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Abstract

Rheumatoid arthritis (RA) is the most frequent autoimmune chronic inflammatory disease of the joints and it is
characterized by the inflammation of the synovial membrane and the subsequent destruction of the joints. In RA, CD4+ T
cells are the main drivers of disease initiation and the perpetuation of the damaging inflammatory process. To date,
however, the genetic regulatory mechanisms of CD4+ T cells associated with RA etiology are poorly understood. The
genome-wide analysis of expression quantitative trait loci (eQTL) in disease-relevant cell types is a recent genomic
integration approach that is providing significant insights into the genetic regulatory mechanisms of many human
pathologies. The objective of the present study was to analyze, for the first time, the genome-wide genetic regulatory
mechanisms associated with the gene expression of CD4+ T cells in RA. Whole genome gene expression profiling of CD4+ T
cells and the genome-wide genotyping (598,258 SNPs) of 29 RA patients with an active disease were performed. In order to
avoid the excessive burden of multiple testing associated with genome-wide trans-eQTL analysis, we developed and
implemented a novel systems genetics approach. Finally, we compared the genomic regulation pattern of CD4+ T cells in
RA with the genomic regulation observed in reference lymphoblastoid cell lines (LCLs). We identified a genome-wide
significant cis-eQTL associated with the expression of FAM66C gene (P = 6.51e29). Using our new systems genetics
approach we identified six statistically significant trans-eQTLs associated with the expression of KIAA0101 (P,7.4e28) and
BIRC5 (P = 5.35e28) genes. Finally, comparing the genomic regulation profiles between RA CD4+ T cells and control LCLs we
found 20 genes showing differential regulatory patterns between both cell types. The present genome-wide eQTL analysis
has identified new genetic regulatory elements that are key to the activity of CD4+ T cells in RA.
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Introduction

Rheumatoid arthritis (RA) is the most frequent autoimmune

chronic inflammatory disease of the joints and affects up to 1% of

the World population. RA is characterized by synovial membrane

hyperplasia, increased vascularity and chronic immune cell

infiltration that lead to joint destruction and pain [1]. The

predominant immune cell type that infiltrates RA synovial joints is

the CD4+ T lymphocyte and, for many years, it has been

considered a T-cell driven disease [2]. Consequently, treatments

targeting the activation of CD4+ T cells have proven successful in

the control of disease activity in RA [3,4]. This evidence, together

with the strong genetic association of the molecules that mediate

antigen presentation to CD4+ T cells in RA, clearly indicate that

the characterization of the regulatory elements of this cell type will

be key to completely understand the disease pathogenesis [5]. To

date, however, a global analysis of the regulatory mechanisms of

CD4+ T cells in RA has not been performed.

Genome-wide association studies (GWAS), in which common

genetic variants are tested for association with complex traits, have

revolutionized the identification of genetic risk factors for many

common diseases [6]. More recently, the integration of GWAS

with gene expression data to identify quantitative trait loci

(eQTLs) is starting to provide significant insights into the genetic

architecture of human diseases [7]. The number of transcripts

expressed by a gene is modified by the variation in genetic

regulatory elements. RNA levels can therefore be considered as a

quantitative trait and used to map these crucial regulatory

elements in the genome [8]. Gene expression microarrays and

more recently ultra-high throughput RNA sequencing systems

coupled with genome-wide genotyping assays are allowing to scan

the whole genome variation to identify trait-specific eQTLs [9].

eQTL studies are leading to the characterization of functional

sequence variation as well as the understanding of basic genetic

regulatory mechanisms [10]. So far, one of the most important

discoveries of genome-wide eQTL mapping has been the finding

that a substantial fraction of the gene expression regulation is cell

type-specific [11]. Consequently, the understanding of the

genomic regulatory basis that underlies a complex disease like

RA will only be possible if it is performed at the cell type level, in
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particular analyzing those cell types that play a crucial role in the

disease onset and progression [12,13].

Recently, studies have been reported that characterize regula-

tory variants that operate in a cell type-specific manner [11,14,15].

However, most of these studies focused only on cis-acting elements

rather than identifying trans-acting elements. While cis-eQTLs are

likely to influence molecular mechanisms involved in transcription,

splicing or mRNA decay [16], trans-eQTLs are more likely to

perturb entire pathways and mediate complex epistatic and gene-

environment interactions and, therefore, are of particular interest

in the study of prevalent diseases with a complex genetic basis like

RA [17,18]. Importantly, while cis-eQTLs are often conserved

among different cell types, trans-eQTLs tend to be cell type-specific

[19]. The genome-wide analysis of trans-eQTLs, however, requires

the analysis of an exponential number of transcript-SNP pairs,

resulting in a prohibitive multiple testing problem. As a

consequence, very few studies have explored the presence of

trans-eQTLs in human traits [20], and new strategies to reduce the

burden of multiple testing in these studies must be devised.

