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A B S T R A C T

The clinical presentation of Alzheimer's disease (AD) is not unitary as heterogeneity exists in the disease's clinical
and anatomical characteristics. MRI studies have revealed that heterogeneous gray matter atrophy patterns are
associated with specific traits of cognitive decline. Although white matter (WM) impairment also contributes to
AD pathology, its heterogeneity remains unclear. The Latent Dirichlet Allocation (LDA) method is a suitable
framework to study heterogeneity and allows to identify latent impairment factors of AD instead of simply
mapping an overall disease effect. By exploring whole brain WM skeleton images by using LDA, three latent
factors were revealed in AD: a temporal-frontal impairment factor (temporal and frontal lobes, especially hip-
pocampus and para-hippocampus), a parietal factor (parietal lobe, especially precuneus), and a long fibre bundle
factor (corpus callosum and superior longitudinal fasciculus). As revealed by longitudinal analysis, the latent
factors have distinct impact on cognitive decline: for executive function (EF), the temporal-frontal factor was
more strongly associated with baseline EF compared with the parietal factor, while the long-fibre bundle factor
was most associated with decline rate of EF; for memory, the three factors showed almost equal effect on the
baseline memory and decline rate. For each participant, LDA estimates his/her composition profile of latent
impairment factors, which indicates disease subtype. We also found that the APOE genotype affects the AD
subtype. Specifically, APOE ε4 was more associated with the long fibre bundle factor and APOE ε2 was more
associated with temporal-frontal factor. By investigating heterogeneity and subtypes of AD through white matter
impairment factors, our study could facilitate precision medicine.

1. Introduction

Alzheimer's disease (AD), the most common form of dementia, af-
fects 11% of individuals over age 65 worldwide with no known cure.
Although memory loss is the primary symptom, AD patients manifest
heterogeneous cognitive profiles, i.e., each individual could express
different extents of decline in memory, executive skills, language, and
perceptuospatial abilities (Scheltens et al., 2015; Stopford et al., 2008;
Snowden et al., 2007), which complicate the diagnosis. Hence, there is
a pressing need to identify AD subtypes for improving diagnosis accu-
racy and monitor disease progression.

AD is a complex neurodegenerative disease in that pathological and
structural heterogeneity is constantly observed in AD (Kramer and Miller,
2000; Dickerson et al., 2010; Johnson et al., 1999; Butters et al., 1996;
Tang-Wai et al., 2004; Gefen et al., 2012). For example, neuropathological
studies found that 25–30% of the AD cases had untypical distributions of

amyloid plaques and neurofibrillary tangles (NFTs), and exhibited dif-
ferent rates of disease progression compared with typical AD cases (Murray
et al., 2011; Ossenkoppele et al., 2016; Whitwell et al., 2012). MRI studies
reported that 10–30% of the AD patients exhibited untypical hippocampal
atrophy (Frisoni et al., 2010; Scheltens et al., 2002; Lowe et al., 2013).
Moreover, a recent MRI study suggested that the varying patterns of the
whole brain gray matter (GM) atrophy were associated with distinct tra-
jectories of multidomain cognitive decline in AD (Zhang et al., 2016; Noh
et al., 2014; Park et al., 2017).

White matter (WM) impairment also contributes to AD pathology
(Sachdev et al., 2013; Agosta et al., 2011) and can be detected even
before the development of cortical atrophy in at-risk and heathy par-
ticipants (Agosta et al., 2011; Maier-Hein et al., 2015). Most WM stu-
dies on AD assumed a single disease effect that charts only the overall
associations between WM changes and cognition decline in AD (Acosta-
Cabronero et al., 2009; Bozzali et al., 2002). One study reported that
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WM impairment in AD was associated with impairment in different
cognitive domains (Gouw et al., 2008). A recent study assessed WM
impairment in typical and atypical AD and identified syndrome-specific
patterns of WM microstructure breakdown (Caso et al., 2015). Inspired
by these findings, we hypothesize that heterogeneity exists in WM
impairment in AD, which could explain the variations of multidomain
cognitive decline among participants across the disease spectrum.

In this work, we explored the heterogeneity of WM impairment in
AD by using Latent Dirichlet Allocation (LDA) to identify multiple la-
tent disease factors from WM skeletons constructed using diffusion
tensor imaging (DTI) data (Zhang et al., 2016; Blei et al., 2003). LDA
provides a probabilistic description of multiple impairment factors. For
example, concerning patient A, the WM impairment pattern might be
70% owing to factor 1 and 30% to factor 2; while concerning patient B,
the impairment might be 20% owing to factor 1 and 80% to factor 2. It
remains an open question whether subtypes, which manifest hetero-
geneity in AD cases, are exclusive or mixing up in an individual. LDA
explores the mixed effects of multiple latent factors in a probabilistic
framework and is therefore well suited for studying heterogeneity in
AD.

AD develops slowly from a preclinical phase and the pathophysio-
logical changes start about a decade before the final diagnosis
(Villemagne et al., 2013). In this work, we found that heterogeneity of
WM impairment already appears before clinical syndromes are fully
expressed. We revealed the association between the WM impairment
factors and the cognitive decline in participants throughout the disease
spectrum. In addition, we verified that the genotype was associated
with the latent factors, i.e., APOE ε4 was most strongly associated with
the long fibre bundle factor and APOE ε2 was more associated with
temporal-frontal factor. Our work provides insights into disease het-
erogeneity in brain white matter throughout the prolonged course of
AD, sheds light on the association between the genotype and the disease
subtype, and facilitates precision medicine.

