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Stable memory with unstable synapses
Lee Susman1,2*, Naama Brenner2,3* & Omri Barak 2,4*

What is the physiological basis of long-term memory? The prevailing view in Neuroscience

attributes changes in synaptic efficacy to memory acquisition, implying that stable memories

correspond to stable connectivity patterns. However, an increasing body of experimental

evidence points to significant, activity-independent fluctuations in synaptic strengths. How

memories can survive these fluctuations and the accompanying stabilizing homeostatic

mechanisms is a fundamental open question. Here we explore the possibility of memory

storage within a global component of network connectivity, while individual connections

fluctuate. We find that homeostatic stabilization of fluctuations differentially affects different

aspects of network connectivity. Specifically, memories stored as time-varying attractors of

neural dynamics are more resilient to erosion than fixed-points. Such dynamic attractors can

be learned by biologically plausible learning-rules and support associative retrieval. Our

results suggest a link between the properties of learning-rules and those of network-level

memory representations, and point at experimentally measurable signatures.
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The ability to form and retain memories of past experience is
fundamental to behavior, supporting adaptable responses,
and future planning1. These internal representations per-

sist over extended durations and may be reactivated by appro-
priate retrieval cues2. Currently, it is widely accepted that synaptic
connections between neurons play a central role in the physio-
logical basis of long-term memory storage3 (see refs. 4,5 for other
possibilities). The process of learning, on its part, is understood as
stimulus-driven neural activity sculpting network architecture,
i.e., Hebbian plasticity6.

If an internal memory-representation is stable over time, then
one could assume that some properties of its underlying neural
implementations also exhibit invariance over this period. How-
ever, at the level of single synapses, no such robustness exists
(reviewed in refs. 7–10). Over the past decade, several studies, both
ex vivo11,12 and in vivo13, suggested that synapses undergo sig-
nificant spontaneous changes. These fluctuations persist even in
the absence of neural activity, with magnitude estimated to be as
large as that of directed, Hebbian, plasticity14.

How, then, can memory traces remain stable over time? What
remains invariant while all synaptic strengths vary? Various
studies have proposed candidate invariant features, at different
levels of organization of neural networks. For single synapses,
invariance may be implemented in a sub-set of the largest
spines13,15. Invariance may, instead, only emerge at the level of
the connection between neurons, typically comprising several
synapses. This allows individual synapses to fluctuate, under the
constraint of stable overall connection strength between two
cells16,17. Higher up the organizational hierarchy, invariant fea-
tures may manifest only at the network level. This would allow
individual connections to fluctuate, while at the same time some
network properties remain stable9.

In this work, we suggest that such network-level invariance arises
naturally when considering the effect of homeostatic mechanisms
on network stability. Stability is best understood by considering a
global property of the network connectivity matrix—its eigenvalues.
This is a collection of points in the complex plane, each having a
real and imaginary part. We show that under activity-independent
synaptic fluctuations and known homeostatic mechanisms, infor-
mation encoded in the real part of these eigenvalues is strongly
eroded, while imaginary-coded information is spared. Conse-
quently, in a system that utilizes imaginary-coded memory, single
synapses may exhibit ongoing fluctuations whereas global features
remain invariant as network-level properties.

We investigate this concept by showing how different
homeostatic plasticity mechanisms degrade real- or imaginary-
coded memories, and how spike timing dependent plasticity
(STDP) can store transient inputs as imaginary-coded memories.
We then show the implications of such memories—that learned
representations give rise to stable oscillatory trajectories of net-
work activity. These memory states can be viewed as the time-
varying analogs of stable fixed points in the classic Hopfield
model18. Having been learned and embedded in a component of
connectivity, memory items may be transiently retrieved by
supplying an associative recall cue.

Our results suggest a principle by which memory can be
learned and retained in a stable manner despite significant
ongoing synaptic fluctuations. The implications of such a
mechanism to experimental data are discussed both in terms of
measured neural activity and in terms of synaptic plasticity
during learning as opposed to at rest.

