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A review of the pathology of human pulmonary TB cases at different stages of

evolution in the pre-antibiotic era suggests that neutrophils play an instrumental role

in the progression toward active TB. This progression is determined by the type of

lesion generated. Thus, exudative lesions, in which neutrophils are the major cell type,

are both triggered by and induce local high bacillary load, and tend to enlarge and

progress toward liquefaction and cavitation. In contrast, proliferative lesions are triggered

by low bacillary loads, mainly comprise epithelioid cells and fibroblasts and tend to

fibrose, encapsulate and calcify, thus controlling the infection. Infection of the upper

lobes is key to the progression toward active TB for two main reasons, namely poor

breathing amplitude, which allows local bacillary accumulation, and the high mechanical

stress to which the interlobular septae (which enclose secondary lobes) are submitted,

which hampers their ability to encapsulate lesions. Overall, progressing factors can be

defined as internal (exudative lesion, local bronchogenous dissemination, coalescence of

lesions), with lympho-hematological dissemination playing a very limited role, or external

(exogenous reinfection). Abrogating factors include control of the bacillary load and the

local encapsulation process, as directed by interlobular septae. The age and extent of

disease depend on the quality and speed with which lesions liquefy and disseminate

bronchially, the volume of the slough, and the amount and distribution of the sloughing

debris dispersed.

Keywords: tuberculosis, neutrophils, reinfection, encapsulation, interlobular septae, exudative lesions,

proliferative lesions, liquefaction

Introduction

In order to be clinically relevant, tuberculosis (TB) lesions must, in general, be radiologically
visible. This means a structure with a diameter of not less than 10mm that can be discerned
by an experienced radiologist. It is not easy to achieve such a size in human lungs as powerful
local structures, namely the interlobular septae, which enclose secondary lobes, tend to prevent it
(Osborne et al., 1983; Webb, 2006). These structures are stimulated by minimal lesions (0.5mm
in diameter) (Medlar, 1955; Lindgren, 1961; Gil et al., 2010), thus showing how difficult it is to
overcome this powerful defense. Recent findings concerning the mechanisms that determine the
origin of lesions in active TB have led us to take a more in-depth look at pathological data in human
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pulmonary TB. In particular, renewed interest has been dedicated
to the role of neutrophils in the origin of TB. It has been
demonstrated that these cells have a relevant role to discern a
biosignature for TB in peripheral blood (Berry et al., 2010; Lowe
et al., 2012; Bloom et al., 2013). Equally, high concentration of
neutrophils has been found in the broncho-alveolar lavage (BAL)
of TB patients (Eum et al., 2010). Furthermore, in experimental
modeling, neutrophils appear to be instrumental for inducing
human-like lesions in mice (Marzo et al., 2014; Vilaplana and
Cardona, 2014), as well as in guinea pigs (Ordway et al., 2007),
rabbits (Dannenberg, 2006), non-human primates (NHP) (Flynn
et al., 2015), goats (Domingo et al., 2009), or cattle (Buddle
et al., 2005). These new data reinforce an “easiest” vision of the
progression toward TB, based on the instrumental role played by
neutrophils, which is less complex and easier to understand than
previously hypothesized (Cardona, 2011).

All this evidence suggested the need to review clinical data
from the pre-antibiotic era, when a high number of pathological
studies from necropsies were performed, in order to try to
establish a human model for TB progression.

The Initial Phase of Infection is Silent and
Unicellular

Once Mycobacterium tuberculosis has been phagocytosed by the
alveolar macrophages and starts to grow, the initial phase of
infection takes place. This phase is silent as it occurs at least 15
days before an initial pre-granuloma appears at the infection site
due to the fact that the bacilli grow slowly, duplicating every
24 h until finally necrotizing the cell after around 6 days. Once
in the extracellular milieu, they are phagocytosed by neighboring
macrophages from the same alveolar sac, probably repeating this
cycle once or twice to induce a sufficient inflammatory response
to attract the first neutrophils and monocytes (Bru and Cardona,
2010; Cardona and Ivanyi, 2011; Vilaplana and Cardona, 2014).

