. Products of the transform are downsampled (decimated) by two at each

level.

In the wavelet packet transform (WPT), the filtering operations are also applied to the sig-

nal of details. This results in a substantial amount of subbands in the output and makes the

time (space) vs. frequency analysis much finer than in DWT. Multiresolution analysis with

WPT can reveal scale-based features of the signal, which provides more precise information

than other signal analysis techniques. Our working hypothesis is that WPT suits well to deter-

mine distinctive features characterizing the class of the dermoscopy image.

Images are two-dimensional signals so one iteration of the Mallat filtering algorithm pro-

duces four sub-signals which can be considered as LL, LH, HL and HH filters after 1D wavelet

transform on the rows and then on the columns. Those filters can be interpreted as decimated

sub-images.

We used three iterations of WPT.

Since all wavelet filters are downsampled (by a factor of 2) after each run of the wavelet

transform (in rows and columns separately), four subimages were produced. In Fig 1 a sum-

mary image with all the used stages of decomposition is shown. It is evident that all channels

of decomposition are used (WPT).
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In one iteration four filters were produced, so in three turns we had 1 + 4 + 16 = 21 different

transformation branches. In each branch we produced a list of twelve features. As features we

took simple measures based on the energy content of the (sub)images [11, 12]:

ei—energies,

ei/emax—maximum energy ratios,

ei/Sek, k 6¼ i—fractional energy ratios,

where energy ei, i = 1, 2, 3, 4 was defined as a sum of absolute values of the pixels. Our fea-

ture vector was composed of 21 × 12 = 252 components.

Such feature extraction was carried out in different wavelet bases: orthogonal wavelets:

Haar, Daubechies, Symlets, Coiflets, bi-orthogonal wavelets, and reverse bi-orthogonal wavelets.

Those wavelet bases possess certain characteristics which however is not discussed in this article.

SVM learning

The Support Vector Machine (SVM) learning method finds a hyperplane that separates data

points from two distinct classes in the way that it maximizes the margin between the two

Fig 1. The wavelet packet transform (WPT) decomposition.

https://doi.org/10.1371/journal.pone.0211318.g001
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classes [25, 26]. The mathematical formulation of the problem [27] involves finding β and b
such that for all the data points (xi, yi) it holds:

f ðxÞ ¼ x0bþ b ¼ 0; yi f ðxiÞ � 1 ð1Þ

where the latter equality is accomplished for those data points that are (called) support vectors

(yi f(xi) = 1). In a case the two classes are not separable by a hyperplane SVM introduces a soft

margin i.e. it releases the condition yi f(xi)� 1 − ξi. The optimization problem formulated by

Lagrangian (in the simplest form of the L1 norm):

L ¼
1

2
b
0
bþ C

X

i

xi �
X

i

aiðyiðx
0

ibþ bÞ � ð1 � xiÞÞ �
X

i

mixi ð2Þ

with the bounds:

b ¼
X

i

aiyixi;
X

i

aiyi ¼ 0; ai ¼ C � mi; ai; mi; xi � 0 ð3Þ

is usually translated into an expression with the α coefficients only:

maxa
X

i

ai �
1

2

X

i

X

j

aiajyiyjx
0

ixj ð4Þ

with ∑i αi yi = 0 and 0� αi� C, C being the regularization parameter.

This concept is very successful in machine learning and data mining applications [28], espe-

cially when non-linear transformations of the primary data space (kernels) are introduced.

The appropriate choice of kernel can map primary features to a larger dimensional space

where the classes are (better) separable. Four kernels are well known and widely used: the lin-

ear kernel xTi xj, which is a linear combination of features, the polynomial kernel ðxTi xj þ rÞ
p

with the parameters: p-degree of polynomial and r-offset, the gaussian (radial basis) kernel

exp(−γ � |xi − xj|2), γ> 0, and sigmoid (MLP) kernel.

Quadratic programming which is required to solve the optimization problem defined

above is broadly implemented in various statistical toolboxes and professional computer

libraries e.g. in [29]. In this study we take advantage of both the LIBSVM library [29] and

Matlab Statistical Toolbox [30]. We take into account the binary SVM classifiers with the lin-

ear, polynomial, and gaussian kernel.

The SVM paradigm, as compared to standard back-propagated neural networks, does not

have hidden parameters, and is a global approach not prone to stuck at local minima. Different

bounds set on the margin can affect the (upper bound of) generalization error and can control

overfitting.

Bayesian optimization

The objective of every learning method is to minimize a cost function, which is usually the

cross-validated loss. In the learning paradigm exploited in this work, i.e. C-SVM, we want to

search for the best parameters of the kernel and the domain size C, as well as the number of

support vectors in the resulting model. One framework to minimize a real-valued objective

function within a certain box is Bayesian Optimization (BO) [31].

BO is a global optimization technique (starting points are of no importance) but there are

cases where it does not always secure accurate results. If no a priori knowledge about parame-

ters is available, the widest finite range should be covered. BO algorithm is time-consuming

due to large computational burden every iteration, therefore for the sake of experimental

Melanoma recognition by wavelet features and SVM classifiers
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requirements it should stop if the cross-validated error rate (objective function) drops below a

certain level or (at least) after reaching a fixed number of iterations, or maximum run time.

BO introduces the so called acquisition function, that determines which points of the space

should be covered. ‘Goodness’ of the point is evaluated upon the ‘amount’ of improvement it

provides for the optimization. There can be different methods to achieve this and our model of

choice is based on the posterior distribution function Q.

If at xbest the lowest value of the posterior mean is μQ(xbest) then the ‘expected improvement’

is:

EIðx;QÞ ¼ EQ½maxð0; mQðxbestÞ � f ðxÞÞ� ð5Þ

To escape from local minima of the objective function, in order to balance sampling at

points with high and low efficiency of the model, the acquisition function checks after each

iteration the standard deviation of the posterior distribution function s2
QðxÞ. If it drops below a

defined level, the area is recognized as ‘overexploited’ and the algorithm modifies the kernel to

raise the variance σQ. This offsets the solution to a new not yet examined point. Such strategy

both covers the whole space and concentrates on the best feasible points.

Results and discussion

Our setup was coded first with LIBSVM [29] and then recoded to Matlab [30]. The experi-

ments ran on a 4-core i7 workstation with 32GB RAM. We cross-validated (10-fold CV) our

SVM classifiers on the standardized (N(0, 1)) predictor vectors.

Search for the best subset of features is usually a tradeoff between reducing the bias and

computational cost, and preserving the classification performance. In this work we did not

reduce our feature vector and kept all the wavelet features in the analysis. Our objective was to

finally compare different learning methods, so we had to remove any bias coming from feature

selection methods, which can affect the analyzed learning paradigms in a different way. This

was discussed in [32] where feature selection algorithms (CFS, PCA, GSFS) reduced the com-

plexity of the classification, but performance was highly dependent upon the classifier.

Analysis and discussion of our results is divided into several stages:

1. Analysis of the absolute SVM classification performance for all the kernel functions for data

set A (A/A2/A4) and data set B (original resolution), which includes Figs 2–5. Our objective

is to analyze an overall classification performance of the kernel functions. In Fig 6 we ana-

lyze average AUC levels for the gaussian, linear, and polynomial kernels.

We also present classification performance for all the kernel functions for data set B resized

to resolutions A/A2/A4 (Figs 7–9). Again, in Fig 10 we analyze average AUC levels for the

three kernels.

2. Analysis of the classification performance for a fixed kernel function for three image resolu-

tions for data set A (Figs 11–13) plus for the combined data set A + B(resized) (Figs 14–16).

Our objective here is to pick up those wavelet bases that show outstanding classification

performance for individual data sets with specific image resolutions. Our second objective

is to select those wavelet bases that preserve high classification efficiency through the pre-

sented spectrum of resolutions (resolution invariance).