In this study, we have analyzed, for the first time, the regulatory

variation associated with the gene expression of CD4+ T cells in

RA. To do so, we have performed a genome-wide cis-eQTL

analysis and we have implemented a robust systems genetic

approach to perform the trans-eQTL analysis. In this approach we

exploit the presence of cell-specific gene expression networks,

together with the power of biological knowledge and the statistical

analysis of networks, to efficiently reduce the high dimensionality

associated with the global analysis of trans-eQTLs. Finally, in order

to identify additional specific gene expression regulation, we have

compared the regulatory patterns observed in CD4+ T cells to

those of lymphoblastoid cell lines (LCLs), a well-characterized

reference cell type. Taken together, the results of this study provide

new insights into the key regulatory elements of CD4+ T cells in

RA.

Materials and Methods

Patients and samples
A total of 29 patients with rheumatoid arthritis from the

Rheumatology Unit of the Vall d’Hebron University Hospital

(Barcelona, Spain) were recruited. All patients had been diagnosed

as RA following the 1987 American College Rheumatology criteria [21].

In order to obtain a gene expression profile more representative of

the disease, all patients had to have a high disease activity at the

moment of sample collection. In this study, high disease activity

was defined as an European League against Rheumatoid Arthritis

(EULAR) Disease Activity Score (DAS28) [22] higher than 3.2.

The DAS28 score efficiently reflects the disease activity of the RA

patient by combining the evidence of tenderness and swelling in 28

joints together with the patient’s global assessment and a systemic

marker of inflammation (erythrocyte sedimentation rate or C-

reactive protein levels). In order to avoid the influence of treatment

over the gene expression patterns in RA, all patients were

receiving the same treatment (#20 mg/wk metothrexate) and

were all naı̈ve to biological immunomodulating agents like anti-

TNF agents. Patients suspected to have a concomitant infection or

were positive for hepatitis B or C viruses (active or inactive) were

also not included in this study. The main features of the RA

patient cohort used in this study are shown in Table S1. From

each patient, 30 mL of venous blood was obtained, from which

5 mL were used for genomic DNA isolation and 25 mL for CD4+
T cell RNA isolation. Genomic DNA was isolated using the

Chemagic Magnetic Separation Module I (PerkinElmer, USA). In

order to obtain the total RNA from CD4+ T cells, we first isolated

the CD4+ lymphocytes from whole blood using the RossetteSep

negative selection kit (Stem Cell Technologies, Canada). Isolated

cells were immediately preserved in RNA stabilization reagent

RNAlater (Qiagen, Hilden, Germany) and frozen at 280uC. In

order to determine the level of cell purity, FACS flow cytometry

analysis was performed on CD4+ T cells. The CD45+, CD4+,

CD3+ and CD8+ T cells were stained by direct immune

fluorescence using monoclonal antibodies conjugated with fluoro-

chromes fluorescein isothiocyanate, phycoerythrin, pycoerythrin-

cyanin-5 and Phycoerythrin-Texas (all antibodies from Beckman

Coulter, FL, USA), respectively. Isotype-matched immunoglobu-

lins with no reactivity against surface markers and the fluoro-

chrome combination were used as negative controls to determine

fluorescence background. Acquisition of flow data was performed

using an EPICS-XL-MCL cytometer and Expo32 software

(Beckman-Coulter, FL, USA) after antibody incubation followed

by erythrocyte lysis. This analysis was carried out on the same day

of blood extraction in all RA patients and .95% CD4+ T cell

purity from all samples was confirmed. RNA extraction from the

isolated CD4+ T cells was performed with the RNeasy extraction

kit (Qiagen, Hilden, Germany) and its quality determined using

the 2100 BioAnalyzer system (Agilent technologies, Waldbronn,

Germany).

All the procedures followed were in compliance with the

principles of the Declaration of Helsinki. All patients provided

written informed consent. The study and the consent procedure

were approved by the Institut de Recerca Hospital Universitari

Vall d’Hebron ethics committee.

Gene expression profiling
Whole genome transcript abundance from the CD4+ T cells of

patients with RA was performed using the Illumina Human-6 v1

Beadchip array system (Illumina, San Diego, CA, USA). This

microarray platform measures the gene expression levels of more

than 47,000 different transcripts. In order to update the probe

annotation for this microarray, we used the NCBI RefSeq

database [23]. Matching the microarray probe sequence to the

latest RefSeq database version (2nd May 2013) we found that

13,555 probes perfectly mapped to unique transcripts, 26,729

probes that did not map any transcript and 8,013 probes that

mapped more than one transcript from which 7,565 mapped to

the same gene. Consequently, the updated microarray probe

annotation was composed by 21,120 probes matching to known

transcripts. Data preprocessing was conducted using the R

statistical software [24]. The raw expression intensities of the 29

microarrays were processed using background adjustment. One

sample showed intensity dependent biases and it was finally

removed. The gene expression intensities were normalized on the

log2-scale using the quantile normalization method [25]. In order

to remove the potential variability introduced by the presence of

different microarray processing batches, we used the ComBat

empirical Bayes method [26]. The data discussed in this

publication have been deposited in NCBI’s Gene Expression

Omnibus [27] and are accessible through GEO Series accession

number GSE55468.