Results
Model. Our model is based on a standard framework of firing-rate
neural networks19. It consists of N recurrently connected neurons,

with Wij the synaptic connection strength from neuron j to i. Each
neuron i transforms its input xi into firing rate via a nonlinearity
ϕ(xi), where the state vector x= (x1 x2 ⋯ xN)⊤ evolves as

x
: ¼ �x þWϕ xð Þ þ b tð Þ; ð1Þ

and b is an external input. Here and below we denote by ϕ(x) the
vector obtained by applying ϕ to each coordinate of x.

Connectivity of task-performing networks is often designed to
achieve a desired functionality, and assumed to be constant while
the network is performing the task18,20. There are models in
which connectivity co-evolves with neural dynamics, but changes
are usually confined to a training phase, whereas connectivity is
kept constant during the test phase21,22. These models are
consistent with the expectation of synaptic tenacity in the absence
of learning. In our model, to incorporate the recent observations
on synaptic fluctuations, the connectivity matrix W continuously
co-evolves with neural activity x throughout all task phases, albeit
with a slower timescale (Fig. 1, see also ref. 23).

In order to study the coexistence of memory with synaptic
fluctuations, we let W evolve due to contributions arising from
both learning-related and fluctuation-related terms, denoted by
ΔL and ΔF respectively:

W
: ¼ η ΔL þ ΔFð Þ; ð2Þ

with η > 0 the plasticity rate (relative to neural dynamics). The
fluctuation term includes stochastic, activity-independent noise in
synaptic strength, as well as a homeostatic mechanism to control
synaptic and firing-rate stability. These are precisely the processes
which endanger the resilience of an acquired memory that is
assumed to be stored in synaptic patterns. We first consider how
an existing memory is eroded by these processes, and later
address the learning part and the interplay between the two.

Homeostatic plasticity erodes real-coded information. We
model spontaneous activity-independent synaptic fluctuations by
a white noise process ξij driving each synapse ij independently.
The variance of such a process grows without bound, and thus,
without a restraining mechanism these fluctuations would lead to
divergence of the synaptic weights Wij. A plausible restraining
agent is homeostatic plasticity, modeled here as a network-level
mechanism that stabilizes both synaptic weights and neural
activities on average over long timescales. To understand this
stabilization, we turn to dynamical systems theory that deter-
mines stability about a set-point by the spectrum of the appro-
priate Jacobian matrix (which is the local linear approximation of
the dynamics). This spectrum consists of a set of complex
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Fig. 1 Co-evolution of neural activity and connectivity. a Illustration of our
modeling framework: a recurrently connected neural network, with Wij

denoting the connection strength from neuron j to neuron i. The dynamic
variables xi evolve by Eq. (1) and connection strengthsWij evolve by Eq. (2).
An external signal bi can be added as input to each neuron i. b Two example
traces of neural state dynamics (xi(t); top, colors) and of connection
strength dynamics (Wij(t); bottom, colors) are shown. Both evolve over
time, though on different timescales, and their dynamics are coupled
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eigenvalues—a collection of points in the complex plane, each
having a real part and an imaginary part.

In general, the real part of this spectrum defines the system’s
stability: a system is only stable if all its eigenvalues have negative
real parts. The imaginary part of the spectrum, in contrast,
determines the typical timescales of small-amplitude dynamics
around this set-point, but not stability itself (Fig. 2a). Therefore,
while the real part of the spectrum must be under the control of
homeostatic plasticity, its imaginary part is not constrained by the
requirement of stability, and is free to store information (Fig. 2b).

The arguments above derive from a general intuition on system
stability; they are not a mathematical proof, as they depend on the
existence of a set-point and its exact properties. They do,
however, provide motivation to test this idea using various
homeostatic mechanisms. We perform such tests using the
connectivity matrixW as a proxy for the Jacobian. In the case of a
linear network, or of linearizing around the origin, the two are
equivalent. Our results below indicate that such an approximation
is useful also in more general cases.