2. Material and methods

2.1. Overview

We performed the following analyses on fractional anisotropy (FA)

maps derived from DTI scans, which measure WM integrity. First, the
LDA model was used to estimate the degeneration probabilities p(Voxel
| Factor) of each voxel in each factor, from the AD patients. Afterwards,
the estimated latent factors were used to infer the factor compositions p
(Factor |Patient) of both AD patients and non-demented participants,
including participants with early mild cognitive impairment (EMCI),
late mild cognitive impairment (LMCI) and normal controls (NC).
Second, we investigated whether the factor compositions are stable
over 3/6/12/24 months as the disease progresses. Third, using long-
itudinal analyses, we explored whether different WM impairment fac-
tors are associated with memory and executive function decline dif-
ferently across the prolonged course of AD. Last, we investigated
whether the APOE genotype is associated with the disease subtype (i.e.,
latent factor compositions) by using a general linear model (GLM).

2.2. Data

Data used in preparation of this article were obtained from the
Alzheimer's Disease Neuroimaging Initiative (ADNI) database (adni.
loni.usc.edu). The ADNI was launched in 2003 as a public-private
partnership and led by Principle Investigator Michael W. Weiner, MD.
The primary goal of ADNI has been to examine whether structural MRI,
functional MRI, DTI, PET, other biological markers, and clinical and
neuropsychological assessment can be combined to measure the pro-
gression of mild cognitive impairment (MCI) and early AD (up-to-date
information is at www.adni-info.org).

Our work was based on ADNI-2 and ADNI-GO (extracted on April
08, 2018), and enrolled all the available participants having both cor-
rected FA images and structural MRI images of good quality. As listed in
Table 1, this study included 232 participants at baseline, comprised of
48 AD patients, 90 EMCI, 44 LMCI and 50 NC. These participants were
longitudinally followed at 3, 6, 12, 24, 36, and 48 months later (most
participants have scans at more than two time points), totalling 893
time points of 232 participants.

The 48 AD patients at baseline were used as input of the LDA model
to identify latent WM impairment factors in AD. Based on the derived
latent factors, individual factor composition was inferred for every
participant. With the factor composition profiles (at 893 time-points)
quantified by the LDA framework, we delved into further statistical

Table 1
Study demographics, cognitive scores, and imaging metrics of baseline scans.

NC EMCI LMCI AD

Participants at baseline 50 90 44 48
3months 68% 61% 77% 75%
6months 74% 46% 66% 65%
1 year 76% 56% 66% 67%
2 years 62% 56% 45% 13%
Sex (female/male) 27/23 36/54 17/27 20/28
Age (years) 72.5(6.2) 72.9(7.9) 73.9(7.1) 75.0(8.7)
Education (years) 16(3)c 16(3) 16(3) 15(3)
Memory (z-score)# 0.99(0.60)a,b,c 0.49(0.64)d,e −0.31(0.65)f −0.92(0.50)
Executive function (z-score)$ 0.81(0.73)a,b,c 0.19(0.74)e 0.14(0.77)f −0.77(0.81)
Intracranial vault (ICV) (cm3) 1380(113)b 1406(137) 1443(132) 1395(158)
Total gray matter (%ICV) 42.4(1.2)b,c 42.2(1.5)d,e 41.4(1.5)f 40.6(1.5)
APOE ε3/4 or 4/4 0.31a,b,c 0.57d,e 0.88 0.82
APOE ε2/3 or 2/2 0.11 0.11 0.07 0.07
CSF Aβ1–42 (pg/ml) 203.8(50.3)a,b,c 174.3(49.6)e 155.1(52.1) 137.3(36.3)

The list of participants (N= 232, data-points = 893) is available at github.com/xiuchao/ldaFA.
# ADNI-EF is available for 679 time-points, among which 504 have amyloid information available;
$ ADNI-Mem is available for 691 time-points, among which 508 have amyloid information available;
a NC v. EMCI (p < 0.05)
b NC v. LMCI (p < 0.05).
c NC v. AD (p < 0.05).
d EMCI v. LMCI (p < 0.05)
e EMCI v.AD (p < 0.05).
f LMCI v. AD (p < 0.05).
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analysis to reveal the associations between latent impairment factors
and cognition and APOE genotype.

For neuropsychological data, memory (ADNI-Mem) (Crane et al.,
2012) and executive function (ADNI-EF) (Gibbons et al., 2012) scores
were explored. For genotype data, APOE ε4 and APOE ε2 were con-
sidered. 170 participants at baseline have genotype information avail-
able, which were used to explore genotype effects on disease subtypes
(i.e. latent factor compositions).

2.3. Tract-Based Spatial Statistics (TBSS)

DTI scans help us understand the regional basis of white matter
tissue degeneration in clinical conditions. Changes in diffusion prop-
erties demonstrate distinct zones of alterations, which potentially stem
from the differences of the underlying pathology. FA was considered as
the primary metric of interest in this study, which is quantified by the
orientational coherence of water diffusion within a voxel. FA reflects
the extent of astrogliosis, myelin and axonal loss.

The FA images were analysed using TBSS (fsl.fmrib.ox.ac.uk/fsl/
fslwiki/TBSS) that comes as a part of FSL (Smith et al., 2004). First, 232
FA images at baseline scans (Table 1) were aligned into a common
space by using nonlinear registration. Second, the mean FA image was
generated and thinned in order to create a group's mean FA skeleton,
representing the centre of the tracts. Every participant's aligned FA data
was then projected onto this skeleton. Third, the log10 transformation
was applied to the resulting skeletonized FA data. Fourth, effects of age,
sex, and education on log transformed FA values were regressed out
with a general linear model (GLM) estimated from 50 NC participants.

For the follow-up scans (647 time-points), the FA images went
through similar TBSS procedures without generating a new WM ske-
leton. Instead we used the WM skeleton derived from the baseline scans
as the standard WM template to derive skeletonized FA maps.

2.4. Latent Dirichlet Allocation (LDA)

In this study, our premise is that an individual AD patient expresses
one or multiple WM impairment factors that are associated with distinct
WM impairment patterns (Fig.1). The LDA method (Blei et al., 2003) is
well suited for modelling DTI data under such a premise, which.