Evidence for this phase comes from the studies of Wang
(1916) and Opie and Aronson (1927), who demonstrated the
presence of viable bacilli in samples from healthy parenchyma, a
fact subsequently confirmed by Hernandez-Pando et al. (2000).
Indeed, it has been reported that the time between infection
and induction of “primary” TB ranges between 2 and 8 weeks
(Wallgren, 1948).

The Quality of the Granuloma

Once the infection site has been detected and the immune
response triggered, a very important reaction related to the
quality of the granuloma generated takes place. There is a
widespread consensus that this property is linked to bacillary
load and the site at which infection occurs (Pottenger, 1934;
Rich, 1944; Canetti, 1955; Medlar, 1955). Thus, the proliferative
granuloma, or “tubercle,” is triggered by a low bacillary load
and contains epithelioid cells and fibroblasts. This lesion soon
progresses to fibrosis and calcification as a result of the
encapsulation process induced by interlobular septae, which
enclose secondary lobes in humans (Osborne et al., 1983; Webb,

2006), thus meaning that only a very low bacillary load can be
detected.

Exudative lesions, or local neutrophilic condensations, are
triggered by a high bacillary load. Infection of the upper lobes
favors their development and represents a higher probability of
generating new lesions as a result of bronchogenic dissemination.
Moreover, their high bacillary load also increases the likelihood
of necrosis, thus forming a large progressive lesion and favoring
liquefaction, sloughing, and cavitation (Pottenger, 1934; Rich,
1944; Pagel and Toussaint, 1948; Canetti, 1955; Medlar, 1955)
(Table 1 and Figure 1).

Interestingly, an increase in the percentage of neutrophils in
peripheral blood has been used as an indicator for TB progression
in the past (Flinn and Flinn, 1930; Pottenger, 1934; Rich, 1944;
Kayne and O’Shaughnessy, 1948).

The Upper Lobes and Tropism for TB

Because of a phenomenon of gravidity, the upper lobes have
a higher alveolar pressure and higher diameter than the rest
of the lung, thus reducing the capillary density, in addition to
having less mobility and thus less lymphatic drainage (Dock,
1954; Glenny and Robertson, 2011). As a result, these lobes are
subjected to a lower immunological surveillance due to their
lower connectivity with the regional lymph nodes, and therefore
have a higher chance of accumulating lesions locally, thereby
increasing the bacillary load and resulting in larger lesions. In this
regard, a number of different pathological conditions localized in
the upper lobes have been reported to be caused by a delayed
lymphatic clearance (Gurney and Schroeder, 1988). Moreover,
this factor has a limited duration as normal lymphatic drainage
is restored every day when the patient rests, an observation that
led to prolonged rest being prescribed to TB patients in the past
to improve their health status by stopping TB progression (Dock,
1946).

What seems to be important is the markedly lower breathing
amplitude compared with the lower lobes (Guo et al., 2011).
This may allow an increased local accumulation of bacilli after
the destruction of infected macrophages (for at least 2/3 of the
day), thus increasing the multiplicity of infection (MOI) of the
incoming macrophages and favoring the induction of necrosis

TABLE 1 | Take-home messages.

Infection of the upper lobes

Progressing Internal Exudative lesions

Bronchogenic

local dissemination

Coalescence of

lesions

External Exogenous

reinfection

Abrogating Control of bacillary load

Encapsulation of the lesions

The factors that determine the evolution towards TB.
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FIGURE 1 | Examples of progression toward active TB. (A) Different

reinfections occurs. These are usually controlled until the upper lobe is

infected, with local progression by generation and coalescence of

neighboring lesions. (B) The classical paradigm in which an old lesion

acquired during childhood reactivates and generates TB (d, day; w, week;

y, year).

(Lee et al., 2006) and the accumulation of neutrophils at the site
(Gan et al., 2008). Equally, as a consequence of the increase of
pro-inflammatory cytokines, such as IL-6 or IL-8 (Redford et al.,
2010; Lowe et al., 2012), and the production of IL-17 by the
neutrophils themselves (Khandpur et al., 2013), once the bacilli
have been drained to the lymph node and have triggered an
immune response, these factors drain with the lymph fluid and
help to generate Th17 lymphocytes which, once attracted to the
lesion, maintain the infiltration with neutrophils (Lowe et al.,
2012).