The embedding of a memory item is often represented in
learning theory as a low-rank perturbation to the connectivity
matrix, W→W+ δW. For example, in the Hopfield model a
memory is associated with a particular pattern of activity, a vector
u∈ℝN, and is embedded in connectivity by adding a perturba-
tion of the form δW= uu⊤. Such a perturbation is symmetric,
δWij= δWji, and modifies the connectivity spectrum to include a
real positive eigenvalue (with an eigenvector in the direction of
u). To tap into the resilience of the imaginary part of the
spectrum as argued above, one might add an anti-symmetric
perturbation (δWij=−δWji) that gives rise to an imaginary
conjugate pair of eigenvalues. This defines a different type of

memory item, the simplest form being δW= uv⊤− vu⊤. If the
above general arguments on system stability are correct, such
memory items should be more resilient to synaptic fluctuations.
We test this by comparing the erosion of the two types of
memory items under various homeostatic mechanisms. We first
embed memories corresponding to either real or imaginary
eigenvalues into the connectivity matrix W, and then follow the
dynamics of Eqs. (1) and (2) without active learning (ΔL= 0), but
with various homeostatic models in ΔF.

Perhaps the simplest implementation of a homeostatic
mechanism is by dissipative synaptic dynamics. Together with
the noise ξ, this gives a fluctuation term

ΔF ¼ ξ � βW; ð3Þ
with β > 0 the rate of dissipation. Figure 2c shows the eigenvalues
of the connectivity matrix as a function of time (gray lines), with
the eigenvalues corresponding to the memory highlighted in
green. It is seen that the memory representation rapidly decays
for both real (top) and imaginary (bottom) eigenvalues. This is
expected from a dissipative system, where all information decays
exponentially with a rate β. Therefore, in the presence of such a
mechanism, neither type of memory items can be sustained for
longer than the decay time 1/β. However, as will be shown below,
this is not the case for more indirect homeostasis mechanisms.

A biologically plausible homeostasis mechanism can be
modeled as an activity-dependent rule—where the synaptic
matrix is modified to achieve a stable post-synaptic firing-
rate24–26:

ΔF ¼ ξ þ ϕ0 � ϕðxÞ� �
ϕðx>Þ �W; ð4Þ

with ϕ0 an arbitrary target-rate vector, and � denoting a
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Fig. 2 Stability and memory-associated connectivity eigenvalues. a Eigenvalues of the Jacobian matrix occupy the complex plane. System stability about a
set-point is ensured if all eigenvalues have negative real parts (i.e., reside in the blue half-plane). Eigenvalues with positive real parts (in the red half-plane)
correspond to locally unstable directions. b Homeostatic control that prevents noise from accumulating and causing divergence, also affects stored
memories represented by the eigenvalues. However, such mechanisms must only control their positive real parts, pushing them to be negative (arrows),
while in the left half-plane large-amplitude imaginary eigenvalues can persist. c–e Real (top) and imaginary (bottom) parts of connectivity (W) eigenvalue
spectra for systems evolving under the dynamics of Eqs. (1) and (2), with different homeostatic mechanisms in ΔF (N= 128, see “Methods” for simulation
details). For each case, a memory item was embedded in W at time t= 2500 (green trajectories), by inducing a real outlier eigenvalue (top panels,
generated by the perturbation δW= uu⊤) or an imaginary pair (bottom panels, generated by δW= uv⊤− vu⊤). c Dissipation of synapses. Both real and
imaginary memories decay with the same rate. d Homeostatic rate-control. e Decorrelation homeostasis. In the last two, real-coded memory (top) decays
rapidly whereas imaginary-coded (bottom) persists
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Hadamard (element-wise) product. Stabilization of firing rates
around the set-point ϕ0 is achieved in this case by scaling the
weight of each synapse by a factor dependent on its pre- and post-
synaptic neurons. Although not explicitly symmetric (which
would lead to a change in real eigenvalues), the stabilization
induced by this rule requires control over the real part of the
relevant Jacobian. Accordingly, Fig. 2d (top) shows that memories
stored as real eigenvalues of W rapidly decay. Imaginary-coded
memories, on the other hand, may persist indefinitely without
interfering with homeostasis (Fig. 2d, bottom).

Finally, inspired by ref. 27, we consider a homeostasis
mechanism that does not have a well-defined firing-rate set-
point. Instead, this rule contains an anti-Hebbian term that
reduces the connections between correlated neurons, thus
pushing towards decorrelated firing rates across the network:

ΔF ¼ ξ þ I� ϕpostðxÞϕpreðx>Þ; ð5Þ

where ϕpre, ϕpost are two sigmoidal functions and I is the identity
matrix. This rule leads to persistent and constrained fluctuations
in both connectivity and firing rates27. The activity x is
dominated by the unstable modes of W, which are then
suppressed by the anti-Hebbian term, leading to a new unstable
mode in an endless succession.