As LDA works on discrete data, the continuous FA maps need to be
discretized by mapping greater WM impairment to a larger positive
integer. Specifically, FA values were first log-transformed to make data

better conform to normality, and then z-transformed (with respect to
NC baseline scans) for each AD patient at baseline. A z score below zero
at a given voxel of a particular participant is an indication of degen-
eration relative to the NC participants. Z scores above zero suggest
unimpaired voxels and were set to zero. The z scores were discretized
by multiplying by −10 and rounding to the nearest integer. Larger
positive values imply more severe impairment.

For a specified number K of WM impairment factors, LDA analysis
was performed on the transformed FA images of AD patients to identify
latent factors and infer factor compositions. Specifically, the probabil-
istic distributions P(Voxel | Factor)of WM impairment, estimated from
AD patients were used to infer factor compositions P(Factor|Patient) of
individual participants. The factor composition of a participant can be
visualized as a point inside the factor space (e.g., K= 3 is represented
by a triangle) as shown in Fig.4. The factor composition represents a
subtype of AD.

Moreover, the robustness of LDA were also evaluated on two aspects
(SI Appendix). First, the stableness of identified latent factors across
different initializations was investigated. For each K, the LDA algorithm
was run for 20 times with random initializations. We observed that
different random initializations led to almost identical solutions, sug-
gesting that the identified latent factors are robust across different runs.
The run with the highest data likelihood (indicating the model best fits
the data) was selected as the optimal factor decomposition of the cur-
rent K. Second, the spatial consistency of two sets of latent factors
identified by LDA with different K’s was investigated. The spatial con-
sistency of latent factors is defined as the situation that latent factors
reside in approximately the same brain regions regardless of a parti-
cular K value. For K in candidate sets of {2,3,…,6} (!!! Invalid Citation
!!!, n.d.), we observed that the identified latent factors were robust
across different K’s (SI Appendix, Fig.S1).

2.5. Choosing the number K of factors

The number K of latent factors is an important parameter of LDA. To
determine K, we proposed to maximize the spatial separation criterion,
i.e., the latent factors that best represent heterogeneity are those whose
spatial distributions are maximally separated or minimally overlapped.
Intuitively, this criterion expects that any two latent impairment factors
should affect different brain regions, so that the factors are meaningful,
interpretable, and heterogeneous. To measure the spatial separation of
latent factors within the K factor model, the correlation coefficients

Fig. 1. Schematic illustration of impairment factor
decomposition using the Latent Dirichlet Allocation
(LDA) framework on brain images. (A) Given a co-
hort of brain images, LDA estimates group-wise la-
tent impairment factors and each factor is associated
with distinct patterns of structural impairment, re-
presented as p(Voxel | Factor). In this schematic
figure, the red triangle reveals the brain region af-
fected by latent impairment factor 1, the blue rec-
tangle reveals impairment factor 2 and the green
ellipse reveals impairment factor 3. Each voxel is
associated with one or more latent impairment fac-
tors, denoted by p(Factor |Voxel), as illustrated as the
pie charts. (B) LDA is used to further infer p(Factor
|Patient), the probability that a patient expresses a
particular factor. p(Factor |Patient) serves as the
profile of the disease subtype. As illustrated, a pa-
tient expresses one or multiple latent impairment
factors was originally proposed to discover latent
topics in a set of text documents. In the brain ima-
ging scenario, each participant's WM image is a

collection of voxels, and each voxel is associated with a subset within total K impairment factors; this is analogous to text analysis in that a document is collection of
words, and each word is associated with a subset within total K latent topics. Each latent impairment factor is represented by a probability distribution over all WM
voxels p(Voxel | Factor), which can be visualized as a probabilistic impairment map overlaid on the FSL MNI152 FA skeleton template (Fig.2). Each AD patient
expresses multiple WM impairment factors to different extents and p(Factor |Patient) denotes the composition of impairment factors expressed by a patient.
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Fig. 2. Latent white matter (WM) impairment factors in AD identified by the LDA model with K= 3. The probabilistic impairment distribution p(Voxel | Factor) of
each factor was quantified and displayed on the WM skeleton. Red colour indicates brain regions that are more susceptible disease targets while blue colour indicates
less susceptible regions. Three impairment factors were the temporal-frontal factor, the parietal factor, and the long fibre bundle factor.
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between all the CK2 pairs of factors were calculated, and the maximum
correlation was used to obtain the degree of spatial separation defined
as:

…
P Voxel Fact r P Voxel Factor1 max (corr( ( | o ), ( | ) )).

i j K i j
i j

, {1, , },

We first observed qualitatively how the estimated factors vary with
K from 2 to 4 (Fig.2) and then adopted grid search to quantitatively
choose the best K that maximize the separation of latent factors for K
from 2 to 6. After determining K, LDA analysis was performed on
baseline AD scans to identify latent WM impairment factors. Then, the
LDA analysis inferred factor compositions for all 893 time-points of 232
participants (Table 1), which were further employed in the following
statistical analyses.

The following statistical analyses were based on the LDA model with
K= 3, which identified three latent WM impairment factors including
the temporal-frontal factor tf, the parietal factor p and the long fibre
bundle factor l.

2.6. Evaluating the longitudinal stability of latent factors

One question naturally arises: does the latent WM impairment fac-
tors change as the disease progresses? In order to quantify the stability
of latent factors, we examined participants who had both their baseline
scans and follow-up scans available (3/6/12/24 months respectively). If
the latent factors are stable as AD progresses, then the factor compo-
sitions of individuals should remain the same over time. To investigate
the stability of the factor compositions, we drew scatter plots where
each dot represents an individual with the x coordinate representing the
composition proportion of a particular factor at baseline and the y co-
ordinate representing the corresponding factor composition proportion
after 12 months (Fig.5, SI Appendix, Table S1 and Fig.S6). A linear re-
lationship with a slope close to 1 in the scatter plot would indicate
stable the WM impairment factor over the disease progression.