Whole genome genotyping
The genome-wide genotyping of the 29 RA patients was

performed using the Illumina Quad610 Beadchips (Illumina, San

Diego, California, USA). The Quad610 genotyping arrays scan

618,150 polymorphisms (598,258 SNPs and 19,892 CNV probes).

Genotype calling was performed using the GenomeStudio data

analysis software (v2011.1, Illumina, San Diego, California, USA).

The quality control evaluation was performed using PLINK
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software [28]. All the autosomal SNPs were initially selected

(n = 582,539). A total of 7,886 markers showing .10% missing

data were excluded, as well as 1,724 SNPs with P,1e-5 for test of

deviance from Hardy-Weinberg equilibrium. After all quality

control steps, a final number of 572,980 SNPs were used for the

eQTL analysis in CD4+ T cells. In order to compare the exact

same polymorphisms in the CD4+ T cell and LCL eQTL

analyses, 6,962 SNPs had to be excluded from the initial dataset.

In this case, a final number of 566,018 SNPs were used for the

comparative eQTL analysis between both cell types. The presence

of population stratification in the study samples was estimated

using principal component analysis (PCA) implemented in

EIGENSOFT (v4.2) software [29]. Using the top ten principal

components over ten iterations and using a threshold of six

standard deviations, we excluded two samples showing an outlier

genetic background.

Statistical association analysis
Cis- and trans-eQTL analyses were performed using Matrix

eQTL software [30]. Matrix eQTL efficiently performs large

numbers of eQTL analyses by the use of large matrix multipli-

cations. Most gene regulatory elements that act in cis have been

previously reported to be located in close proximity to the gene

[31]. However, there is clear evidence that cis regulatory elements

like enhancers can be located as far as 1 Mb from the gene they

regulate [32]. Consequently, we used 1 Mb as the maximal

distance at which cis regulation can occur. This distance is in

accordance to most recent studies on genome-wide eQTLs [10].

For each transcript-SNP pair, we fitted the following linear model

assuming additive effect of genotype on gene expression:

Yi~czb:Xiz"i

The genotype Xi of individual i at given SNP is encoded by 0, 1

and 2 according to the number of minor alleles present in the

genotype of the individual. The gene expression Yi is the

normalized log-expression level of the probe for individual i.

The ei captures all other factors which influence the gene

expression. The null hypothesis of the statistical test was that

there is no association between the genotype and the gene

expression (b = 0). In the present study, we included gender as a

covariate. In order to avoid false positives due to low allele

frequency, we filtered those SNPs with a minor allele frequency ,

10%. Multiple testing correction was performed using the False

Discovery Rate (FDR) method [33]. A total of 21,120 transcripts

and 572,980 SNPs measured in 26 individuals were finally used for

the cis-eQTL analysis in CD4+ T cells.

Novel systems genetics approach for trans-eQTL
identification

We present a novel systems genetics approach to address the

dimensionality problem present in trans-eQTL analyses. The

pipeline of this approach is composed by five consecutive steps

(Figure 1).

In the first step, the gene expression modules that characterize

the cell type of interest are identified using the genome-wide

expression data. There are several methods that can be used for

this objective. In our study, we used the weighted correlation

network analysis implemented in the WGCNA R software

package [34]. In this method, the correlation between genes is

used to compute a network adjacency matrix, which fully

determines the gene co-expression networks. From this network

adjacency matrix, WGCNA then uses an unsupervised clustering

approach to identify the gene expression modules that best

characterize the gene expression of the cell or tissue of interest.

In the second step, the gene expression modules that

characterize the cell type of interest are analyzed for enrichment

of a specific biological process that is related to the disease or trait

of interest (i.e. cell cycle in cancer studies). For this objective, a

biological annotation database like the gene ontology (GO)

database [35] is used. The enrichment can then be quantitatively

measured using well-known statistical methods. In our study, we

assessed the statistical significance of the GO functional enrich-

ment using the Fisher’s exact test as described previously [36].

Only those gene expression modules that are significantly enriched

by the biological process of interest are selected for the next step.