Once again, we find that the decay of imaginary-coded
memories is orders of magnitude slower than that of real-coded
ones (Fig. 2e). Note that if the sigmoidal functions are identical,
ϕpre= ϕpost, this rule can only modify the symmetric part of W.
In practice, for many non-identical choices of the sigmoid
functions, the modification is still mostly symmetric. Never-
theless, the relative decay of imaginary- and real- based memories
is similar to the case of the rate-control rule, that does not have
any symmetric tendency.

Some evidence for the generality and limits of validity of these
results is presented in Supplementary Fig. 1, where sparse
networks are considered. The amplitude of embedded imaginary
memories decreases smoothly as the network becomes sparser;
they remain more resilient than real-coded memories for the
entire regime tested.

In light of these results, a natural question arises: can a
dynamical learning rule utilize the imaginary subspace to robustly
code and store memory representations? Perhaps surprisingly, we
find that Spike Time Dependent Plasticity (STDP), a well

documented and biophysically plausible learning rule, provides
a natural candidate for learning imaginary-coded memories.

STDP stores imaginary-coded information. Symmetric and
anti-symmetric matrices give rise to real and imaginary eigen-
values respectively. It is thus reasonable that an anti-symmetric
modification to the synaptic weight matrix W would primarily
lead to changes in the imaginary part of its spectrum. Local
learning rules observed in experiments (e.g., STDP) have a well-
defined directionality: consecutive firing of neuron j before i leads
to a strengthening of the connection Wij and to the weakening of
the reverse connection. The temporal asymmetry of STDP28 leads
to an approximately anti-symmetric learning rule when applied to
our rate model (see “Methods”); as such, this rule mostly affects
the imaginary part of the spectrum. In the case of perfect anti-
symmetry, we find the form ΔL= ϕy⊤− yϕ⊤, which modifies
only the anti-symmetric component of W. The vector y is a
smoothed version of the activity ϕ(x), and arises in our rate-based
formulation when applying an exponential STDP kernel to spike-
trains (see “Methods”).

These arguments suggest that a biologically motivated learning
rule naturally stores imaginary-coded information, thereby
rendering it relatively resilient to the effect of homeostatically
controlled synaptic fluctuations. We will next investigate how
such a memory can be acquired, retained and retrieved in the
presence of synaptic fluctuations. For simplicity, we will use the
purely anti-symmetric ΔL.

The acquisition, i.e., the encoding and storage of a new
memory trace, is initiated by stimulating the network with an
external signal, b(t). A matrix with imaginary eigenvalues is
necessarily of (at least) rank 2, corresponding to a two-
dimensional space spanning the memory representation. We
therefore present the network with a randomly time-varying
input evolving on a plane spanned by two arbitrary directions
u, v∈ℝN (see “Methods”). As the input drives neural activity
x onto the (u, v) plane, the activity-dependent learning operator
ΔL follows and becomes non-negligible, which in turn causes a
change in connectivity.

The learning procedure stores geometric information of the
external stimulus, specifically the directions u and v, within the
anti-symmetric part of the connectivity matrix. This encoding is
manifested as a rank-2 operator uv⊤− vu⊤ which is embedded
into W. To see this, we follow the spectrum of W as a function of
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Fig. 3 Hebbian learning by STDP embeds persistent imaginary-coded memory. a Imaginary part of the spectrum of W before, during and after external
stimulation (stim.; marked by the shaded green area) applied between times t= 100 and t= 200. Before learning, the imaginary part of the spectrum is
almost constant in time. The learning of a memory item manifests as the growth in imaginary amplitude of one complex conjugate eigenvalue pair (green
trajectories). b During stimulus presentation, the learning rule modifies W such that the plane spanned by u, v is invariant. Plotted are the overlaps of this
eigenplane of W, corresponding to the largest imaginary eigenvalue pair, with N/2 planes: the u, v (green), and N/2− 1 orthogonal planes (gray); see
“Methods”. c Zoom-out of (a). After the stimulus is removed, the memory representation persists (green). A second stimulus, confined to a second plane,
is similarly learned at a later time (blue); both memory items are retained. This figure shows results for the decorrelation rule (N= 128, see “Methods”);
qualitatively similar results are obtained for rate-control (see Supplementary Fig. 2)