2.7. Modelling the longitudinal cognitive decline using latent WM
impairment factors

Here we attempt to decouple the associations between WM im-
pairment factors and cognitive decline in AD. Relating to memory and
executive function, we asked two questions: (i) whether the WM im-
pairment factors correspond to the same baseline cognitive scores and
the decline rates throughout the disease course; and (ii) when model-
ling the longitudinal decline, whether the latent factors lead to higher
sensitivity compared to the traditional modelling approach.

Accordingly, linear mixed effect (LME) models (Bernal-Rusiel et al.,
2013) were used to answer the two questions. For the first question, the
response variable y of the LME model consisted of the longitudinal
ADNI-Mem (508 time-points) and ADNI-EF scores respectively (504
time-points, as described in Table 1). The explanatory fixed-effects
variables included: (i) mean FA values on impaired regions FA (SI Ap-
pendix) indicating the severity of WM impairment; (ii) factor compo-
sitions indicating the subtype, i.e., the compositions of parietal factor p
and the long fibre bundle factor l (the composition of temporal-frontal
factor tf is implicit in p+ l+ tf= 1); (iii) elapsed time t from the

baseline; (iv) interactions between factor compositions and time from
baseline, i.e. p · t and l · t; and (v) nuisance variables, including amyloid
x1, sex x2, education x3 and gray matter volume x4 (age and white
matter volume were not significant associated with cognition as eval-
uated by ANOVA). The resulting LME model, denoted as M, is given by

= + + + + + + + +

+ + +

y FA p l p l t x x

x x

( · · · ) ( · · )·

,
FA p l t tp tl0 0 1 1 2 2

3 3 4 4

where y denotes the ADNI-Mem/ADNI-EF score, ε is the residual, and β∗

indicate the regression coefficients. As to interpret the LME model,
β0 + βpreflects the parietal factor's baseline cognitive score,βt0reflects
the temporal-frontal factor's decline rate, and βt0 + βtp reflects the
parietal factor's decline rate. We aimed to investigate whether the three
WM impairment factors have the same baseline cognitive scores and
decline rates through the disease course. Accordingly, as for hypothesis
tests, we could ask whether the temporal-frontal factor have sig-
nificantly stronger effect on ADNI-Mem than the long fibre bundle
factor, and whether the parietal factor and the temporal-frontal factor
equally affect the decline rate of ADNI-EF throughout the disease
stages. The results of the statistical tests are shown in Table 2.

To compare our model with the traditional model and demonstrate
the predictive power of the latent factor compositions, we compared
our model M with the traditional model that simply deploys the tra-
ditional measures without factoring the compositions (or into sub-
types). A traditional model, denoted as Mclassic, would be

= + + + + + + +y FA t x x x x· · ,FA t0 0 1 1 2 2 3 3 4 4

The ANOVA analyses was performed to evaluate M and Mclassic, re-
spectively, in predicting memory and executive function.

2.8. Association of APOE genotype with WM impairment factors

We investigated whether APOE genotype, as a well-known genetic
risk factor, was associated with the disease subtype. More specifically,
participants with different genotypes might have different associations
with the latent impairment factors. To test this hypothesis, we per-
formed an analysis with a GLM model, including the following fixed-
effects variables: (i) binary group indicators, i.e., the EMCI group em,
the LMCI group lm and the AD group ad (the NC group is implicit); and
(ii) factor compositions, i.e., the parietal factor p and the long fibre
bundle factor l (the temporal-frontal factor tf is implicit in
tf+ p+ l= 1). The resulting GLM model is given by

= + + + + + +y em lm ad p l· · · ,em lm ad p l0

where y denotes the APOE ε4/ε2 carrier status (0, 1 carrier or 2 car-
riers), β∗ indicate the regression coefficients, and ε is the residual. Note
that βp captures the difference between the responses of the parietal
factor p and the temporal-frontal factor tf, and βl captures the difference
between the responses of the long fibre bundle factor l and temporal
factor tf.

In order to compare the association between the genetic status and
different factors, we further tested the null hypothesis H0 :Cβ= 0, where
β= [β0,βem,βlm,βad,βp,βl]Tand C denotes the linear contrast corresponding
to a particular scientific question. For example, to test the differences

Table 2
Comparison of baseline scores and decline rates of (A) executive function and (B) memory across factors.

(A) ADNI - executive function (B) ADNI –memory

p− tf l− tf l− p p− tf l− tf l− p

Baseline score −0.84 (0.37) p = 0.02 - 0.09 (0.37) p= 0.81 +0.75 (0.37) p= 0.052 - 0.07 (0.36) p= 0.84 −0.13 (0.36) p= 0.73 −0.05 (0.36) p= 0.89
Decline rate +0.15 (0.11) p= 0.15 + 0.39 (0.15) p= 0.009 +0.23 (0.14) p= 0.08$ - 0.05 (0.08) p= 0.56 +0.14 (0.12) p= 0.24 +0.19 (0.10) p= 0.07$

tf denotes the temporal-frontal factor, p the parietal factor, and l the long fibre bundle factor. For example, the second row suggests that participants expressing more
temporal-frontal factor has higher baseline executive function than those expressing more long-fibre bundle factor. Significant comparisons are highlighted in bold.
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between all factors, we chose C= [0,0,0,0,1,0;0,0,0,0,01]; for differ-
ences between the parietal factor p and the long fibre bundle factor l, we
choose C= [0,0,0,0,1,−1]. The results of the statistical tests are shown
in Table 3.

2.9. Implementation details

For LDA analysis, we used the VEM implementation (www.cs.
princeton.edu/~blei/lda-c/) and for the LME analysis, the LME
toolbox was used (github.com/NeuroStats/lme). The code for identi-
fying the coherence of the WM impairment factors was adapted from
(github.com/ThomasYeoLab/CBIG). We used nilearn (nilearn.github.
io) to visualize WM impairment factors, and ggplot2 (www.ggplot2.
org) and ggtern (www.ggtern.com) for visualizing factor compositions.
The code and intermediate results will be released on GitHub (github.
com/xiuchao/ldaFA).