Analysis of the joint data set A + B cast light both on compatibility of the data sets and sta-

bility of the learning algorithm (independence on the data set).

In Fig 17 we show the number of support vectors for the three kernel functions used in the

SVM classifier of data set A. This is also a test for quality and stability of features built upon

certain wavelet numbers.

Melanoma recognition by wavelet features and SVM classifiers
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3. Analysis of our SVM results against our previous experiments with the wavelet features:

ensembling (Figs 18–20) and feed-forward neural networks classifiers (Figs 21–23). Our

objective is to show the property of the resolution invariant wavelet features for melanoma

detection in the background of other tested classification paradigms.

Fig 2. AUC as a function of the wavelet number (see text) for data set A for the three SVM kernels optimized by the Bayesian search. Resolution is

(2272x1704). To easily follow the trend the points belonging to the same kernel function are connected with a line.

https://doi.org/10.1371/journal.pone.0211318.g002

Fig 3. AUC as a function of the wavelet number for data set A for the three SVM kernels optimized by the Bayesian search. Resolution is A2(1136x852).

https://doi.org/10.1371/journal.pone.0211318.g003
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Fig 4. AUC as a function of the wavelet number for data set A for the three SVM kernels optimized by the Bayesian search. Resolution is A4(568x426).

https://doi.org/10.1371/journal.pone.0211318.g004

Fig 5. AUC as a function of the wavelet number for data set B (original resolution 760x552) for the three SVM kernels optimized by the Bayesian search.

https://doi.org/10.1371/journal.pone.0211318.g005
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4. Analysis of our SVM results with help of the melanoma CAD summary articles (Masood

[3], Oliveira [4]) and some individual studies from the literature.

Ad.1

Full results of our experiments on data set A/A2/A4 are presented in Figs 2–4 for the three ker-

nel functions and the three resolutions. In these and the follow-up figures the wavelet number

Fig 7. AUC as a function of the wavelet number for data set B for the three SVM kernels optimized by the Bayesian search. Resolution is resized to (2272x1704).

https://doi.org/10.1371/journal.pone.0211318.g007

Fig 6. Average AUC levels for the three kernel functions, for data set A (resolutions A, A2, A4).

https://doi.org/10.1371/journal.pone.0211318.g006
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denotes: 1 = Haar, 2-11 = Daubechies (db1-db10), 12-18 = symlets (sym2-sym8), 19-23 = coif-

lets (coif1-coif5), 24-38 = bi-orthogonal wavelets (Bior1.1, 1.3, 1.5, 2.2, 2.4, 2.6, 2.8, 3.1, 3.3, 3.5,

3.7, 3.9, 4.4, 5.5, 6.8), and 39-53 = reverse bi-orthogonal wavelets (Rbio1.1, 1.3, 1.5, 2.2, 2.4, 2.6,

2.8, 3.1, 3.3, 3.5, 3.7, 3.9, 4.4, 5.5, 6.8).

Fig 9. AUC as a function of the wavelet number for data set B for the three SVM kernels optimized by the Bayesian search. Resolution is resized to (568x426).

https://doi.org/10.1371/journal.pone.0211318.g009

Fig 8. AUC as a function of the wavelet number for data set B for the three SVM kernels optimized by the Bayesian search. Resolution is resized to (1136x852).

https://doi.org/10.1371/journal.pone.0211318.g008
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The way how images, so 2D signals, are analized by the filter bank is another factor. In this

work 1Dx1D filtering (separately along rows and columns) was performed, which followed

Mallat [24] (in other approaches 2D filtering elements are potentially possible).

For the SVM optimization we used the Sequential Minimal Optimizer [31] and initiated the

alpha coefficients with zeros. To check for the optimization convergence the gradient tolerance

Fig 11. AUC for the SVM gaussian kernel as a function of the wavelet number for the data set A (resolutions: A, A2, A4).

https://doi.org/10.1371/journal.pone.0211318.g011

Fig 10. Average AUC levels for the three kernel functions, for data set B resized to resolutions: A, A2, A4.

https://doi.org/10.1371/journal.pone.0211318.g010
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was set for 10−3. The AUC values were averaged over 10-fold cross-validation (10 turns, 9

training subsets and 1 hold-out testing subset in each turn).

The optimizatoin space that was checked included:

• kernel functions: gaussian, polynomial, linear,

Fig 12. AUC for the SVM polynomial kernel as a function of the wavelet number for the data set A (resolutions: A, A2, A4).

https://doi.org/10.1371/journal.pone.0211318.g012

Fig 13. AUC for the SVM linear kernel as a function of the wavelet number for the data set A (resolutions: A, A2, A4).

https://doi.org/10.1371/journal.pone.0211318.g013
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• parameters of the kernel functions: for ‘gaussian’ it is the inverse variance parameter (γ), for

‘polynomial’ it is the order of the polynomial (d),

• the maximum penalty imposed on margin-violating data points (C).

We scanned the above-mentioned model parameters in a log step between 1e-3 and 1e6.

The maximum number of iterations was fixed for 60 and the run time was left infinite.

Fig 14. AUC for the SVM gaussian kernel as a function of the wavelet number for the combined data set A + B (B is resized to A, A2, A4).

https://doi.org/10.1371/journal.pone.0211318.g014

Fig 15. AUC for the SVM polynomial kernel as a function of the wavelet number for the combined data set A + B (B is resized to A, A2, A4).

https://doi.org/10.1371/journal.pone.0211318.g015
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Figs 2–4 show AUC (the Area Under the ROC Curve) vs. the wavelet number for data sets

A(2272x1704), A2(1136x852), and A4(568x426) for the binary SVM classifiers of melanoma

vs. displastic lesion. This is a Bayesian search over an available space of the gaussian (marker is

square), linear (triangle), and polynomial (circle) kernel.

Fig 16. AUC for the SVM linear kernel as a function of the wavelet number for the data set A + B (B is resized to A, A2, A4).

https://doi.org/10.1371/journal.pone.0211318.g016

Fig 17. Number of support vectors for the three kernel functions used in the SVM classifier of data set A.

https://doi.org/10.1371/journal.pone.0211318.g017
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Clearly visible is an inphase sinusoidal fluctuation of AUC through all the resolutions. Since

all the kernel functions fluctuate over the wavelet number in a similar way (the trend, not the

absolute level) this must be the feature set that is responsible for the phenomenon, not the

learning paradigm. Indeed, variability in the classification performance comes both from the

Fig 18. AUC for the ensemble learning optimized by the ‘recall’ measure as a function of the wavelet number for data set A (resolutions: A, A2, A4).

https://doi.org/10.1371/journal.pone.0211318.g018

Fig 19. AUC for the ensembling learning as a function of the wavelet number for data set B resized to resolutions A, A2, A4.

https://doi.org/10.1371/journal.pone.0211318.g019
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Fig 20. AUC for the ensembling learning optimized by the ‘recall’ measure as a function of the wavelet number for data set A + B (B is resized to A, A2, A4).

https://doi.org/10.1371/journal.pone.0211318.g020

Fig 21. AUC for the neural feed-forward classifier as a function of the topology and learning function (see text for the details). Data set is A in the native A and

reduced resolutions A2 and A4.

https://doi.org/10.1371/journal.pone.0211318.g021
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Fig 22. AUC for the neural feed-forward classifier as a function of the topology and learning function (see text for the details). Data base is B in the native

resolution 760x552.

https://doi.org/10.1371/journal.pone.0211318.g022

Fig 23. AUC for the neural feed-forward classifier as a function of the topology and learning function. Data base is A + B (B is resized to the native and reduced

resolutions of the data base A).

https://doi.org/10.1371/journal.pone.0211318.g023
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individual wavelet base, and is also present within each wavelet family. The latter is obvious

since wavelets from one wavelet family differ in scale and offset. The skin texture apparently

‘prefers’ some scales.