It has also been found that lesions in the upper lobes exhibit
lower calcification (Medlar, 1955). This is surprising considering
that the pH of the upper lobes is higher due to the local lower
removal of CO2, which should favor calcification (Gurney and
Schroeder, 1988). As calcification also requires stabilization of
the lesion, this is related to a lower encapsulation capacity, which
may be due to the lesser ability of the interlobular septae to react
against minimal lesions as a result of the enormous stress to
which it is subjected (Suki et al., 2013) as the lungmust support its

own weight. Similar to a suspended coil spring, the largest alveoli
and the greatest stress in the lung are found in the apex, and this
may weaken the elastic fibers (Gurney and Schroeder, 1988).

Interestingly, a high pH has also been reported to favor
the induction of foamy macrophages, as weak bases tend to
concentrate intracellularly at higher extracellular pH (Gurney
and Schroeder, 1988). It has been extensively demonstrated
that foamy macrophages are responsible for the drainage of M.
tuberculosis out of the lesions, thus playing an important role
in bronchogenic dissemination (Cardona, 2009), and they have
also been linked to the attraction of neutrophils at the onset
of exudative lesions induced in C3HeB/FeJ mice (Marzo et al.,
2014).

A definitive proof of the favorable conditions for TB
progression in the upper lobes is the observation that the nodules
are initially disseminated diffusely throughout the lung in miliary
TB, whereas in advanced disease, the foci are larger in the upper
lobes (2–3mm) than in the lower (1mm) (Auerbach, 1944;
Felson, 1952; Gurney and Schroeder, 1988) (Table 1).

However, this is not specific to TB as the upper lobes are
also involved in a large number of lung diseases (Ryu and
Swensen, 2003; Nemec et al., 2013), including cavitated lesions
with different infectious origins (Klebsiella, Pneumocystis, etc.)
(Gadkowski and Stout, 2008), primary cancer (Byers et al.,
1984), and metastasis (Yanar et al., 2014), or even the presence
of chronic obstructive pulmonary disease (COPD) due to the
induction of emphysema (Suki et al., 2013).

Primary or Post-primary Lesions?

With the systematic use of chest X-rays to diagnose TB from
the end of the Second World War (>1945) (Bynum, 2012), the
concept whereby initial infection occurs in childhood but, if
controlled, is then detected in adulthood in the form of a calcified
nodule in the parenchyma and in the draining hilar lymph
node (Ghon Complex) soon appeared (Canetti, 1950). However,
adults with TB symptoms tend to develop an infiltration in the
upper lobe, with no involvement of the draining lymph node
(Adler, 1953; Poppius and Thomander, 1957). These findings
led to the leading concept (known as the “unitary concept”)
that post-primary disease is a consequence of reactivation of an
old lesion generated during the primary infection in childhood,
which subsequently leads to the haematogenous dissemination
of different lesions until an immune response is generated.
This idea was supported by the theory that, once a person
is infected and has immunity, he/she cannot be re-infected
(Stead, 1967).

The absence of reinfection was refuted by studies from
different authors. Thus, for example, Lindgrem et al.
demonstrated that BCG vaccination merely curtails the size
of the granulomas rather than preventing infection after carefully
studying lungs from subjects who died as a result of causes other
than TB (Sutherland and Lindgren, 1979). Indeed, lesions of
different ages can be seen in the same host, thus supporting the
fact that a person can be re-infected several times (Medlar, 1955)
(Figure 1). In addition, Medlar demonstrated that involvement
of the corresponding lymph node, although minimal, is always
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detected after performing a careful pathological examination
(Medlar, 1948). Similarly, Opie and Aronson (1927) and Canetti
(1950) demonstrated that calcified lesions tend to kill the bacilli
contained in them, thus reducing the possibility for reactivation
with time. In this regard, Canetti strongly supported the fact that
TB was mainly based on a process of exogenous reinfections
(Canetti, 1950). Furthermore, Pottenger postulated the idea that
the greater the number of reinfections the higher the possibility
of generating a progressive lesion (Pottenger, 1934). It is well
known that persons in contact with an active TB case who are
infected and have the highest probability of developing active
TB are those who are in contact with the patient for more than
6 h every day, thus meaning that they are infected multiple times
and increasing the possibility of infection reaching the upper
lobes (20% of total lung volume) and the likelihood of different
lesions to progress (Fox et al., 2013) (Figure 1).