3. Results

3.1. Overall approach

Our study consisted of the following parts: (i) identifying multiple
WM impairment factors in AD patients and inferring factor composi-
tions of individual participants (both AD and non-AD) by using LDA; (ii)
exploring the stability of latent factors as the disease progresses; (iii)
examining the associations between WM impairment factors and cog-
nition (i.e. ADNI-Mem and ADNI-EF); and (iv) examining the associa-
tion between the genotype (APOE ε4/ε2) and the disease subtype (i.e.
factor compositions). The details of the results are described as follows.

3.2. WM impairment factors in AD

We hypothesized that AD patients express one or more WM im-
pairment factors and this hypothesis can be captured by the LDA model
(Fig.1). For the 48 AD patients at baseline, given the pre-processed FA
skeleton maps and the number of K factors, the LDA method estimated
the probability distribution of each impairment factor p(Voxel | Factor)
and the factor composition p(Factor |Patient) of individual participant.

The number of impairment factors K is a free parameter in the LDA
model. We first qualitatively inspected how the estimated factors p
(Voxel | Factor) changed as K was varied from 2 to 4. The impairment
factors were spatially consistent (Section 2.3) for all K= 2 to 4 (Fig.2).
Specifically, the K= 2 model revealed an impairment factor
throughout cortical regions, which included temporal regions (para-
hippocampal WM and temporal WM), frontal and parietal WM, and
another long fibre bundle factor that spreads over corpus callosum and
superior longitudinal fasciculus (SLF). The K= 3 model revealed a si-
milar long fibre bundle factor, whereas the cortical factor split into a
parietal factor with WM impairment mainly in parietal lobe and a
temporal-frontal factor associated with extensive WM impairment in
para-hippocampus gyrus, temporal lobe and frontal lobe. The K= 4
model revealed three latent factors similar with the K= 3 model, as
well as a redundant factor that spanned over the brain regions identi-
fied by the other three factors. A closer inspection revealed that the
redundant factor was a mixture of the other three factors, and thus did
not provide any new insight into susceptible WM tissues. In addition,
when K further increased, more redundant factors were observed. To
summarize, the latent impairment factors were spatially consistent as K
was varied (Fig.2, Fig.S1); whereas redundant factors appeared when K
increased from 3 to 4 or more.

We further quantitatively evaluated the spatial separation among
individual latent factors within each LDA model of a particular K. As
visually seen in Fig.3, K= 3 achieved the largest spatial separation
between latent factors. Therefore, K= 3 was selected as the best
number of latent factors on this data. Notably, our findings are con-
sistent with previous AD subtype studies in terms of the number of
subtypes. For example, Murray's study revealed three AD subtypes,
which is based on neuropathologcial evidence (Murray et al., 2011). In
addition, other previous studies based on structural MRI also reported
three distinct patterns of GM atrophy (Zhang et al., 2016; Noh et al.,
2014) and NFT changes (Whitwell et al., 2012).

In addition, among the 48 AD patients, 38 had their cerebrospinal
fluid (CSF) amyloid data available and 35 of 38 patients were
Aβ + (CSF amyloid concentration < 192 pg/mL). We performed LDA
on the 35 Aβ + AD dementia patients alone and compared the WM
impairment factors with those derived using all 48 AD patients (SI
Appendix Fig.S2). The WM impairment factors obtained under the two
settings (48 AD vs. 35 Aβ + AD) were almost identical, with an average
correlation r= 0.95. Considering such a high similarity, we used the
factors derived from the larger sample for further analysis.

3.3. The stability of latent factors as AD progresses

The probabilistic WM impairment distributions p(Voxel | Factor)
estimated from the AD patients were used to infer factor compositions p
(Factor |Patient) of the non-demented participants, including EMCI,
LMCI and NC, by using the variational expectation-maximization

Table 3
Comparison of effects of APOE ε4 and APOE ε2 on different latent factors.

(A) APOE ε4 (B) APOE ε2

p− tf l− tf l− p p− tf l− tf l− p
+0.19 (0.23) p= 0.42 + 1.1 (0.28) p= 0.0001 + 0.91 (0.25) p= 0.0006 - 0.26 (0.12) p= 0.02 −0.15 (0.14) p= 0.28 −0.11 (0.13) p= 0.39

tf denotes the temporal-frontal factor, p the parietal factor, and l the long fibre bundle factor. Significant comparisons are highlighted in bold.

Fig. 3. The degree of spatial separation among latent factors changes with re-
spect to K, the number of factors. K= 3 achieves the highest separation among
latent factors.
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(VEM) LDA algorithm (Blei et al., 2003). As shown in Fig.4, most of the
participants expressed multiple WM impairment factors instead of a
single predominant factor. It is worth noting that NC participants were
more homogeneous (i.e., clustered close to each other), while AD pa-
tients were more heterogeneous.

To investigate whether the expression of impairment factors
changed over the progression of AD, we compared the factor compo-
sitions of participants who had both the baseline scan and the 12-month
follow-up scan available. As shown in Fig.5, the factor probabilities
were highly consistent (r > 0.96 across all the three factors), in-
dicating that the factor compositions remained stable over the disease
progression (for time-points at 3/6/24 months, see SI Appendix Table
S1). This result is in accordance with earlier study on GM, which re-
ported that the atrophy factor compositions were stable after two years
(Zhang et al., 2016). This finding further supports that the impairment

factors represents different impairment subtypes instead of different
disease stages.

3.4. Association between WM impairment factors and cognition

For memory (ADNI-Mem) and executive function (ADNI-EF), we
investigated whether distinct WM impairment factors were associated
with the same baseline scores and decline rate as the disease pro-
gressed.

First, diagnostic groups differed in cognition as expected (Table 1).
ADNI-Mem was significantly lower in each diagnostic group (NC >
EMCI > LMCI > AD, p < 0.05) while ADNI-EF followed similar pat-
tern (NC > EMCI = LMCI > AD, p < 0.05).