In the third step, the biological knowledge is used to build

functional-based networks from the gene expression modules of

interest. In these functional-based networks, the nodes are the

genes from the selected gene expression modules. Then, according

to the presence or absence of biological evidence between each

gene pair, the edges of the network are established. For this

objective, a complete and updated database of functional

associations is required. In our study, we used STRING (v9.1,

2013) software tool [37]. STRING is a powerful bioinformatics

database that integrates five different sources of functional

associations between genes in more than 1,100 organisms. These

sources are i) physical interactions, ii) curated biological pathway

knowledge, iii) computational predictions, iv) text-mining and v)

association transfer between organisms. The association transfer

between organisms is based on the principle of interaction

conservation, which means that a pair of proteins binding in one

organism is expected to be binding in another organism if both

genes are present in both genomes. Therefore, the functional

associations in one organism can be transferred to another

organism using comparative genomics.

In the fourth step of this approach, network analysis methods

are used to identify those genes that are likely to play a central role

in the previously identified functional-based networks. In network

analysis, the most influential genes are those that show either many

connections to other genes and/or that exert an essential

connection between gene (node) subnetworks. These two features

are commonly known as degree centrality (DC) and betweenness

centrality (BC), respectively. Genes with high DC are defined as

hubs and may also be more evolutionary conserved than non-hubs

[38]. Bottlenecks, that is genes with high BC, are more likely to be

essential than proteins with low BC [39,40]. In our study, the

network analysis was performed using the Cytoscape v3.0.1

software [41].

In the last step of this systems genetics method, only those genes

that are more likely to play a central role in the cell-specific

network are selected and analyzed for the trans-eQTL analysis.

These genes are selected according to their DC and BC values

obtained in the previous step and, therefore, will have a higher

probability to be associated to an influential genetic variation in

the cell type of interest.

With this systems genetics approach, biological and network

information is efficiently used to objectively reduce the number of

genes included in the trans-eQTL analysis to those with highest

influence on the cell type of interest and, therefore, increase the

likelihood of identifying relevant trans-eQTL associations.

Analysis of differential genomic regulation profiles
In order to compare the genomic regulation profiles of CD4+ T

cells and LCL cells, we focused on the study of cis- and trans-eQTL

associations of two different groups of genes. In the first group, we
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analyzed those genes previously associated with RA risk and

belonging to known biological pathways [42]. In the second group,

we analyzed those genes associated with the T cell differentiation

into different CD4+ T cell subtypes, including T helper 1 (Th1), T

helper 2 (Th2), T helper 17 (Th17) and T regulatory (Treg)

subtypes. This last set of genes was extracted from the Kyoto

Encyclopedia of Genes and Genomes (KEGG) database [43]. In

total, the comparative eQTL analysis between CD4+ T cells and

LCL cells was performed using 145 transcripts, corresponding to

113 different genes (Table S2). The LCL gene expression profiles

and the corresponding whole genome genotype data were

obtained from 26 unrelated Caucasian European (CEU) individ-

uals from the HapMap reference project [44].

In order to avoid the study of redundant eQTLs (i.e.

neighboring SNPs in high linkage disequilibrium associated to

one single transcript), we divided the autosomal chromosomes into

32,962 independent loci according to the localization of high

recombination sites (i.e. hotspots) [45]. The whole set of SNPs were

mapped to these independent loci in order to be able to determine

the Transcript Complexity Value (TCV). The TCV represents the

number of independent loci that are associated to the expression of

one particular gene. Using the cis- (P,0.05) and trans-eQTLs (P,

1e25) identified in the CD4+ T cells and LCLs analyses, we

computed the TCV for each of the 113 selected genes. The

statistical significance of the differences in TCVs between both cell

types was assessed using the Fisher’s exact test.

Results

Genome-wide cis-eQTL analysis in RA CD4+ T cells
After performing the cis-eQTL analysis of the gene expression of

CD4+ T cell from RA patients having an active disease

(n = 8,747,394 tests), we detected two genome-wide significant

associations with FAM66C gene: SNP rs7976243 (chromosome

12p13.3, PFDR = 2.85e22) and SNP rs2244822 (chromosome

12p13.3, PFDR = 2.85e22). Both genome-wide significant cis-

eQTLs are only 2.14 Kb apart and, as expected, they are in high

linkage disequilibrium (r2 = 0.95, HapMap Caucasian European

samples) and consequently, they represent the same association

signal. A complete list of cis-eQTLs from RA CD4+ T cells having

a PFDR,0.5 is shown in Table S3.

Figure 1. Workflow of the systems genetics approach for trans-eQTL identification. The new systems genetics approach is based on four
steps that are performed before the trans-eQTL analysis in order to efficiently reduce the number of analyzed genes: 1) Identification of the gene
expression modules (M) that characterize CD4+ T cell gene expression 2) Enrichment analysis of a specific biological process that is related to the trait
of interest 3) Construction of the functional-based networks using biological knowledge within the significantly enriched modules 4) Network
analysis to identify those genes that are likely to play a central role in the functional-based networks 5) Trans-eQTL analysis using the subset of genes
that show the highest centrality in each module. Abbreviations: AT, association transfer between organisms; BK, curated biological pathway
knowledge; CP, computational predictions; G, gene; M, module; PI, physical interactions; TM, text-mining.
doi:10.1371/journal.pone.0100690.g001
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Trans-eQTL analysis in RA CD4+ T cells using the novel
systems genetics approach