The wavelets that were used in the analysis have different properties like smoothness, sym-

metry, or support. The wavelet base complies with some model constraints and has a diverse

impact on the texture classification. Haar, Daubechies, symlets, and coiflets are orthogonal

wavelets. Orthogonal wavelets are energy preserving and non-redundant, which follows the

formula X2 = A2 + D2 (X-image, A-reconstructed image of approximation, and D-recon-

structed image of details). After Mallat [24] wavelets can be represented by a filter bank. In this

case this is a pair of a single scaling function and a wavelet.

The bi-orthogonal wavelet filters, on the other hand, generate one scaling function and a

wavelet for decomposition, and another pair for reconstruction. They have the property of per-

fect reconstruction i.e. X = A + D and a linear phase, which makes them more symmetric and

compact (these properties are useful in signal analysis). For the sake of symmetry we can divide

the selected wavelet bases into: symmetric functions (Haar and (reverse)-biorthogonal wave-

lets), nearly symmetric functions (symlets, coiflets), and asymetric functions (Daubechies).

Taking into account this variety of properties we conclude that they are individual wavelets,

not wavelet families that make the SVM classification of melanoma dermoscopy images more

(or less) efficient, although certain wavelet families have a higher number of ‘efficient’ wavelets

than the others.

Performance of the SVM classification on data set B for the three kernels is shown in Fig 5.

Images from this data set have rather low resolution but (unexpectedly) they yield (average)

AUC values about 10% higher. Two factors may play a role:

Compression: Data set A is a collection of JPEG images compressed by a lossy algorithm.

Rough estimation on the information content of an image from data set A is possible from its

JPEG file size (assumed we skip all the headers from different stages of the compression). We

have the following (average) file sizes: 1.35MB (A, 2272x1704), 0.59MB (A2, 1136x852), and

0.17MB (A4, 568x426). This yields: 2.79 bit/pix, 4.89 bit/pix, and 5.45 bit/pix from the highest

to the poorest resolution, respectively.

Data set B, in turn, has (standardized) resolution of 760x552 and the average file size is

1.33MB. This yields information capacity of about 24.26 bit/pix. Such an extremely high infor-

mation content is due to its lossless file format, which is BMP. Even if we compare data set B
only to the lowest resolution data set A4, the factor between them is about five. We know that

the JPEG algorithm has a quantization stage which ‘flattens’ pixels values based on the JPEG

quality/compression ratio. This may affect the image structure which translates to decreased

sensitivity for patterns in the compressed image. Quantitative estimations between data sets A
and B are not possible as far as (pre)processing steps in B are unknown.

Class content: The existing melanoma pattern recognition methods (a brief comparison is

done later in this article) are rather ‘advanced’ systems so are ‘costly’ in terms of feature extrac-

tion/selection and classification. This reflects the ‘clinical’ difficulty in discriminating mela-

noma from displastic (anomal) skin lesions. Data set A has two distinct classes: melanoma and

dysplastic nevus while data set B, in turn, has class melanoma and a mixture of dysplastic (1/3)

and common (2/3) nevus. While the benign class in B (common + dysplastic nevus) must be

more widely distributed in the feature space than dysplastic cases alone (A), the ‘distance’

between the melanoma and this (mixed) class in B should be larger i.e. more efficient for classi-

fication, than in A.

Those two factors may be, though qualitative, but reasonable explanation for the difference

in the average AUC level between the data sets A and B.

Melanoma recognition by wavelet features and SVM classifiers

PLOS ONE | https://doi.org/10.1371/journal.pone.0211318 February 6, 2019 20 / 36

https://doi.org/10.1371/journal.pone.0211318


Since there are a few variables in our SVM experiments (the wavelet bases, different resolu-

tions, and finally the three kernel functions) in order to interpret the results and draw straight-

forward conclusions we will limit the number of factors and answer the question which kernel

function produces the best average classification performance in terms of AUC.

Fig 6 has three sections in which we show an average level of AUC produced by the SVM

classifiers with the appropriate kernel functions: gaussian (dotted line), polynomial (dash-dot-

ted line), and linear (solid line) for the nominal A and two downgraded resolutions A2 and A4.

The polynomial kernel function keeps its average level in the reduced image resolutions while

the liner one looses classification efficiency considerably. An interesting finding is that the

gaussian kernel rises continuedly towards lower resolutions. Beyond this point (568x426),

when we go further with the resolution reduction the classification performance drops rapidly

to a level of about 70%.

For the polynomial and linear kernel we can see a drop in performance for the intermediate

resolution (1136x852) and then they recover loss and even outrun a little bit in 568x426. This

behavior is independent of the absolute AUC level, this happens also for the linear kernel

whose performance beyond the nominal 2272x1704 is poor.

In order to check whether those average levels are data set specific (A) or general, we resized

images from the data set B to the resolutions of the data set A. This can be found in Figs 7–9.

Based on the numerical results of Figs 7–9 we could depict in Fig 10 an average level of

AUC produced by the SVM classifiers with the same kernel functions (gaussian, polynomial,

and linear) for data set B resized to resultions A, A2, and A4. Again, the linear kernel has

a decreased (average) level of AUC along with the reduced resolution. As in A the gaussian

kernel performs better for (568x426), but slightly worse than the polynomial kernel for

(1136x852). Taking into account statistical aspects of learning and possible performance drops

for (1136x852) apparent in A, both Figs 6 and 10 look similar.

From this analysis we can conclude the following:

1. kernel functions play a key role in the performance of the SVM classification. The poorest

linear kernel (dot product of the feature vector components) cannot appropriately map fea-

tures-related (noisy) classes of melanoma and benign cases. The polynomial kernel, which

can translate the primary feature vector into more dimensional space (degree of the polyno-

mial is a parameter of the model) performs better, but the gaussian kernel outperforms all

the other. This is because it provides the feature vector mapping in a more nonlinear fash-

ion through introducing cluster-like subspaces. Apparently this is suitable for the SVM clas-

sifiers for the melanoma detection.

2. wavelet features classified by SVM with different kernel functions have ‘preferential’ reso-

lutions where they reach the most optimal classification efficiency. Our analysis on two

data sets (A, B) show that for the gaussian kernel the most efficient space for the SVM

classifier is this of 568x426. This observation is important since can affect the computa-

tional aspects of the melanoma classification. Low(er)-resolution image analysis would

be potentially resource-saving without (noticeable) degradation of the classification

performance.

Ad.2

In stage 1 we performed an analysis of the average SVM classification performance for all the

kernel functions for two data sets: A and B. We concluded that tha gaussian kernel outper-

forms the polynomial and linear kernel especially towards lower image resolutions and that

both data sets yield compatible results.
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In stage 2 we focus on the gaussian kernel function and analyze the absolute classification

performance (in terms of AUC) for the three image resolutions (2272x1704, 1136x852,

568x426) in A and the combined data set A + B.

Our first objective here is to pick up the wavelet bases that show outstanding classification

performance for the individual data sets with specific image resolutions. The second objective

is to select those wavelet bases that preserve high classification efficiency through the presented

spectrum of resolutions (resolution invariance).

Analysis of the joint data set A + B should prove both compatibility of the data sets and

stability of the learning algorithm (independence on the data set). Although our analysis is

focused on the gaussian kernel (A: Fig 11, A + B: Fig 14), we present results for the other two

kernel functions as well (A: Figs 12 and 13, A + B: Figs 15 and 16). This should cast light on

robustness and stability of the wavelet features.

Below we present for the individual kernel functions some consolidated figures with

the three image resolutions. In each resolution we select a set (we arbitrarily choose n = 6)

of wavelet bases that show an outstanding AUC classification performance. In Table 1 we

call it ‘Condition 1’. In ‘Condition 2’ we require that the wavelet number has the highest

AUC.