Second, an LME model was used to relate longitudinal cognitive
scores (ADNI-Mem/ADNI-EF) with the observed predictors, including

Fig. 4. Factor compositions of participants at base-
line. Each dot corresponds to a participant and its
location represents his/her factor composition.
Corners of this triangle represent pure factors; a
closer distance to a corner indicates a higher prob-
ability to the respective factor. As can be seen, most
participants express multiple factors, and NC parti-
cipants are clustered more closely than AD patients,
indicating the heterogeneity of AD.

Fig. 5. Stability of factor compositions of the three factors over 12 months. Each dot represents a participant, of which the x and y axes represent the probabilities of
factors at the baseline and at 12 months later, respectively. Linear fits to the scatters are close to the y= x line with correlations r > 0.96 for all the three impairment
factors, suggesting that the factor compositions are stable during disease progression.
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the mean FA of impaired brain regions (SI Appendix), the factor com-
positions, the progression time, and interactions between time and
factor compositions (Method 2.6). We studied whether each factor had
the same baseline cognition and decline rate through the disease
course. For EF (Table 2A), the temporal-frontal factor was more asso-
ciated with baseline EF compared with the parietal factor (p= 0.02);
the long fibre bundle factor was significantly more associated with the
EF decline rate compared with the temporal-frontal factor (p= 0.009),
and tended to be more associated with the EF decline rate than the
parietal factor (p= 0.08). For memory (Table 2B), the three factors
were almost equally associated with baseline memory and decline rate
across the disease spectrum. The long fibre bundle factor tended to be
more associated with memory decline rate than the parietal factor in
AD patients (p= 0.07). Our findings suggest that latent factors have
distinct effects on different cognitive domains.

Third, we evaluated whether incorporating factor compositions
could lead to better modelling of longitudinal effects on cognition.
ANOVA analysis was performed to compare the latent factor based
modelM and the traditional modelMclassic in distinct cognitive domains.
We found that the latent factor compositions significantly contributed
to better prediction of EF (p= 0.01) while had no significant effect on
memory prediction (p= 0.48). These results comply with the afore-
mentioned findings (in Table 2) and show that by enrolling subtype
information (through latent factor composition), longitudinal changes
can be predicted with higher sensitivity in specific cognition domains.

3.5. Association between APOE genotype and latent factors

The APOE genotype has been identified as genetic susceptibility
factor in AD (Filippini et al., 2009; Drzezga et al., 2009). We in-
vestigated whether the APOE genotype has different effects on different
white matter impairment factors by using a GLM model (Method 2.7).
As summarized in Table 3A, the long fibre bundle factor was more
associated with APOE ε4 than the temporal-frontal (p= 0.0001) and
the parietal factor (p= 0.0006). As summarized in Table 3B, the tem-
poral-frontal factor was more associated with APOE ε2 than the parietal
factor (p= 0.02). Our findings suggest that the genotype affects the
disease subtype (i.e. factor compositions) differently.

4. Discussion

In this work, instead of assuming an overall disease effect on WM
impairment, we identified distinct latent impairment factors in AD
patients by using LDA modelling of DTI data (Fig.1). Three latent im-
pairment factors were revealed in AD (Figs.2–3). Each participant was
allowed to exhibit their own unique factor compositions (Fig.4) under
the LDA framework, which were found to be stable across stages
(Fig.5). These impairment factors deteriorated longitudinal memory
and executive function differently along the full disease course of AD
(Table 2). Moreover, APOE genotype has distinct effects on different
WM impairment factors (Table 3). To summarize, our work suggests
that the heterogeneity of WM impairment in AD patients are associated
with the variance in longitudinal cognitive decline and APOE genotype
is associated with latent factors. In summary, this work revealed the
links between WM impairment factors, APOE genotype, and cognition
in distinct domains.

4.1. WM impairment factors in AD

K= 3 model achieved the largest dissociation between factors
within each LDA model and the three impairment factors were in-
vestigated in this study. Earlier studies have consistently reported three
subtypes in AD (Murray et al., 2011; Zhang et al., 2016; Noh et al.,
2014; Park et al., 2017). Our three-factor model includes a temporal-
frontal factor, a parietal factor, and a long fibre bundle factor (Fig.2).
Specifically, we observed that the temporal-frontal factor was linked

with WM impairment in hippocampus, parahippocampus, medial tem-
poral lobe and frontal lobe. Earlier work demonstrated that changes in
parahippocampal region may result in isolation of the hippocampus,
which contribute to impairment in memory (Salat et al., 2010); The
frontal lobe regions have been suggested to associate with executive
function (Smith et al., 2011; Brinkman et al., 2012). The parietal factor
was associated with the impairment in precuneus and parietal lobe. The
precuneus has been associated with retrieval of episodic memory and
self-processing operations (Shallice et al., 1994; Malouin et al., 2003;
Kircher et al., 2002). The long fibre bundle factor was associated with
the WM impairment in splenium and the body of corpus callosum (CC)
and SLF. The splenium of CC predominantly connects the temporal lobe
and the occipital lobe between the two hemispheres. The SLF is an
association fibre tract that contains three separate components (Makris
et al., 2004). SLF II (Table S2), the major component of SLF, connects
the caudal-inferior parietal cortex and dorsolateral prefrontal cortex,
and serves to transmit working memory in the prefrontal cortex to
provide the parietal cortex with information to regulate spatial atten-
tion and retrieval of spatial information (De Schotten et al., 2011).