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-12306-2

4 NATURE COMMUNICATIONS |         (2019) 10:4441 | https://doi.org/10.1038/s41467-019-12306-2 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


time: during stimulus presentation, a complex conjugate
eigenvalue pair forms (Fig. 3a), with corresponding eigenvectors
overlapping completely with the plane spanned by u, v (Fig. 3b).
The strength of the memory representation—corresponding to
the magnitude of the imaginary eigenvalue—depends mono-
tonically on stimulation duration and on input amplitude. At
later times, additional stimuli may be stored using the same
learning protocol (Fig. 3c).

The nature of imaginary-coded memories. We have seen that a
biologically plausible learning rule can capture the orientation in
neuronal state-space of an incoming stimulus, and encode this
information as a pair of imaginary eigenvalues in the network
connectivity matrix. What is the nature of this memory in terms
of network activity? We find that learning creates attractors in
state-space, similar in fashion to those in the Hopfield model18.
However, rather than fixed points, here the attractors are time-
varying stable states—namely, limit cycles. To see this most
clearly, we consider a single imaginary-coded memory embedded
in the network, and examine neural dynamics while keeping W
fixed. Following the Hopfield paradigm, we write W as:

W ¼ ρ uv> � vu>
� �

; ð6Þ
where the coefficient ρ > 0 represents the strength of the memory
representation29.

With one stored memory as in Eq. (6), we find that, from any
non-zero initial condition, the dynamics converge to periodic
motion concentrated on the ‘memory plane’ spanned by u and v.
Figure 4a depicts the projections of neural activity on this plane,
for two initial conditions (light gray trajectories), both converging
to the limit-cycle attractor (dark closed trajectory). An approx-
imate low-dimensional description of this limit cycle can be
obtained for an infinitely steep nonlinearity ϕ (i.e., a step-
function). The full dynamics are then well approximated by their
projected coordinates on the plane, pu and pv:

_pu ¼ �pu þ ρ qv
_pv ¼ �pv � ρ qu;

ð7Þ

where qv � arctan pv
jpuj

� �
. This low-dimensional system exhibits a

stable limit-cycle around the origin (see Supplementary Note 1
and Supplementary Fig. 3). We conclude that imaginary-stored

memory items correspond to dynamic attractors, with geometry
defined by that of the stimulating input. This behavior stands in
contrast to the classic—symmetric—Hopfield model, where
memories are represented by fixed-point attractors corresponding
to fixed values of neural activity.

Embedding multiple memory planes fu kð Þ; v kð ÞgMk¼1 corre-
sponds to setting

W ¼ UDU> ð8Þ
where the columns of U are the memory patterns (interleaved u(k)

and v(k)), and D is a 2M × 2M block-diagonal matrix, with the k-

th block reading
0 ρk

�ρk 0

� �
. Now, a locally stable limit-cycle

lies on each embedded plane, and the network functions as an
associative memory: initiating the dynamics within the basin of
attraction of one plane—providing the network with partial
information of the memory to be retrieved—leads to the recovery
of the full memory item (Fig. 4b). Similar to the Hopfield model,
the memory capacity is found to be proportional to system size30.
Numerical simulations presented in Supplementary Fig. 4 show
that in fact the proportionality constant is slightly higher
compared with that of the symmetric Hopfield model (when
normalized by a factor of two, since each memory resides on a
plane; see Supplementary Note 2).

Life cycle of a memory trace. We next consider the entire life-
cycle of a memory in the presence of synaptic fluctuations and
homeostasis, starting from learning, through retention and to
retrieval. During a learning event, implemented by presenting a
stimulus in the two-dimensional memory plane, a memory
representation is formed by the Hebbian learning rule. Figure 5a
(left) shows the overlaps of neural activity onto the two planes, r1
(green) and r2 (blue), together with the stimulus which drives
learning (shades). These projections are elevated during stimu-
lation, which—via the Hebbian learning rule—modifies the
synaptic matrix to store each of the planes in connectivity. The
projection r3 onto a third plane, which was not learned, is neg-
ligible as shown in the bottom line (orange).