As a next point we analyze high-AUC wavelet numbers almost constant in all the three res-

olutions. Our ‘algorithm’ to choose such cases is:

step 1: for i 2 {wavelet numbers} calculate SUM(i) = ∑j=1,2,3 AUCi(resolutionj)

step 2: choose n (n = 6) consecutive numbers: i ¼ argmaxiSUMi

Conditions 3,4,5 in Table 1 select wavelet numbers that show high efficiency in all the reso-

lutions (assumed a data set and a kernel function). In such a set the order of priority of the

wavelet numbers depends on the resolution preference of the analyzed dermoscopy images. In

‘Condition 3’ preferential is resolution 2272x1704, in ‘Condition 4’ 1136x852, and in ‘Condi-

tion 5’ 568x426.

Table 1 shows the following:

1. Two most frequent wavelet numbers are marked: 46-in bold face, 26-in italic.

2. Wavelet numbers producing high AUC (‘Condition 1), the best one included (‘Condition

2’), belong for the most part to the Bi-orthogonal (24-38) and Reverse Bi-orthogonal (39-

53) wavelet families,

3. wavelet numbers exhibiting good resolution invariance (keeping high AUC results in the

three resolutions) come out in all the kernel functions (‘Condition 3,4,5’).

Some auxiliar information about how different wavelets ‘fit’ to the classifier can also be

found in Fig 17. ‘Good’ wavelets from Table 1 (from the classification performance point of

view) have a (preferably) small number of the support vectors. They are also less dispersed

both between different kernel functions and different image resolutions. The perfect case

waveletnumber = 46 shows very small values of the support vectors and almost perfect inde-

pendence of the kernel function. This can be attributed to good quality and stability of features

built upon wavelet number 46.

Collective behavior of all the wavelet bases measured both in AUC and in the number of

support vectors (Fig 17) casts light on how the SVM classifier ‘prefers’ the studied resolutions.

It seems that the nominal resolution 2272x1704 and 568x426 are comparable in terms of the

classification performance and stability, but 1136x852 is apparently worse (in Fig 17 see the

dispersion in the number of support vectors between the kernel functions).
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After analysis of Table 1 we come to some conclusions regarding the SVM classification of

the dermoscopy images (class melanoma vs. class displastic/common nevus) with the pre-

sented wavelet features.

First, we can see that efficient SVM learning of dermoscopy images is possible with some

selected wavelet bases. Most of the high-performance wavelet bases belong to the symmetrical,

bi-orthogonal or reverse bi-orthogonal wavelet families.

Second, there are some wavelet numbers which keep the SVM classification performance

on an almost stable level through a range of resolutions. The two wavelet bases that show best

performance in all the studied resolutions are: 46 (RBio3.1), and 26 (Bior1.5).

Ad.3

In this section we compare our SVM results for data set A and A + B with the previous experi-

ments with data set A concerning ensembling [7] and artificial neural networks [8].

Ensemble learning consists in learning of single weak and diverse learners [33]. To build

an ensemble of models we started from an empty ensemble and added step-by-step the best

model in the so called Out-of-Train procedure (OOT) (after Breiman’s Out-Of-Bag tech-

nique [34]). Several models were trained on the training set and these models were com-

pared by evaluating the prediction errors on the validation set. The best models became

Table 1. Wavelet numbers collected for the kernel functions (gaussian, polynomial, linear) satisfying some conditions for the AUC values (numbers in parentheses

have equal AUC values). Condition 1: outstanding SVM classification efficiency. Condition 2: highest classification efficiency. Condition 3: high classification efficiency

in all the resolutions (order of priority in A). Condition 4: high classification efficiency in all the resolutions (order of priority in A2). Condition 5: high classification effi-

ciency in all the resolutions (order of priority in A4).

Data Set Resolution Condition 1 Condition 2 Condition 3 Condition 4 Condition 5

gaussian

A 2272x1704 (46 48) 26 (39 2 23) 46 46 48 26 2 39 12

A2 1136x852 26 43 (2 39 46 3) 26 26 2 46 39 19 30

A4 568x426 (46 26) 25 47 48 42 46 46 26 48 2 19 12

B 760x552 3 (8 10 13 15 26) 3 - - -

A + B 2272x1704 41 (46 48) 45 40 23 41 41 46 48 40 6 9

A2 + B2 1136x852 24 (26 2) 39 25 42 24 24 2 26 25 12 47

A4 + B4 568x426 26 (46 25) 12 (47 48) 26 26 46 25 12 48 2

polynomial

A 2272x1704 48 46 41 39 12 2 48 46 39 2 25 26 19

A2 1136x852 26 43 46 2 24 19 26 26 46 2 25 19 39

A4 568x426 26 46 25 47 48 42 26 26 46 2 19 39 25

B 760x552 26 (40 44 10 3 8) 26 - - -

A + B 2272x1704 46 45 41 48 53 15 46 46 24 9 26 20 25

A2 + B2 1136x852 2 39 26 24 12 25 2 24 26 25 19 2 9

A4 + B4 568x426 46 25 42 49 26 24 46 46 25 24 26 2 9

linear

A 2272x1704 46 48 41 23 26 2 46 46 26 12 2 39 19

A2 1136x852 46 2 26 25 39 1 46 46 2 26 39 19 18

A4 568x426 46 26 47 25 14 12 46 46 26 19 18 12 39

B 760x552 (40 8) (25 37 47 13) 40 - - -

A + B 2272x1704 41 46 45 48 40 14 41 46 48 41 26 15 25

A2 + B2 1136x852 47 12 52 46 25 2 47 46 24 26 3 2 39

A4 + B4 568x426 46 25 26 43 48 1 46 46 26 2 3 48 43

https://doi.org/10.1371/journal.pone.0211318.t001
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ensemble members until the ensemble got the desired size. Six model families were used for

the training: LDA, Kernel Ridge Regression with a polynomial kernel k(x, x0) = (a + x.x0)b,
MLP trained with the RPROP descent (with the changeable number of nodes), Perceptron

trained with a second order gradient descent, C4.5 decision trees, and Matlab data trees

(dtree).

The wavelet features were learnt by an ensemble of models in this way, that the ensemble

optimized (one by one) seven different quality measures: accuracy, precision, F1-score, fp rate,

specificity, ber and recall. The final model was tested on a separate unseen set of data and the

area under the ROC curve (AUC) was calculated.

In those experiments we measured AUC and its error bar to draw some conclusions about

stability of the models. Accuracy and recall were concluded to have the highest AUC levels

plus modest error bars. In Fig 18 we plot classification performance of the ensemble built on

data set A by optimizing the recall quality measure. As we can see there are similar fluctuations

of AUC over the wavelet number as in SVM (Fig 11) and the average level of AUC in ensem-

bling is higher than this in SVM by about 6%.

This difference in performance between ensembling and SVM should be attributed both to

the different learning paradigms (ensembles may be more ‘flexible’ for optimization as far as

high dimensional feature space is concerned), and (less) to the Bayesian optimization process,

which is a statistical procedure.

The most optimal wavelet base in our ensembling experiments ([7]) was reported wavelet

number 46 i.e. reverse bi-orthogonal wavelet base Rbio3.1 and 26 i.e. bi-orthogonal wavelet

base Bior1.5.

The mixture set A + B (Fig 20) yields similar results, except for more wavelet numbers that

satisfy the (almost) constant performance in all the three resolutions i.e. 46, 26, 24, 25, 39. We

remember that those wavelet numbers are present in Table 1.

Artificial neural networks (ANN), in turn, is a black-box approach to the knowledge acqui-

sition but can model complex relationships between inputs and outputs due to the nonlinear

processing capabilities of its constituent neurons. ANN are widely used as classification sys-

tems for the melanoma CAD. In [8] we briefly commented on the existing works on ANN and

contributed to the automatic classification of melanoma from dermoscopy images by ANN.