Accumulating evidence suggests that structural and histological
changes in AD are heterogeneous. For example, heterogeneity in cor-
tical atrophy has been evinced by using structural MRI (Zhang et al.,
2016; Noh et al., 2014; Park et al., 2017) and heterogeneity in NFT
distributions has been demonstrated from thioflavinS fluorescent mi-
croscopy (Murray et al., 2011). While a few studies have investigated
the heterogeneous white matter alterations in AD, using DTI data
(Gouw et al., 2008; Bartzokis et al., 2004), to our best knowledge, this is
the first study that employ latent factor decomposition on white matter
impairment to profile subtypes of AD. By referring to the field knowl-
edge, we can interpret a particular WM impairment factor and how it
may be associated with various cognitive domains. However, it is hard
to make direct comparison with earlier subtype studies which were
mostly based on GM atrophy. We could see rough spatial correspon-
dence between WM impairment factors and GM atrophy factors iden-
tified in earlier studies. For example, a recent GM atrophy study iden-
tified three subtypes: the parietal predominant subtype that roughly
correspond to our parietal WM impairment factor, the medial temporal
predominant subtype that roughly correspond to our temporal-frontal
factor, and the diffuse atrophy subtype that roughly corresponds to the
long fibre bundle factor (Park et al., 2017). Yet such correspondence is
not strict due to the tissue difference and should be interpreted with
caution. Secondary degeneration of WM, as a result of cortical atrophy,
may contribute to the observed rough spatial correspondence. Fur-
thermore, we identified GM atrophy factors based on the structural MRI
data of the same dataset (SI Appendix, Fig.S5), which also showed no
exact one-to-one correspondence with the WM impairment factors. This
further illustrates that despite partly as a secondary effect of cortical
atrophy, WM impairment still provides unique information on AD.
Previous study on ADNI dataset also testified that DTI provides unique
information about cognition instead of merely recapitulations of es-
tablished association between other biomarkers of AD (e.G. hippo-
campus volume) (Scott et al., 2017). Accordingly, WM impairment
factors uniquely contribute to portraying subtypes of AD. As future
work, one can probe AD subtypes by simultaneously considering GM
atrophy and WM impairment.

4.2. Factor compositions were stable as the disease progresses

The LDA method in the Bayesian framework treats AD cases as
entities with mixed membership of one or multiple factors, and allows
each participant to exhibit his/her own unique factor composition. For
a hypothetical patient, his/her factor composition profile could be
portrayed as expressing 60% the temporal-frontal factor, 20% the
parietal factor and 10% the long fibre bundle factor. Such probabilistic
factor composition extends previous approaches that classified patients
into distinct subtypes (Whitwell et al., 2012; Byun et al., 2015), and
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makes it more feasible to study how the heterogeneity of WM impair-
ment was associated with variance in cognitive decline in distinct
cognition domain. However, a natural question arises: was the observed
heterogeneity attributed to disease stages, or disease expressions, i.e.,
subtypes (Ritchie and Touchon, 1992; Young et al., 2014)?

To address this question, we investigated whether that factor com-
positions were stable after 3/6/12 months (Fig.5, SI Appendix, Table S1
and Fig.S6). If the disease stages hypothesis stands, a hypothetical in-
dividual would express more cortical factor after 12 months, which is
not supported by our results. As the factor compositions were stable as
the disease progresses, we can conclude that the heterogeneity in WM
degeneration is primarily due to the disease subtypes. Our result com-
plies with an earlier AD subtype study that reported stable GM atrophy
factor across disease stages (Zhang et al., 2016).

4.3. Factors reflect distinct association with longitudinal cognitive decline

Our work revealed that distinct WM impairment factors were as-
sociated with different cognition domains differently as the disease
progressed (Table 2).

Executive function includes higher-order cognitive processes such as
shifting attention, cognitive flexibility, cognitive fluency, working
memory, planning and organization. The temporal-frontal factor
showed more association with baseline EF compared with the parietal
factor. This finding was in line with earlier work that reported that
frontal lobe brain regions were associated with executive function
(Smith et al., 2011; Brinkman et al., 2012), and the frontal-parietal
network has been implicated in facilitating the integration and control
of executive processes (Barbey et al., 2012). The long fibre bundle
factor was more associated with EF decline rate compared with the
temporal-frontal factor (p= 0.009), and was inclined to be more as-
sociated with EF decline rate than the parietal factor (p= 0.08). By
looking into the long fibre bundle factor, the largest commissural tract
CC predominantly connects the temporal lobe and the occipital lobe
between the two hemispheres; the association fibre tract SLF connects
the caudal-inferior parietal cortex and dorsolateral prefrontal cortex.
The prior knowledge that CC and SLF serve to transmit working
memory in the prefrontal cortex and to provide the parietal cortex with
information for regulating spatial attention and retrieval of spatial in-
formation (De Schotten et al., 2011), partially supports our discovery
that the long fibre bundle factor was most associated with to EF decline
rate in AD.

For memory, the three factors contribute equally to the memory
decline in each group. Also, as illustrated in Section 4.1, the temporal-
frontal factor involve WM in hippocampus and temporal lobe, the most
well-known brain regions related with memory (Salat et al., 2010); the
parietal factor includes the precuneus and parietal lobe WM that is
related with episodic memory retrieval (Shallice et al., 1994; Malouin
et al., 2003; Kircher et al., 2002); the long fibre bundle factor includes
CC and SLF, which are related with visual memory (De Schotten et al.,
2011; Stanislav et al., 2013). We can assume that the three factors are
all associated with memory decline, yet further studies are necessary to
examine whether a dominant factor exists by using a larger data set.

Concerning previous DTI studies on the same ADNI dataset, though
cross-sectional studies (Grieve et al., 2007; Bennett and Madden, 2014)
showed the association between WM impairment measured by DTI
metrics and executive function decline, yet longitudinal study (Scott
et al., 2017) suggested the insensitivity of DTI metrics to reveal the
changing rate of cognitive decline. Our study, based on the same da-
taset, revealed that the long fibre bundle factor was more associated
with EF decline rate than the other two latent WM impairment factors.
Our findings suggested that by differentiating the subtypes of AD, we
could achieve a finer view in interpreting the data. Our work corre-
sponds with earlier cross-sectional studies (Grieve et al., 2007; Bennett
and Madden, 2014) and expands the longitudinal study (Scott et al.,

2017) by illustrating the effect of latent factors on longitudinal cogni-
tive decline of multi-domain.