A total of 16 gene expression modules were found to

characterize the CD4+ T cell gene expression of RA patients

with active disease (Table 1). Given that RA is an autoimmune

disease characterized by the chronic activity of inflammatory cells,

we performed the functional enrichment analysis of the CD4+ T

cell modules over GO terms related to the immune system. From

the 16 gene expression modules identified in RA CD4+ T cells, we

found two modules to be highly significantly enriched in genes

related to the immune system (P = 9.23e221 and P = 9.14e25 for

modules 9 and 12, respectively). Using these two immune-related

gene expression modules, we built their corresponding functional-

based networks. The M9 CD4+ T cell module functional analysis

revealed a network of 15 interconnected genes (Figure 2 A). The

analysis of the M12 gene-expression module showed larger and

more complex network involving 247 genes. The topological

structure of the M12 functional network (Figure 2 B) suggests the

existence of different subnetworks that are connected by a few

genes (i.e. genes showing high BC).

After computing the network properties of each gene in the

identified M9 and M12 functional networks (Table 2), we selected

those genes showing the highest centrality measures. A total of 13

genes showing either high connectivity with other genes (DCM9$

5, DCM12$51) or high connectivity between node subnetworks

(BCM9$0.26, BCM12$0.05) were selected. These selected genes

were IL4, MS4A2, CCR3, IL8 and FCER1A genes from M9 module

and TSPO, CDK1, RPS3, TYROBP, CD4, BIRC5, CDC45 and

KIAA0101 genes from M12 module (Figure 3). Using this set of

genes that have a very high probability of being relevant in the

CD4+ T cell pathophysiology in RA, we finally performed the

trans-eQTL analysis (NM9 = 3,435,556 tests, NM12 = 5,725,245

tests). After multiple test correction, we identified six statistically

significant trans-eQTLs (Table 3). A complete list of the trans-

eQTLs having a nominal P-value,1e-5 in modules M9 and M12

is shown in Tables S4 and S5, respectively.

The statistically significant trans-eQTLs identified with our

novel systems genetics approach were associated to the expression

of KIAA0101 and BIRC5 genes, both central genes of the M12

CD4+ T cell network. Five of the significant trans-eQTLs were

associated to the expression of KIAA0101 and are located in

different chromosomic regions: SNP rs3862556 (intergenic vari-

ant, chromosome 10q22.2, PFDR = 4.6e22), SNPS rs711114

(intergenic variant, chromosome 12q21.1, PFDR = 4.8e22), SNP

rs9561023 (GPC5 locus, chromosome 13q31.3, PFDR = 4.8e22),

SNP rs2513046 (AHNAK locus, chromosome 11q12.1,

PFDR = 4.8e22) and SNP rs17009383 (ZNF385D locus, chromo-

some 3p24.3, PFDR = 4.8e22). The remaining trans-eQTL was

established between the genetic variation at SNP rs10283761

(intergenic variant, chromosome 9p21.2, PFDR = 4.8e-2) and the

expression levels of the BIRC5 gene.

Analysis of differential genomic regulation profiles
The comparison of the genomic regulation profiles of CD4+ T

cells and LCL cells revealed several genes showing significantly

different genetic regulatory mechanisms between both cell types.

In the RA risk gene group, three genes showing a highly

differential genomic regulation between CD4+ T cells and LCLs

were identified (Figure 4). In the T cell receptor signaling pathway,

PRKCQ gene had similar TCVs in LCLs cis- and trans-eQTLs

while CD4+ T cells had a high cis-TCV and a practically absent

trans-TCV (P = 4.1e23). In this same pathway, RASGRP1 gene

showed an opposite regulatory pattern in both cell types, with a

predominant trans-TCV in CD4+ T cells and a predominant cis-

TCV in LCLs (P = 7.3e23). Finally, PRDM1 gene, belonging to

the B cell development pathway, was found to be mainly cis-

Table 1. Gene expression modules identified in RA CD4+ T cells.

Module Number of Transcripts Immune System Process P-value

M1 288 NS 3.69e-01

M2 2326 Underrepresented 5.00e-03*

M3 1682 Underrepresented 3.41e-06*

M4 83 Underrepresented 1.26e-02*

M5 755 NS 2.64e-01

M6 155 NS 3.69e-01

M7 10003 NS 7.71e-01

M8 199 NS 4.94e-01

M9 75 Overrepresented 9.23e-21*

M10 253 NS 1.36e-01

M11 157 NS 7.50e-01

M12 402 Overrepresented 9.14e-05*

M13 124 Underrepresented 5.34e-23*

M14 136 Underrepresented 2.82e-06*

M15 2904 NS 7.90e-02

M16 1578 Underrepresented 3.50e-05*

Applying the new systems genetics approach for trans-eQTL identification in RA CD4+ T cells and using WGCNA, 16 genes expression modules (M) that characterize the
CD4+ T cells were identified. For each gene expression module, the number of gene transcripts representing each module is shown, as well as the results of the
immunological enrichment analysis.
Abbreviations: NS, No Significant.
* Significant (P,0.05).
doi:10.1371/journal.pone.0100690.t001
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regulated in CD4+ T cells and trans-regulated in LCLs (P = 4.9e2

3).