In our study on data set A we used 252 input neurons that represented the same set of

wavelet features as in this work, extracted for one wavelet base, which was RBio3.1 (wavelet

number = 46).

There are no no methodical studies in the literature how the ANN structure (hidden layers)

affect the melanoma classification performance. After careful considerations and computational

attempts on both CPU- and GPU-based parallel computing platforms we arbitrarily limited

ourselves to a few combinations of hidden neurons grouped into one or two hidden layers: [10],

[20], [10-10], [20-10], [20-20], which is not a considerably worse setup compared to the litera-

ture. The validation data was used to optimize (by mean square error) and update the weights

in the backpropagation phase where all the layers had sigmoid activation functions. The testing

set was used to calculate AUC on the unknown subset of dermoscopy images from data set A.

We used several training algorithms with ‘standard’ base parameters: Levenberg-Marquardt

μ = 0.001 (L1), Bayesian Regularization μ = 0.005 (L2), Broyden-Fletcher-Goldfarb-Shanno

(L3), Conjugate Gradient with Powell-Beale restarts (L4), Fletcher-Powell Conjugate Gradient

(L5), Polak-Ribiére Conjugate Gradient (L6), Gradient Descent learn_rate = 0.01 (L7), Gradi-

ent Descent with Adaptive Learning learn_rate = 0.01 (L8), Gradient Descent with Momen-

tum learn_rate = 0.01,momentum = 0.9 (L9), Variable Learning Rate Gradient Descent

learn_rate = 0.01,momentum = 0.9 (LA), One Step Secant (LB), Resilient backpropagation

learn_rate = 0.01, Δ = 0.07 (LC), and Scaled Conjugate Gradient (LD).
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Our objective was to find the best performing ANN for the classification of melanoma der-

moscopy images under the assumption that only those aforementioned limited topologies are

taken into account (starting with [10] hidden neuron on one hidden layer up to [20 20] hidden

neurons on two layers).

Beside classification performance our experiments had to show the computational effi-

ciency (in terms of learning epochs required to gain a defined error level). For that we grouped

results of our ANN setups in terms of pairs (number_ofepochs, setups_finished). As a necessary

efficiency condition for further analysis we took the median of the number of epochs for the

finished setups, which was 20 epochs.

In Fig 21 we plot numerical results of AUC for the resolutions 2272x1704, 1136x852,

568x426, for the five setups of the hidden layers and for the thirteen different back-propagation

learning algorithms assumed that the number of epochs is below 20. Absence of L7-LA proves

that methods based on (variations of) gradient decent converges very slowly (maximum num-

ber of epochs was sometimes even above 1000). Among the remaining cases there are no single

winners in our optimization space, different combinations of the learning algorithms and

topologies reach high AUC values. Each topology has a preferable learning algorithm assumed

a resolution, and in reverse each learning algorithm has the most efficient topology. In any

case one can optimally select a triple (resolution, learning_alg, hidden_layers) to reach a high

AUC and match the experimental setup.

In search for resolution invariance we scan through all the resolutions and see that espe-

cially L1 (Levenberg-Marquardt) shows extreme robustness for almost all the topologies e.g.

(A, L1, [10 10]) = 0.97, (A2, L1, [20]) = 1.0, and (A4, L1, [20]) = 0.98. L6 (Polak-Ribiére Conju-

gate Gradient) proves to be the second best (A, L6, [10 10]) = 0.96, (A2, L6, [20 10]) = 0.99,

and (A4, L6, [10]) = 0.93.

The map of high AUC levels through all the learning functions shows us that images of

1136x852 pixels are the most suitable for classification with ANN (for SVM the preferable res-

olution was 568x426).

Higher absolute results (although more sparse in the optimization space) are reached for

data set B (Fig 22). The same applies to Fig 23 for the joint data set A + B.

Our ANN experiments for one particular wavelet base (wavelet number 46) agree qualita-

tively with the SVM results and the ensembling results in high classification efficiency and that

the wavelet feature (46) is resolution-proof.

Unfortunately no more wavelet bases were studied with ANN due to considerable compu-

tational burden.

Ad.4

A detailed/comprehensive comparison between various methods on the classification of

melanoma and benign lesions cannot be done. While the reviews show the techniques and

results of the published works, they cannot explain why and to which extent the classifica-

tion performance varies with the data set, and with the method (the pre-processing step, fea-

ture extraction and selection included). This is because not enough information about all

the crucial steps of the data collection and analysis are available from the papers, which was

criticized by the reviews’ authors. Sometimes even the presented methods have apparent

drawbacks.

In fact most of the results falling to the same machine learning paradigm seem to be compa-

rable. This is because we usually compare some absolute performance measures i.e. levels

(assumed the same measures) with no variance/dispersion of the results. There are only few

works applying a method or the whole pattern recognition system to more than one data set.
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When different features are extracted/used, comparing performance of even identical machine

learning methods is controversial.

There is a lot of melanoma decision support systems, each having its own paradigm, a fea-

ture set, and machine learning approaches. Here we want to show our results against the back-

ground of existing experiments, based on the review of Masood [3], and more contemporary

Oliveira [4] (crucial bibliography can be found there).

Image acqusition, pre-processing, segmentation, feature extraction (and selection), and

finally classification are fundamental steps in the non-invasive computer diagnosis of mela-

noma. Dermoscopic images, we use in this work, are the predominant part of the existing

visual material recording skin lesions. This technique was briefly characterized in the introduc-

tion. The most important factor that makes this technique most useful in the clinical diagnosis

is illumination and magnification of the moles. There are also drawbacks because artefacts

such as hair or light reflections and liquid bubbles get magnified as well. For all that dermo-

scopy remains the most sensitive visual examinations that outperforms plain macroscopic

images. Some more advanced techniques like trans-illumination, laser-based methods, ultraso-

nography or spectral systems are not widely used and are not significant in the mass melanoma

screening.

Melanoma image recognition can be reliable when trained on robust and comprehensive

data. Unfortunately the only few existing standard data sets that can be used for training

and testing in various melanoma CAD systems are relatively fresh and even if some statistics

amount to some thousands of images, usually only a fraction of cases can be used. This is due

to the variety of classes (non-pigment/pigment lesions, dermal/junctional/compound nevi,

typical/dysplastic lesions, melanoma/other skin cancer cases etc.). For the melanoma binary

classifiers, which have clinical significance, only melanoma and dysplastic cases should be

selected.

The most important existing ML experiments for melanoma usually operate on proprietary

small data sets where the melanoma class has 20, 40, sometimes up to 100 cases. They are usu-

ally unavailable in public and those experiments are not compared against the standard data

sets.

Data set A, which we use, is a medium-size data set for melanoma classification, and its

advantage is high resolution, which is not the case of most existing data sets. High resolution

images allow for experiments with reduced, downgraded resolutions. In this context data set A

is unique. To check performance of the trained SVM model one of the aforementioned public

data sets was chosen—data set B described in the section ‘Experimental Data’.

Prior to segmentation some pre-processing steps can be done, if required. They can remove

artifacts and enhance contrast. As it was explained in Motivation data sets A and B are taken

without any methods enhancing image quality.

Segmentation is an important step to extract regions of interest (ROI) in the image. Lesion

border detection methods play an important role and this step has its own vast methodology

and classification approaches (SVM included). As it is clearly visible from the literature, seg-

mentation is rather unstable method, which can yield quite good results when fined tuned

to the image local conditions. In fact even different images from the same data set can have

slightly different magnification and/or illumination parameters (not to mention about the dif-

ferent artifacts), different skin complexions etc. so adjustment to one global (data set wide)

parameter set is hard.