After learning, the two memory items are stored as pairs of
imaginary eigenvalues, remaining stable over time, until they are
retrieved at times t1 and t2, respectively. At retrieval, activity is
transiently attracted to the respective memory planes, as indicated
by the spikes in the overlaps (Fig. 5a, right). During retrieval,
activity follows the stored dynamic trajectory, exhibiting its
typical oscillations (Fig. 5a, right, blue zoom). At the same time,
the projection onto an arbitrary plane shows no temporal
structure (orange zoom). Finally, stimulating the network with
a novel cue does not elicit a significant response in neural activity
in any of the projections (t3 in Fig. 5a).

The effect of retrieval on the connectivity, namely on the stored
memory itself, is somewhat unpredictable and depends on the
exact state of the network and on the memory properties. As an
example, in Fig. 5c it is seen that the green memory is damaged
by retrieval, namely the magnitude of the corresponding
imaginary eigenvalue is decreased. This may be caused by the
homeostatic mechanism that constrains activity, in particular the
component projected onto the memory plane by the retrieval
event. In contrast, the blue memory is slightly strengthened by
retrieval, as seen by the increased magnitude of the eigenvalue
pair. In other cases the memory remains unaffected.

Throughout this entire cycle, synapses fluctuate under the
effect of activity-independent noise and homeostasis. Figure 5d
shows a few example synapses tracked across time, during both
phases. We may disentangle the two effects, spontaneous and
activity-dependent, and estimate their relative contribution to
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this figure we construct connectivity by adding to Eq. (6) a real-coded term
(see “Methods”)
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synaptic fluctuations; their magnitude is found to be similar
(Fig. 5b), in agreement with the experimentally observed
phenomenon14.

Discussion
Experimental evidence on the perpetual changes in synaptic
strengths, with and without relation to activity or learning, has
accumulated by now to form a well accepted picture: synapses are
not as stable as once thought. Earlier theoretic work studied the
statistical properties of single synapse fluctuation using phe-
nomenological models12,31,32. These models were successful in
capturing the quantitative statistics of single synapses along time
and across a population, but did not address their context within
an active network. The more difficult question of the implications
of such fluctuations to network functionality has been highlighted
in several recent reviews7–10. Neural network models that can
store memory provide a framework for addressing this problem.
This can be done by adding noise and investigating its effect on
memories and network dynamics.

Previous theoretical work has established the robustness of the
classic Hopfield model to static synaptic noise33,34, which exhibits
a smooth and moderate decline of the critical memory load as a

function of the noise variance. However, introducing a dynamic
noise source to the synaptic weight evolution has a qualitatively
different effect. In this case, the noise typically causes the weights
to diverge with time, thus erasing any stored memory items. As
shown in Fig. 2c, a dissipative term can stabilize the stochastic
fluctuations, but will also erase any memory in the network. Here,
we showed that it is possible to store, retain and retrieve mem-
ories in a recurrent neural network despite significant ongoing
synaptic fluctuations. Motivated from a fundamental systems-
theory perspective, we argued that fluctuations, and homeostasis
mechanisms that control them, place a strong constraint only on
the real part of the eigenvalues of the connectivity matrix. A
corollary of this observation is that memories constituting stable
dynamical trajectories of neural activity, associated with imagin-
ary eigenvalues, can be kept encoded in connectivity for extended
times while synapses fluctuate under noise and homeostasis.

We implemented this idea with the simplest form of such
memory: a two-dimensional plane in which periodic activity
persists as a stable limit cycle. This implementation extends
the Hopfield picture, where memories are fixed-point attractors
with static activity patterns, to memories represented by dynamic
trajectories in neural state space29. This temporal dependence
is more consistent with experimental data: the oscillatory
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(bottom trajectory, orange). b Relative contributions of activity-dependent (left bar) and spontaneous (right bar) synaptic fluctuations are estimated to be
of similar magnitude during all phases of the memory life-cycle (see “Methods”). Error bars denote one standard deviation from the mean; overlaid data
points are marked by green circles. c Effect of retrieval on existing memories can differ, with the green memory degrading, and the blue one strengthening.
d Weights of four out of N2 synapses (gray shades) as a function of time. The spontaneous and homeostatic contributions to plasticity drive perpetual
fluctuations of synaptic weights, which occur during and after learning. This figure shows results for the rate-control homeostasis rule (N= 128, see
“Methods”)
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trajectories of memory-trace activations that arise naturally in our
model resemble network-level oscillations observed during
memory retrieval35 and consolidation36.