Among those genes involved in T cell differentiation pathways,

we found a total of 17 genes showing a differential regulatory

profile between both cell types. Taking into account that CD4+ T

cell differentiation pathways can share several genes, we found a

differential regulation in 13, 5, 3 and 1 genes from the Th1, Th2,

Th17 and Treg differentiation pathways, respectively (Figure 5).

NFKB (P = 8.0e23), ICAM1 (P = 1.9e22), UBE2D (P = 3.5e22)

and TGFB2 (P = 4.6e22) genes showed opposite regulatory

Figure 3. Functional-based networks analyzed in each enriched CD4+ T cell gene expression module. A: Functional-based network
obtained from the immunologically enriched M9 gene expression module. B: Functional-based network obtained from the immunologically enriched
M12 gene expression module. The dimensions of each node (i.e. gene) are proportional to its DC value and its color is based on its BC value, ranging
from green (lowest BC values) to red (highest BC values). The edge width is proportional to the strength of the functional association evidences
between two genes. The edge betweenness determines the edge color, ranging from green (edges connecting nodes with the lowest BC values) to
red (edges connecting nodes with the highest BC values).
doi:10.1371/journal.pone.0100690.g003

Figure 2. Building of functional-based networks for M9 and M12 CD4+ gene expression modules using biological knowledge. A:
Functional-based network obtained from the immunologically enriched M9 gene expression module where 15 genes display a connected network. B:
Functional-based network obtained from the immunologically enriched M12 gene expression module, which shows a complex network structure
with different subnetworks involving 247 interconnected genes.
doi:10.1371/journal.pone.0100690.g002
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profiles between both cell types, with a higher contribution of trans

regulation in CD4+ T cells and a higher contribution of cis

regulation in LCLs. Conversely, we found that the expression of

IRF9 (P = 7.9e26), IL12RB2 (P = 4.9e23), SHC4 (P = 5.6e23),

IL12B (P = 9.5e23), IL13 (P = 1.3e22), ITPR2 (P = 1.4e22),

PTPN11 (P = 1.7e22), STAT5 (P = 2.3e22) and IL4 (P = 3.7e22)

genes were predominantly regulated by cis-acting elements in

CD4+ T cells from RA patients.

The IRF1 gene expression, whose cis- and trans- regulation was

clearly found to be similar in RA CD4+ T cells, showed a

markedly higher trans-eQTL regulation and almost absent cis-

eQTL evidence of regulation in LCLs (P = 4.4e22). PLCG2 gene

expression regulation was also similar in CD4+ T cells, but had a

markedly high cis regulation and almost absent trans regulation in

LCLs (P = 6.2e23). Finally, the regulatory profile of CEBPB gene

expression was characterized by the absence of a trans regulation in

RA CD4+ T cells and the clear effect of trans-acting regulatory

elements in LCLs (P = 3.3e24).

The complete list of cis- and trans-eQTLs in CD4+ T cells and

LCLs that were used to characterize these regulatory profiles are

shown in Table S6, Table S7, Table S8 and Table S9.

Discussion

In the present study we have performed a genome-wide analysis

of eQTLs in CD4+ T cells and we have identified new genetic

regulatory variants associated with the gene expression of this key

cell type in RA. Analyzing the transcriptome of CD4+ T cells from

RA patients with active disease we found a genome-wide

significant cis-eQTL regulating the expression of FAM66C gene.

In order to detect significant trans-eQTLs, we developed a novel

systems genetics approach that integrates gene expression and

network biology information to reduce the multiple test burden

associated with this type of analysis. Using this new approach, we

found statistically significant trans-eQTLs regulating the expression

of BIRC5 and KIAA0101 genes in CD4+ T cells in RA. Finally,

comparing the genetic regulatory patterns of RA CD4+ T cells

with control LCLs, we found several differential regulatory

patterns. This study represents the first global analysis of the

CD4+ T cell regulatory architecture associated with RA.

FAM66C is a long non-coding RNA (lncRNA) gene, whose

biological functionality is still unknown. LncRNAs genes are

transcribed into non-protein coding transcripts that are longer

than 200 nucleotides and have been shown to act as modulators of

the gene expression through epigenetic changes, transcriptional

regulation and post-transcriptional regulation [46]. To our

knowledge, the FAM66C lncRNA gene has not been previously

associated with the pathophysiology of RA or any other complex

disease. Recently, lncRNAs have emerged as possible contributors

to the basis of human diseases by regulating the expression of

neighbouring protein-coding genes [46,47]. Interestingly,

FAM66C lncRNA gene maps near C3AR1 gene (,115 Kb), which

encodes a complement receptor that has been shown to be crucial

in the modulation of the function of CD4+ T cell subtypes [48].