Feature extraction methods for melanoma discrimination can be based on diverse

grounds. They include clinical approaches (based on asymmetry, border, color, diameter,

evolution or elevation of features), widely known as ABCD(E), 7-Point Checklist, Menzies

etc., pattern analysis methods, where specific global or local patterns are visible in the
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dermoscopy image (homogeneous, starburst, globular, etc.), or various shape or color repre-

sentation/variation features. Finally texture based features may be used, which determine

some statistical texture descriptors e.g. the gray-level co-occurence matrix, (dis)similarity,

entropy, momenta etc.

Some popular methods to extract those aforementioned features is: thresholding, color dis-

crimination, discontinuity-based segmentation (active contour), region-based segmentation

(split and merge, morphological flooding), soft computing and fuzzy logic included.

Other feature extraction methods found in the literature include filter-based approaches:

Gabor (dyadic) filters, Fourier power spectrum, Gaussian derivative kernels or multichannel

filtering.

Some authors raise objections that a lot of different features are used to feed sophisticated

classifiers of melanoma, but there is little discussion about the real meaning of those features

and most of the studies do not report the details of their feature extraction procedures.

Wavelet features which are exploited in this work probe the whole area of the image in

various scales and frequency subsets, and are sensitive filters of localized frequencies in the

skin texture. When this filtering method is done recursively through all the decomposition

branches, the wavelet packet transform (WPT) is applied. Identification of malignant mela-

noma by wavelet analysis is less artifacts sensitive, independent of ‘visual’ conditions of the

image thus less error-prone. References on experiments with the wavelet features are collected

in the Introduction plus a brief summary is done in [3] and [4]. The wavelets features eliminate

the segmentation step so are a promising alternative to most of the feature sets on the market

for the melanoma detection. Results of our previous experiments and this work show that

selected wavelet features are classification efficient and demonstrate robustness in a chosen

spectrum of classifiers (ensembling, ANN, SVM).

Feature selection is used to eliminate redundant, irrelevant or noisy features in order to reduce

classifier complexity for better generalization and to make the learning process more time-,

memory-, and storage-effective. From the known studies very few report the details of their fea-

ture selection procedures. The available ones treat feature selection as an optimization problem

and apply greedy, heuristic, or genetic algorithms or some customized approaches. In our

method we do not use any feature selection procedures, which was explained in the Motivation.

The classification step to discriminate melanoma lesions vs. dysplastic or other lesions

include different learning paradigms. This is usually divided into families of learning methods.

They are: artificial neural networks (MLP, RBF), decision trees (CART, C4.5, etc.), Bayesyan

networks, support vector machines (linear, polynomial and gaussian kernel) and ensembles

(random forest, bagging, boosting, etc.). All those approaches are widely represented in the lit-

erature and summerized in the reviews. Below we restrict to SVM-based results.

A brief theory to SVM methods were presented in the Introduction. This is a linear classi-

fier, which can adapt to non-linearity of the model through kernel functions. Despite their

inherent advantages, there exist relatively few studies investigating the utility of SVMs in mela-

noma recognition. SVMs are used as melanoma classifiers in two scenarios:

• as an indirect classifier identifying one of the clinical (dermoscopic) features of melanoma

(dots, streaks etc.), thus a feature extraction method, and

• as a global image classifier based on various melanoma features (geometry, colors, wavelet

filters etc.).

The first function of SVM is represented in the five main articles.

Celebi et al. [21] took a methodological approach and first determined the lesion border,

then they extracted lesion shape and color/texture features. The feature set was optimized by
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various feature selection algorithms and the optimal feature subset size was ranked by an SVM

classifier with the RBF kernel. Experiments on 564 images (15.6% melanoma, 84.4% benign)

yielded a specificity of 92.34% and a sensitivity of 93.33% with a feature set of 18 out of all 437

features. The appropriate values of the kernel parameters, C (cost/penalty) and gamma (kernel

width), were determined on a grid (C 2 [2−5, 215], and γ 2 [2−15, 23]). After the grid-search, the

SVM classifier was trained with the optimal parameters (C, γ) = (2.0, 0.125).

In [35] texture, border-based, and geometrical features were extracted from 289 dermo-

scopy images (114 malignant, 175 benign). The texture features were derived from a wavelet

tranform, the border features were derived from spatial and frequency factors of the lesion

border model, and the geometry features are derived from shape indexes. The most optimized

features were selected by the gain-ratio method and the SVM classifier with the RGB kernel

and optimized by SMO. Apart from SVM also random forest, logistic regression, and hidden

naive Bayes models were tested. For the 23 features accuracy was 91.26% and ROC was 0.937.

The authors concluded that the texture with (fewer) border and geometry features outperform

pure texture information only.

Based on color symmetry and texture analysis Abbas et al. [36] developed a system classify-

ing the melanoma tumor patterns (reticular, globular, cobblestone, homogeneous, starburst,

parallel ridge, multicomponent pattern). Such multicomponent patterns are well analyzed by

learning algorithms that can assign each input pattern to multiple class labels simultaneously.

In this work ML-SVM (RBF kernel), ML-kNN and multi-label ranking (AdaBoost.MC) were

used, the latter being the best classifier for the problem. For the ML-SVM they reported classi-

fication sensitivity of 89.28%, specificity of 93.75% and AUC of 98.6% (as quoted by [4]) and

concluded that the developed pattern classifier based on color–texture features agrees with

dermatologists’ perception).

Mirzaalian [37] investigated visual streaks as one of the most important dermoscopic

criteria for the diagnosis of malignant melanoma. The streaks in 99 dermoscopic images were

identified by quaternion tubularness, which is sensitive to the radial components of streaks.

Presence or absence of the regular and irregular streaks (measured by some flux-based descrip-

tors for different number of bands, K 2 [5, 13], and thicknesses Δ 2 [2, 8]) was validated by the

SVM classifier (RBF kernel), yielding AUC of 93% in the best model.

Maglogiannis [38] was segmenting and counting dark dots and globules from dermoscopy

images (108 benign + 100 melanoma lesions, 632 × 387 pixels) based on inverse non-linear dif-

fusion. The optimal set of the dot features plus some region-based descriptors were classified

(among others) by SVM with a polynomial kernel (degree = 5) in the malignant-non malig-

nant lesion setup. For the best feature subset they achieved sensitivity of 88.46%, specificity of

92.31% and accuracy of 90.38%.

The SVM classifier was the main supervised discriminator in the works mentioned below.

They are widely commented in the reviews [3, 32, 39].

In [39] the data set contained 1619 lesion images: 600 common nevi, 144 dysplastic nevi,

and 65 melanoma for the training set, and 690 common nevi, 80 dysplastic nevi, and 40 mela-

noma for the test set, all in resolution of 752x582 pixels. The authors analyzed basic, shape and

color features (alltogether 107 features) with different normalization conditions and concluded

that on both dichotomous (common nevi vs. dysplastic nevi + melanoma; melnoma vs. com-

mon + displastic nevi) and trichotomous tasks (correctly distinguishing all three classes) the

ANNs performed similarly as logistic regression and SVMs, and better than the k-nearest

neighbors and decision trees. For the dichotomous classification the optimal polynomial ker-

nel was linear (C = 100) and yielded AUC of 0.92, and the optimal Gaussian RB kernel had

inverse variance γ = 10−4 and C = 100 and yielded AUC of 0.97.
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[32] reviewed the state of the art of the visual features used for skin lesion classification in

the stages: segmentation, border detection and color/texture processing. They also compared

the performance of several classifiers and concluded that the SVM classifier (RBF kernel)

seems to achieve higher performance in terms of sensitivity and specificity, followed by

ADWAT and CART algorithms.

Work [3] is a comparative assessment of skin cancer diagnostic models. They critically

examined practices, problems, deficiencies and prospects from the image acquisition to classi-

fication of dermoscopic images. Some techniques are commented on the conditions that affect

their feasibility.