The lympho-hematological dissemination mechanism was
rebutted byMedlar after a careful study ofminimal TB cases as, in
general, the lymph nodes generate easily controlled proliferative
lesions and as a result of the thrombosis observed in the vessels
in necrotic tissue (Medlar, 1948). In fact, looking at the murine
model, although there is always a systemic infection (the spleen
is always infected), pulmonary progression is always caused by
the drainage of infectedmacrophages out of the lesions, following
the bronchial tree (Cardona et al., 2003b). However, lympho-
hematological dissemination remains important for inducing
extrapulmonary infections in children and immunosuppressed
subjects (Pottenger, 1934; Rich, 1944; Kayne and O’Shaughnessy,
1948; Medlar, 1948; Canetti, 1950).

Recently, the use of molecular epidemiology techniques
has demonstrated that the radiological pattern of primary TB
(lesion in the parenchyma of the lower lobes plus lymph node
involvement) is related to the immune status of the host, in
this case immunodeficiency status, rather than the timing of the
infection (childhood or adulthood). Thus, primary disease, taken
to be the absence of signs of previous infection (calcification,
etc.), can occur as progressive disease in the upper lobes in
immunocompetent subjects, whereas it is more frequent in lower
lobes in immunosuppressed subjects. Despite this, the most
important sign for immunosuppression was the involvement of
lymph nodes (Geng et al., 2005).

Endogenous Bronchial Dissemination: A
Key Factor for TB Progression

The experience of Medlar after studying over a thousand
necropsies, including patients who were followed radiologically
from the time at which lesions were finally removed surgically,
is of enormous value for understanding disease progression.
All these studies (Medlar, 1947a,b,c,d, 1948, 1955) suggest that
the small initial lesions which develop in the upper portions
of pulmonary lobes often undergo necrosis, liquefaction, and
sloughing into the bronchi, thus giving rise to progressive
pulmonary disease. However, these lesions can also heal
completely by a combination of fibrosis and calcification. If
this necrotic lesion has a diameter of 1–2mm when completely

healed, it will remain indefinitely as a calcified or hyalinised focus.
Furthermore, the larger the lesion, the lower the likelihood that
complete healing will occur.

Even if this lesion liquefies and sloughs, endobronchial
dispersion of the slough may be limited to a small pulmonary
segment, thus preventing further extension and allowing the
possibility of complete healing. In other cases, the disease
may progress slowly over a number of years, with some foci
undergoing healing and the partial and intermittent sloughing of
others resulting in new endobronchial dissemination.

On occasions, the original small foci that have calcified may
come into direct contact with large necrotic ones undergoing
liquefaction, as also observed by Canetti (1950). Equally, the
liquefaction and sloughing of initial foci into the bronchi may
lead to a large new focus, and these new lesions may repeat
the same process over a short period of time. Thus, it appears
that clinical pulmonary TB is always initiated by the liquefaction
and sloughing of a tiny necrotic lobular pneumonia lesion that
develops in the upper lobes (Figure 1).

The age and extent of the disease is conditioned by the speed
with which the secondary lesions undergo necrosis, liquefaction
and endobronchial sloughing, the volume of the slough, and by
the amount and distribution of the sloughing debris dispersed
(Medlar, 1955). In this regard, the slough discharge may go on
to form part of internal aerosols and infect other remote regions
(Cardona, 2009; Cardona and Ivanyi, 2011).