C3AR1 expression promotes the proinflammatory activity of CD4+
T cells by enhancing the survival and function of Th1 and Th17

cells, while its inhibition leads to the induction of Treg CD4+ cells

[49]. Additional studies will need to be carried out to determine if

this or other biological mechanisms are responsible for the

observed FAM66C association in the RA CD4+ T cell transcrip-

tome.

Genes that encode proteins with high DC and BC values are

likely to have a high impact in the network functionality.

Consequently, the characterization of such central genes in the

functional networks of specific cell types can be a powerful strategy

to identify regulatory variants that contribute to disease [50,51].

Based on this assumption we developed a new dimensionality

reduction approach that allowed us to determine the most

influential genes in the CD4+ T cell specific networks and identify

significant trans-eQTL associations with two of these genes, BIRC5

and KIAA0101. These cell type-specific regulatory mechanisms are

Figure 4. Transcript Complexity Value analysis of RA risk genes. TCV from the RA CD4+ T cell and control LCLs analyzed in RA risk genes. A:
JAK-STAT signaling pathway. B: T cell receptor signaling pathway. C: TNF signaling pathway. D: Cell adhesion pathway. E: Toll-like receptor signaling
pathway. F: Antigen processing and presentation pathway. G: B cell development function pathway. The genes that are framed represent those
genes showing significant genomic regulation profiles between RA CD4+ T cells and LCLs (P,0.05).
doi:10.1371/journal.pone.0100690.g004

Figure 5. Transcript Complexity Value analysis of T cell differentiation genes. The type and quantity of significant eQTLs in RA CD4+ T cells
and LCL cells are compared in the genes from the Th1, Th2, Th17 and Treg differentiation pathways. Only those genes showing a significantly
different genomic regulation profile (P,0.05) are shown.
doi:10.1371/journal.pone.0100690.g005
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therefore likely to be of high importance in the activity of CD4+ T

cells associated with RA pathology.

BIRC5 gene encodes survivin, an antiapoptotic protein that has

been strongly associated to RA pathogenesis [52,53,54]. Survivin

mRNA levels in peripherial blood mononuclear cells have been

significantly associated with disease activity and the extent of joint

damage in RA [55]. Importantly, survivin expression has been

shown to be a key promoter of T cell proliferation after antigen

presentation as well as a powerful antagonizer of apoptosis in

activated T cells [56,57]. Increased proliferation and reduced cell

death are two of the main characteristics of the CD4+ T cell

population infiltrating the synovial membrane in RA [58,59].

Survivin-mediated cell survival could therefore have a major role

in maintaining this pathogenic CD4+ T cell features. Additionally,

there is recent evidence demonstrating that survivin expression in

CD4+ T cells is activated by TNF-a cytokine which is the key

regulator of the inflammatory and tissue-destructive pathways in

RA [56].

KIAA0101 gene encodes for the Proliferating Cell Nuclear

Antigen (PCNA) associated factor that acts as a regulator of DNA

repair during DNA replication [60]. Importantly, PCNA-associ-

ated factor interacts with PCNA which increases the DNA

polymerase’s processivity during elongation of the leading strand

and, therefore, accelerates the cell cycle progression [61]. In RA,

an increased rate of cell proliferation has been shown to be

associated with high levels of PCNA in synovial fibroblasts [62].

Accordingly, we suggest that the increased proliferation and

reduced apoptosis of CD4+ T cells in the synovial membrane in

RA is also regulated by the expression of KIAA0101 gene.

The main goal of the new systems genetics approach described

in this study is to objectively reduce the multiple test problem

associated with the genome-wide analysis of trans-eQTLs. An

exhaustive trans-eQTL analysis at a genome-wide scale would have

required to perform approximately 12,000e6 association tests.

This extremely high number of tests would have lead to an

excessive penalization for multiple testing and, consequently, the

inability to detect true associations. Using the new systems genetics

approach we reduced this number of tests to 3.4e6 and 5.7e6

trans-eQTL analyses for M9 and M12 functional networks,

respectively. Clearly, our study demonstrates that this methodo-

logical approach can be useful to identify significant trans-eQTLs

without the need to explore all the combinatorial space.

Importantly, the proposed systems genetics workflow includes

several steps that can be easily customized to incorporate new or

alternative bioinformatics methodologies. For example, in the

functional enrichment analysis we used the gene ontology database

but other functional annotation databases like the KEGG database

can be used instead. The flexibility of this systems genetics

approach workflow also makes this method a powerful strategy to

uncover the relevant trans-eQTLs associated with human traits or

diseases, including the upcoming studies based on RNA-seq

technologies.