Single works that are referred to in the above mentioned reviews are briefly commented on

below.

Amico et al. [40] constructed various asymmetry measures (the so called Size Functions)

to discriminate melanocytic lesions by SVM (kernel function was a third degree polynomial),

which was implemented at a clinical level. They gained in the best tests sensitivity of 96.8% and

specificity of 87.2%.

[41] examined the melanoma discrimination capacity of some skin specialists (31 melano-

mas + 103 nevi) and the automatic data analysis for the melanoma early detection system

(ADAM, 42 melanomas + 435 nevi). The ADAM system showed a slightly higher sensitivity

(84%) and a lower specificity (72%), compared with the physicians.

In [42] a local thresholding algorithm was proposed to extract separation, border, texture

and color based features. Those features were used to construct a classifier based on SVM

(malignant melanoma versus dysplastic nevus). The best accuracy of the RBF kernel was

91.84% (sensitivity = 91.30%, specificity = 91.87%).

[43] developed a decision support system for the dermoscopic images by combining (by the

Bayes theory) outputs from different classifiers (SVM, GML, kNN). On a collection of 358 der-

moscopic images they used local color and texture-related features to achieve accuracy of 76%.

In [44] a diagnostic system for dermatologists based on SVM models of melanoma was

built. They investigated 14 geometry and color features. They tested four distinct kernels: poly-

nomial, sigmoid, RBF and the k-MOD decreasing. The best SVM model with the k-MOD

decreasing kernel function got 89% sensitivity and AUC = 76% using a set of 199 digital der-

moscopic images (101 melanomas, 98 dysplastic).

Work [45] aimed at determining the best system for the skin lesion classification out of one

global (one of them was SVM, RBF kernel) and one bag-of-features classifier based on local

features. The other objective was to compare the role of color and texture features in lesion

classification and determine which set of features is more discriminative. They concluded that

color features outperform texture features when used alone and that both methods achieve

very good results on 176 dermoscopy images, i.e. sensitivity of 92% and specificity of 72% for

the SVM global method against sensitivity = 100% and specificity = 75% for local methods.

A classification system for four types of skin cancers: melanoma, basal cell carcinoma

(BCC), actinic keratosis (AK), squamous cell carcinoma (SCC) was reported in [46]. The

GLCM based texture features ware extracted from each of the four classes and given as input

to a multi-class SVM. The accuracy of classification to the one of the four skin cancer classes

was 81.43%.

Masood et al. [47] analyzed 168 images (112 melanoma and 56 benign) rescaled to a reso-

lution of 720x472. The lesion area was segmented using the Histogram based Fuzzy C Mean

algorithm for Level Set initialization (H-FCM-LS). 45 features (15 GLCM, 5 GTDM-Gray

Tone Difference Matrix, 15 FMI-WPT, and 10 Autoregressive) were extracted for each

image The FMI-WPT features (Fuzzy Mutual Information based Wavelet Packet Transform

(FMI-WPT) were extracted to level 3 and then some fuzzy sets were constructed. The
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number of features that maximized the classification performance was evaluated using

fuzzy-set entropy based criterions. The constructed feature sets are used separately as well as

in different combinations for feeding the classifier. Finally, Self-advisable Support Vector

Machine (SA-SVM) was used for classification. SA-VM (both linear and kernel based) uses

information generated from misclassified data in the training phase and thus, improves

performance by transferring more information from training phase to the test phase. The

results obtained by SA-SVM were significantly better than the results of traditional SVM.

The SA-SVM diagnostic system achieved an overall accuracy of 90%, with sensitivity 91%

and specificity 89%.

In [49] features based on asymmetry, border irregularity, color variations and diameter

were calculated from an illumination compensated segmented image after noise removal by

iterative dilation. The SVM classifier was optimized by Sequential Minimal Optimization

(SMO) for the parameters that varied in the ranges: C 2 0.1, 0.2, . . ., 5 for soft margin and

σ 2 [1, 11]. The achieved sensitivity and specificity for the different sets of training and test

data elements were respectively 87% and 94% (1-fold), and 90% and 75% (10-fold CV).

Amerald et al. [50] proposed the high-level intuitive features (HLIFs) to model the ABCD

criteria commonly used by dermatologists. They experimented with various data sets con-

cluding that concatenating the proposed HLIFs with some low-level features increased classi-

fication accuracy. The SVM classifier with the linear kernel on the best data set achieved

sensitivity 92.52%, specificity 96.22%, and accuracy 96.64%.

Choudhury et al. [51] proposed a multilayer decomposition based textural and color fea-

tures for SCC, BCC, melanoma and actinic keratosis. The normalized GLCM and histogram

of oriented gradients (HOG) were used as textural feature descriptors, and were extracted

from different layers of the image than color histograms. The base and detailed layers were

decomposed by the weighted least squares (WLS) edge-preserving decomposition. These fea-

tures were fed to multi-class SVM (MSVM) and extreme learning machine (ELM) for classifi-

cation. An average accuracy of 94.18% for MSVM was better than 90.5% with ELM.

Alquran et al. [52] collected asymmetry, border, color and diameter (ABCD) features

extracted using the GLCM method after segmentation using thresholding. Those features were

selected by principal component analysis (PCA), than the Total Dermoscopy Score (TDS)then

the SVM classification was done. The achieved classification accuracy was 92.1%.

The most recent work on SVM classified malicious and benign skin lesions by Ashtami [53]

proposed new features characterizing border irregularities on both complete and incomplete

lesions. Those features plus color and texture features (GLCM) were classified by a Support

Vector Machine (SVM) model on two dermoscopy databases with images of two human races:

caucasian an xanthous race. Their results, sensitivity 97.82%, specificity 75%, and accuracy

88.46% are slightly better than for their ANN classifier.

There are few direct SVM systems based on wavelet features (and they are not fully compa-

rable with our experiments):

Surowka et al. [14] tested performance of several machine learning paradigms and meth-

ods: neural networks, support vector machines, and Attributional Calculus, applied to der-

matoscopic images of potentially malignant pigmented lesions. The features were obtained

using the multiresolution wavelet-based decomposition of the image. The SVM AUC was

0.937.

In [48] 255 features were extracted from Wavelet Packet Transform (WPT) and reduced

by Particle Swarm Optimization (PSO) to optimize the SVM classifier. In the pre-processing

step the Wiener2, Gabor, median filtering and histogram equalization was introduced to the

images. Each image was further segmented by edge detection and thresholding. All the tasks

yielded classification sensitivity of 94.1%, specificity of 80.22%, and accuracy of 87.13%
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Takruri et al. [16] analyzed 448 digital and dermoscopic images (benign and malignant)

from two sources and segmented them by k-means clustering. They derived wavelet (db4),

curvelet and color based features both from grayscale and color original images which resulted

in a sensitivity of 86.4% and 76.9% and specificity of 88.1% and 85.4% for the wavelets and cur-

velets respectively. The obtained results were discussed to be comparable to those obtained by

dermatologists.

In Table 2 we show our SVM numerical results (best wavelet numbers in each data set plus

the parameters) against all the quoted literature results (Tables 3 and 4) for the SVM learning

paradigm of non-wavelet and wavelet features. We conclude that our results are reliable and

compatible to the rest of the works. Unfortunately, due to too few melanoma classification sys-

tems utilizing both the wavelet features and the SVM classifiers plus unique conditions of the

existing experiments, and last but not least, lack of details from the groups, makes a full quanti-

tative comparison still unfeasible.