This phenomenon can also be seen on another scale by
considering the fact that bacilli can escape from the granulomas
via the foamy macrophages, without the need for liquefaction, as
a result of drainage of the alveolar fluid. This results in small-
scale bronchial dissemination, which is usually drained toward
the stomach, but which (in a low percentage) can result in the
formation of aerosols that can reach the upper lobes (Cardona,
2009). This mechanism was demonstrated by Meunier (1898),
who used gastric lavage to diagnose TB in children, who do
not usually have open lesions. This procedure was subsequently
applied systematically from 1927 onwards (Stadnichenko et al.,
1940). It can also be clearly seen in experimental modeling in
small mammals, where constant bronchogenous dissemination
can be detected (Cardona et al., 1999, 2003a,b; Guirado et al.,
2008; Cáceres et al., 2009), and in larger mammals, such as
mini-pigs (Gil et al., 2010). In the former this phenomenon
very often occurs due to the lack of interlobular septae, a
structure only present in larger mammals (like humans), which
enclose secondary lobes, thereby forming a complex network
in connection with the pleura in order to allow respiratory
function (Osborne et al., 1983; Webb, 2006; Parent, 2015). This
structure allows a quick (in around 10 days) and efficacious
encapsulation of minimal lesions, thus curtailing alveolar-
bronchial dissemination.

Overall, studies show that progression toward active TB is
not homogenous in terms of either the quality of the lesions
or the onset of their evolution, thus making progress of the
disease unpredictable. Indeed, this varies from case to case as it
depends on the balance between the progressing and abrogating
factors. But it is important to highlight that progression is highly
favored in the upper lobes. This is caused mainly by mechanical
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reasons, leading to a local accumulation of bacilli, and a lower
encapsulation capacity (Medlar, 1955).

Coalescence of Lesions is a Signpost for
Active TB

This mechanism arises as a result of the “conglomeration”
of lesions usually exhibited by a cavitated lesion, an aspect
previously described by Laennec, who highlighted the usual
pattern of a circle of tubercles variously softening and discharging
their load of tuberculousmatter into the established cavity so that,
over time, “continuous excavations are frequently observable”
(Laennec, 1826; Bynum, 2012). In fact, what Laennec showed us
is that TB is a disease based on the progression of lesions and the
attempts of the host to “physically” stop this.

Softening of Lesions has been Never
Demonstrated

Another “mainstream” factor is the concept that old lesions
can liquefy. Significant research efforts have been invested in
demonstrating this experimentally and have provided some data
indicating a possible role of myeloperoxidase in the rabbit model,
although there is still no solid proof to support this (Dannenberg,
2006). This concept is yet to be demonstrated in humans. Indeed,
it will probably be difficult to do so, especially considering the
nature of the fibrosis (collagen), which has been shown not to be
“softened” by extremely aggressive inflammatory processes like
necrotizing fasciitis (Henningham et al., 2015). In addition, it
has been shown that the pleura can prevent the dissemination of
cavitated lesions via neighboring lobes (Medlar, 1955).

What can Experimental Models Offer Us?

Experimental models can be classified into those that cannot
encapsulate lesions (small/medium mammals) and those which
can as they have interlobular septae in their lungs (big mammals)
(Plopper and Harkema, 2005; Parent, 2015). Murine models
exhibit a kind of immunosuppression-tolerance in a small
volume that allows a very slow and controlled progression
of the lesions toward total occupation of the lungs but with
no symptoms (Cardona, 2010). One important characteristic
of mice is their lower percentage of circulating granulocytes
(10–25%) compared with humans (50–70%) (Mestas and
Hughes, 2004), thus making them potentially less prone to the
induction of progressive lesions. Indeed, they usually develop
proliferative lesions, and in some cases intragranulomatous
necrosis, which is immediately fibrosed. Neutrophilic infiltration
is discrete unless C3HeB/FeJ mice (Marzo et al., 2014), or
heavily immunosuppressed mice (TNF, IFNγ, CD4, iNOS, IL-
12, SCID) (Gil et al., 2006), are studied. Extensive necrosis,
which fuels extracellular bacillary growth, can be observed
in both cases. It is logical to suppose that initial infiltration
with neutrophils starts this progression as a consequence of
either the genetic background or marked immunosuppression.
Interestingly, in the case of C3HeB/FeJ mice, this also depends