Trans-eQTL associations present in CD4+ T cells and absent in

LCLs could be indicative of cell-specific regulatory processes that

are specifically activated in RA. In the group of genes associated

with RA risk, we found RASGRP1 and PRDM1 genes to have a

differential regulation between both cell types. RASGRP1 has been

shown to be a critical regulator of the ERK/MAP signaling

pathway which is crucial for T cell development, homeostasis and

differentiation. T cells from patients with RA have been shown to

have hyperresponsive ERK activity upon TCR stimulation [63].

Consequently, RASGRP1 expression could be a specific modulator

of the CD4+ T cell hyperresponsiveness to autoantigens associated

with RA. PRDM1 gene, instead, has been shown to drive the

maturation of B-lymphocytes into immunoglobulin-secreting cells

[64]. Consistently, we found a predominant trans regulation of

PRDM1 gene expression in LCLs, which are cell lines originally

generated from B cells.

Among those genes involved in the CD4+ T cell differentiation

pathways, we found a markedly differential regulatory profile of

Nuclear Factor Kappa B (NFKB) and Transforming Growth Factor Beta 2

(TGFB2) genes. NKFB is a well known transcription factor that has

been associated with the T cell differentiation into Th1, Th2 and

Th17 subtypes [65] and is a pivotal regulator of the inflammatory

process present in rheumatoid arthritis [66,67,68]. The identifi-

cation of the genetic variants that control NFKB gene expression in

CD4+ T cells could lead to a better understanding of the biological

mechanisms that are more relevant in the regulation of this cell

type in RA.

TGFB2 is a Transforming Growth Factor family cytokine that

has been associated with immunological tolerance and Treg and

Th17 pathways [69]. Previous studies have shown that normal

Treg/Th17 cell balance is not maintained in RA, with an increase

in the differentiation of CD4+ T cells into the proinflammatory

CD4+ Th17 phenotype and a decrease in the production of anti-

inflammatory CD4+ Tregs [70,71,72]. Therefore, the increased

trans-eQTLs associated with CD4+ T cells compared to LCLs,

could indicate a specific regulatory mechanism associated with the

increase of T cell autoreactivity observed in RA pathophysiology.

The different methodologies used in this study for the

characterization of the CD4+ T cell-specific genetic regulation

in RA have nonetheless some limitations. The CD4+ T cell

population is highly heterogeneous with different subtypes exerting

sometimes opposing regulatory activities in inflammation. There-

fore, a more comprehensive analysis would have required the

isolation and separate analysis of each CD4+ subpopulation.

However, by using a homogeneous cohort of RA patients with a

high level of disease activity, we favored the collection of a highly

similar gene expression profile representative of the pathogenic

regulation of CD4+ T cells in RA. Also, the comparison of the

CD4+ regulatory pattern against LCLs of control individuals could

have limited the identification of additional relevant regulatory

mechanisms. As more eQTL data on different cell subtypes

becomes available, more cell-to-cell comparisons can be per-

formed in order to completely characterize the specific regulatory

mechanisms of CD4+ T cells in RA.

In the analysis of differential genomic regulation profiles we

focused on genes associated with the susceptibility to develop RA

as well as genes associated with T cell differentiation. Another

potential limitation of this approach is that other genes that encode

proteins associated with RA pathophysiology are not included.

From these, the pro-inflammatory cytokines TNF-a [73], IL-1b
[74] and IFN-c [75] and the anti-inflammatory cytokine IL-10

[76] have shown to be key in the development and chronification

of RA. However, analyzing the regulatory profiles for these genes

only a significant differential regulation for IL-1b is observed (data

not shown). This association is due to a predominant cis-regulation

in CD4+ T cells compared to an increased trans-regulation in

LCLs. This result is consistent with the high level of expression of

this cytokine observed in different immune and non-immune cell

types like monocytes, tissue macrophages or synovial fibroblasts

[77,78]. Together, the results of our study support the use of this

methodology to characterize the functionality of disease risk genes

as well as genes annotated to the cell type of interest.

One of the most important challenges ahead in human genetics

is to identify the regulatory elements that control the gene

expression and how they contribute to disease. This study is the

first approach to the characterization of the CD4+ T cell
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regulatory profile associated with RA. In this comprehensive

genetic study we report genetic regulatory variants that are

significantly associated with the expression of FAM66C lncRNA,

BIRC5 and KIAA0101 genes in RA CD4+ T cells. These results

highlight the importance of the cell cycle processes in the

pathological activity of RA CD4+ T cells infiltrating the synovial

membrane, as well as the potential implication of lncRNA in the

genetic regulatory basis of RA. This study represents a significant

progress in the characterization of the genetic regulation of the

main immune cell type involved in the pathogenesis of RA.
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