4.4. APOE genotype was associated with latent factors

Since disease subtypes may have genetic origins, we investigated
whether risk genes are associated with latent impairment factors. APOE
has been the best-established genetic risk factor, which associated with
structural and functional changes in the elderly and AD patients
(Filippini et al., 2009; Drzezga et al., 2009). The major role of apoE
protein in the brain is to transport lipid components that facilitate the
shaping of the myelin sheath (Mahley, 1988; Han, 2007), thus affecting
WM integrity (Heise et al., 2011). In this study, we found APOE ε4 was
most associated with the long-fibre bundle factor, while APOE ε2 was
more associated with the temporal-frontal factor compared with the
parietal factor (Table 3). Our work lends support to the hypothesis that
the APOE genotype modulates the phenotype of AD through influences
on specific large-scale brain networks (Wolk et al., 2010).

Revisiting the discoveries in LME analysis, the baseline executive
function was more associated with temporal-frontal factor compared
with the parietal factor, while APOE ε2 was also more associated
temporal-frontal factor compared with the parietal factor (Tables 2–3).
In addition, the EF decline rate was most associated with the long fibre
bundle factor, while APOE ε4 was also most associated with the long
fibre bundle factor. Such consistency suggested that our work moved
one more step towards dissociating the links between gene, brain
structure and cognition. More inspiringly, assume a hypothetical pa-
tient with APOE ε4/ε4 (two ε4 alleles), we could expect a higher chance
of expressing more long fibre bundle factor and faster EF decline. Si-
milarly, a hypothetical patient with APOE ε2/ε2 (two ε2 alleles) could
expect a higher chance of expressing more temporal-frontal factor
compared with the parietal factor, as well as higher baseline EF scores.

To summarize, variation in genotypes of patients were associated
with expressions of WM impairment factors (i.e., subtypes), which
would manifest in features of cognitive decline. By looking such asso-
ciation, we could take one-step forward to precision medicine.

4.5. Limitations

AD dementia is a heterogeneous disease in that the origins and
spread of the disease may differ substantially between different sub-
types. Earlier work explored the subtypes, using neurological scores
(Stopford et al., 2008), the distribution of neurofibrillary tangles
(Murray et al., 2011), and cortical atrophy (Zhang et al., 2016; Noh
et al., 2014; Park et al., 2017). Along this line of research, our work
demonstrated that the patterns of WM impairment could also be used to
portray AD subtypes. The probabilistic profiles of subtypes, portrayed
in the LDA framework, were associated with distinct trajectories of
cognitive decline and may originate from different genotypes. However,
there are limitations of our work.

First, the pathological basis of these WM impairment factors is still
obscure. A recent study suggested that myelin and oligodxendrocytes
are especially vulnerable to amyloid pathology (Dean et al., 2017).
Further studies are needed to address the characterisation of AD sub-
types using other biomarkers, e.g. white matter hyper-intensity, amy-
loid and tau immunohistochemistry, which may lead to a better un-
derstanding of AD heterogeneity and further facilitate early diagnosis
and the monitoring of AD progression (Frisoni et al., 2010; Cash et al.,
2014).

Second, pathological findings from autopsied cases provide the
golden standard for revealing structural heterogeneity as such studies
represent advanced stages of AD. However, for degeneration at the
early disease stages, we have been unable to find a well-recognized
reference to evaluate the structural heterogeneity findings. In addition,
it is hard to make direct comparisons between neuropathologically
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defined subtypes, GM atrophy defined subtypes and WM impairment
defined subtypes, especially as these observations were based on dif-
ferent participants and different analysis protocols. For this study, we
presented our subtype observations on DTI data under the LDA fra-
mework, which could serve as a reference for clinicians and pathologist
to unveil the broader picture of subtypes in AD.

Third, to simplify the analysis pipeline and increase reproducibility
of this study, we used preprocessed images by ADNI where the cor-
rected FA images provided the largest sample set. Therefore, we used
FA measure for this study. As an initial trial to probe subtypes using
DTI, this work has ignored other DTI metrics that characterize the same
underlying microstructures from different aspects. For example, mean
diffusivity (MD) was used as widely as FA to map white matter changes
in AD; radial diffusivity, and axonal diffusivity gained more popularity
as DTI markers of axonal and myeline damage, respectively (Acosta-
Cabronero et al., 2009; Winklewski et al., 2018). Moreover, though FA
has been widely used, it was suggested that FA does not always cor-
relate well with the actual individual fibre anisotropy and maybe sub-
optimal in detecting disease processes that affect myelination (Leow
et al., 2009). Future subtyping studies based on DTI may benefit from
looking into other diffusion measures that provide more information in
the diffusion profile. Moreover, as a previous study (Konukoglu et al.,
2016) suggested, joint analysis of the diffusion measures could be more
powerful in characterizing histopathology and provide information
about disease progresses not available through examination of any
measure in isolation. Future DTI studies may benefit from such multi-
variate method for joint analysis of diffusion measures.

Finally, our study utilized the DTI images of ADNI-GO and ADNI-2
dataset, in which the enrolled patients were followed up for no > 5
years. As ADNI is still collecting more longitudinal data, future studies
may benefit from enriched data resources and yield more statistically
reliable analytical results. Also, as a study based on DTI data, this study
has limitations inherent in DTI. More advanced imaging and modelling
techniques, such as high-angular resolution diffusion imaging (HARDI),
can resolve more complex diffusion geometries and further facilitate
finer portrait of regional tissue impairment that would lead to more
accurate subtype profiles.

5. Conclusions

By identifying latent WM impairment factors with LDA, our work
lends support to the growing belief that AD is heterogeneous rather
than a single disease entity. We identified three impairment factors: the
temporal-frontal factor, the parietal factor and the long fibre bundle
factor. These factors were associated with distinct decline trajectories of
memory and executive function across the full course of AD. Moreover,
individual participant could express multiple WM impairment factors to
different degrees. The heterogeneous factor compositions among par-
ticipants were associated with different genotypes and can facilitate
predicting individual-level cognition and contribute to precision med-
icine.
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