Conclusion

Computer aided diagnostic systems are common. For the early detection of cutaneous

melanoma they play a crucial role to support clinics and general practitioners. Our work con-

tributes to this effort in the field of feature extraction. Appropriate features project the infor-

mation from a (dermoscopy) image into a space where classes (malignant and benign lesions)

Table 2. Results of the melanoma SVM learning (this work). Legend: dn = dysplastic nevus, cn = common nevus. RBF kernel parameter: γ, polynomial kernel parameter:

degree; #features = 252, partition: 10-fold CV. Resolutions: A = A + B = 2272 x 1704, B = 760 x 552, A2 = A2 + B2 = 1136 x 852, A4 = A4 + B4 = 568 x 426.

Data set #images #class A (melanoma) #class B wavelet number wavelet base kernel param. C AUC #supp.vect.

gaussian

A 185 102 83 dn 46 Rbio3.1 4.68e-09 9.81e+06 0.870 72

A2 185 102 83 dn 26 Bior1.5 2.41e-04 9.69e+06 0.859 81

A4 185 102 83 dn 46 Rbio3.1 3.72e-06 4.76e+04 0.859 60

B 113 40 73 (cn + dn) 3 Db2 1.61e-03 1.54e+06 0.932 68

A + B 298 142 156 (cn + dn) 41 Rbio1.5 6.98e-04 6.96e+02 0.881 120

A2 + B2 298 142 156 (cn + dn) 24 Bior1.1 4.25e-03 2.36e+04 0.877 177

A4 + B4 298 142 156 (cn + dn) 26 Bior1.5 5.03e-03 1.64e+04 0.854 218

polynomial

A 185 102 83 dn 48 Rbio3.5 3 9.53e+06 0.870 73

A2 185 102 83 dn 26 Bior1.5 3 5.78e+05 0.854 83

A4 185 102 83 dn 26 Bior1.5 4 6.50e+05 0.859 102

B 113 40 73 (cn + dn) 26 Bior1.5 3 1.53e+00 0.940 50

A + B 298 142 156 (cn + dn) 46 Rbio3.1 6 7.21e+03 0.868 92

A2 + B2 298 142 156 (cn + dn) 2 Db1 4 2.56e+05 0.871 125

A4 + B4 298 142 156 (cn + dn) 46 Rbio3.1 2 2.33e-01 0.868 138

linear

A 185 102 83 dn 46 Rbio3.1 - 2.63e+04 0.870 73

A2 185 102 83 dn 46 Rbio3.1 - 5.48e+01 0.843 76

A4 185 102 83 dn 46 Rbio3.1 - 8.28e+03 0.854 62

B 113 40 73 (cn + dn) 40 Rbio1.3 - 5.58e+00 0.923 41

A + B 298 142 156 (cn + dn) 41 Rbio1.5 - 9.39e+06 0.871 106

A2 + B2 298 142 156 (cn + dn) 47 Rbio3.3 - 1.09e-05 0.858 118

A4 + B4 298 142 156 (cn + dn) 46 Rbio3.1 - 1.16e-05 0.854 123

https://doi.org/10.1371/journal.pone.0211318.t002
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are well separated. This step is critical for the performance of the classifier and the learning

procedure.

In this work we extracted features from the WPT wavelet transform for the sake of efficient

SVM classification. We analyzed 53 wavelet bases to select those that are efficient for the SVM

learning, and to probe the SVM parameter space. Our experiments were performed on two

Table 3. The SVM-based melanoma machine learning experiments. Legend: n = nevus, cn = common nevus, dn = dysplastic nevus, otherwise = benign; parameters for

the RBF kernel: (C, γ); parameter for the polynomial kernel: (degree).?/blank space = data unavailable.

Ref

(resolution)

#images #class A

melanoma

#class B #class C partition #features

(best)

kernel

(params)

sens spec acc AUC

[39]

(752x582)

1619 65/40 600/690 cn 144/80 dn train/test 107 poly (1)

RBF (100, 10−4)

84,5%

92,1%

88,5%

95%

92%

97%

[40]

(magnif 16x)

977 25/25 500/427 n train/test poly (3) 96,4% 87,2%

[41]

(magnif 16x)

477 22/20/

31 of 42

218/217/

103 of 435

train/test/

test doctors

84% 72%

[42] 1041 69 972 n RBF (?, 7) 91.3% 91.9% 91.9%

[14]

(2272x1704)

39 19 20 dn 231(10) RBF

(512, 0.000244)

97.4%

[21] 564 88 476 10-fold CV 437(18) RBF (2, 0.125) 93.3% 92.3%

[43] 358 134 106 118 dn RBF 75.7%

[44] 199 101 98 dn 130train/

69test

14 89% 64% 76%

[35] 289 114 175 (23) RBF 91.3% 93.7%

[37]

(768x512)

99 RBF 93%

[45] 176 RBF 92% 72%

[36]

(768x512)

350 80/20%

train/test

RBF (1,?) 89.3% 93.8% 98.6%

https://doi.org/10.1371/journal.pone.0211318.t003

Table 4. The SVM-based melanoma machine learning experiments (contd). Legend: dn = dysplastic nevus, otherwise = benign; parameters for the RBF kernel: (C, γ);

BCC = Basal Cell Carcinoma, SCC = Squamos Cell Carcinoma, a.ker. = actinis keratosis. blank space = data unavailable.

Ref

(resolution)

#images #class A

melanoma

#class B #class C partition #features

(best)

kernel

(params)

sens spec acc AUC

[38]

(632×387)

208 100 108 poly (5) 88.5% 92.3% 90.4%

[46]

(150x112)

359 77 BCC(84)

a.ker.(101)

SCC(101)

81.4%

[47]

(720x472)

168 112 56 84 train

84 test

45 91% 89% 90%

[48] 79 50 29 64 train/

15 test

15 test

255 RBF

(3525.0051, 0.0084732)

94.1% 80.2% 87.1%

[16] 448 93 + 142 121 + 92 0.8train/

0.2test

52

55(25)

RBF 86.4%

76.9%

88.1%

85.4%

[49] 146 108 38 1-fold CV

10-fold CV

RBF 87%

90%

94%

75%

[50] LOO linear 92.5% 96.2% 96.6%

[51] 94.2%

[52] 92.1%

[53] 151 97.8% 75% 88.5%

https://doi.org/10.1371/journal.pone.0211318.t004
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different data sets of unequal resolution, and biased with different illumination, representa-

tion, and compression.

The SVM paradigm involves optimization of a convex cost function, therefore it is a ‘global’

classifier, less prone to overfitting. It is flexible in a high dimension feature space through an

appropriate choice of kernel, is robust and simple.

We tested the linear, polynomial and gaussian kernel and searched (Bayesian optimization)

the kernel parameters (C, γ, degree of polynomial). From this analysis we concluded that:

1. Kernel functions play a key role in the performance of the SVM classification, the best ker-

nel was the gaussian function.

2. Wavelet features classified by SVM with different kernel functions have ‘preferential’ reso-

lutions where they reach the most optimal classification efficiency. Analysis on two data

sets (A, B) shows that for the gaussian kernel such most efficient resolution is 568x426. For

the melanoma classification lower image resolution would be potentially resource-saving

without (noticeable) degradation of the classification performance.

3. We selected wavelet bases that performed the best for a certain resolution and SVM kernel

function, and also such that keep high classification efficiency towards downgraded image

resolutions (Rbio and Bior wavelet families, particularly Rbio3.1 and Bior1.5).

Our findings are compatible with our previous machine learning experiments on the mela-

noma discrimination (ensembling and artificial neural networks) where high classification

accuracy and stable behavior over a range of resolutions was observed as well.

Regarding our SVM classification of melanoma against dysplastic nevus, our classification

performance is in line with other research groups, however a detailed comparison with other

experiments with different data sets, selection criteria, different pre-processing steps and

finally different features is problematic.

General outlook is that further analyses on various (large) public data sets of dermoscopic

skin lesion images should be done to probe new learning paradigms and yield quantitative

results contributing to the melanoma feature extraction.
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