on the bacillary dose. Thus, when a low dose aerosol is used, the
induction of liquefacted lesions is not predictable and it appears
that bronchogenic dissemination must take place and locally
synchronize in order to coalesce and induce large liquefacting
lesions. In contrast, the inoculation of a relatively large challenge
dose (around 104 CFUs) intravenously consistently induces
infiltration within around 4 weeks post-infection (Driver et al.,
2012; Harper et al., 2012; Vilaplana et al., 2013; Dutta et al.,
2014; Marzo et al., 2014). Obviously, although radiologically
visible lesions cannot be reproduced in this model on a human-
like scale, it can nevertheless give us an idea of the nature of
the lesions induced (proliferative vs. exudative). In fact, those
groups working on these models have paid particular attention
to evaluating control of the bacillary load. But little attention has
been paid to the nature of the lesions. In fact, in the majority of
models, the lesions are essentially proliferative, showing a slow
but constant progression of infiltration due to the lack of an
efficient encapsulation process.

Although guinea-pigs (GP) are more reactive and tend to
generate both proliferative and exudative lesions, they show an
overwhelming implication of the lymphatic system that finally
becomes larger and more fibrosed than the lungs, eventually
resulting in a quick and overwhelming systemic progression
(Basaraba et al., 2006).Medium-sizedmammals such as NHP and
rabbits also show this constant progression, which in some cases
can cause liquefaction of the lesions (Medlar, 1955; Dannenberg,
2006; Flynn et al., 2015).

The fact that they have more volume allows large,
radiologically visible lesions to form in these hosts, although
the lack of interlobular septae means they have insufficient tools
to fight the disease. Interlobular septae are only present in big
mammals, such as cattle, goats and pigs, therefore only these
hosts will be able to answer the question as to what extent the
encapsulation process is relevant or not. In our hands, using the
minipig model, we have shown that even lesions smaller than
0.5mm can be encapsulated in less than 2 weeks. This means
that encapsulation is a quite quick process (Gil et al., 2010).
The scenario resembles the situation that has been described
extensively in humans (Pottenger, 1934; Rich, 1944; Kayne
and O’Shaughnessy, 1948; Canetti, 1950; Medlar, 1955), clearly
indicating that this is a relevant factor that should be taken into
account.

The main drawback of all models is that they are based on a
single infection, which is not usually the case in the induction of
active TB. As such, it would be important to study the influence
of multiple reinfection in large mammals in order to be able to
better model the human TB process (Fox et al., 2013; Cardona
and Vilaplana, 2014).

Conclusion: Why Active TB Takes Place

The formation of large lesions is essential for the disruption
of normal physiology, which is how TB hampers the health of
the host. Exudative lesions are those which are able to form
quickly enough to overcome the protective mechanism of the
interlobular septae, which is the local structure that can stop
both the local generation of new lesions and their coalescence
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into larger lesions. Recently, we have been focusing on the
induction of liquefaction as a paradigm for disease induction.
However, although this is important by being instrumental to
dissemination of the infection in the population, it is in fact
a transient feature of the disease. In the end, TB appears as a
constant dissemination of new lesions that can coalesce or not,
becoming liquefacted or not, but always hamper the host’s health
by continuous destruction of the lung. This is what has to be
stopped. What do we know about this balance between tissue
infiltration and encapsulation and stabilization in order to be able
try to fix it? Fortunately, we have a lot of experimental models
in which we can study the majority of the processes involved in
the progression toward TB, except for the encapsulation process.
This implies the use of large mammals as they are the only ones
with the interlobular septae.

Literature findings also show that it is totally irrelevant
whether an infection is primary or not as multiple infections,

whether exogenous (especially in high incidence countries)
or endogenous (where bronchial dissemination has a special
relevance), tend to occur. Moreover, although haematogenous
dissemination is important for generating extrapulmonary or
miliary TB, it has little or no relevance in the progression toward
pulmonary TB.
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