Since imaginary eigenvalues are associated with the anti-
symmetric component of connectivity, the observed asymmetry
of STDP6 naturally suggests that memory items of this type can
be learned dynamically. We have demonstrated how such
learning occurs by a single stimulus presentation which spans a
two-dimensional plane in activity space, thus allowing the
embedding of periodic motion. This is most simply shown for a
perfectly anti-symmetric STDP kernel, but is valid as long as the
kernel contains a significant anti-symmetric component. The
effects of symmetry of STDP on memory retention have also been
noted in a different modeling context. In23 the Hopfield model
was studied in the presence of ongoing STDP; it was found that
unstructured noise inserted into the neural state could stabilize
memories with anti-symmetric, but not with symmetric, learning.

From a more general perspective, any learning rule represents
the interaction of the system with its environment; if this rule is
not homogeneous in space and time, the signature of this inter-
action might be encoded in some sub-space of network con-
nectivity—a component with particular symmetries. This would
allow an invariant subspace of connectivity within which mem-
ories are stored, and which is minimally tampered by homeostatic
fluctuations. Indications of such invariant features have been
recently observed experimentally37: while individual neurons
exhibited significant change in their activity patterns relative to
behavior in a decision task, population activity and behavior
remain stable over weeks. The notion of an invariant subspace has
also been suggested to underlie stable behavior during working
memory tasks, despite ongoing neural activity38.

It is also possible that other principles can be formulated that
allow coexistence of stable function with synaptic fluctuations.
For example, the microscopic degeneracy of representation was
shown to support stable input–output relations in a feed-forward
network amid strong fluctuations39. Although the model and its
implementation are very different from ours, the motivating
question is broadly similar. More recently it was proposed that in
balanced cortical networks, inhibitory connectivity alone bears
the burden of robust information storage40, thereby rendering
memories insensitive to fluctuations of excitatory synapses.

Our model was based on general considerations of system
stability, without relying on specific implementations of home-
ostasis. Nevertheless, it gives rise to two points worthy of dis-
cussion in relation to experimental predictions. First, imaginary-
coded memories give rise to limit-cycle attractors. Thus, retrieval
of an item from long-term memory to working memory should
give rise to oscillatory activity. These signatures of oscillations
might be detected from the spectral properties of neural activity,
expected to vary significantly between learning and rest phases
(see Supplementary Note 3 and Supplementary Fig. 5). Such sig-
natures have already been observed41,42 but our model suggests an
additional feature that may be hiding in the data. The magnitude
of the imaginary eigenvalue should correlate with both the oscil-
lation frequency and with memory strength. Indeed, for a given
memory item in our model, a spectral analysis correlates almost
perfectly with memory strength. Considering many different
memory items, we find that, despite inter-item variability of this
slope, the two measurable quantities maintain a high correlation
(see Supplementary Note 3 and Supplementary Fig. 5).

Our model could, in principle, be tested by directly examining
synaptic strengths during learning. The model predicts that
learning-related plasticity should be preferentially anti-symmetric.
This could be checked by monitoring the synaptic strengths
between reciprocally connected neurons during learning and rest,
and our model predicts measurable differences in these phases.

The exact correlation structure, however, is not expected to be
universal and could reflect details of the homeostatic mechanisms
(see Supplementary Note 3 and Supplementary Fig. 6).

More generally, our results suggest that much systems-level
understanding can be gleaned by measuring and analyzing a
population of synaptic strengths across time in large networks.
Specifically, beyond the statistical analysis of the single synapse,
invariant structure in the high-dimensional space of connectivity
should be searched. Moving towards such an understanding will
hopefully be possible with the advancement of experimental
techniques, that will allow monitoring of multiple synapses across
extended times and during various phases of behavior.

Methods
Model simulation. We use home-made MATLAB software in order to numerically
simulate Eqs. (1) and (2). The spectra of matrices are computed using built-in
MATLAB functions, and their time-series sorted using the eigenshuffle.m
MATLAB script by John D’Errico, freely available online. For the nonlinearity in
firing rates, we use the hyperbolic tangent function, ϕ(z)= tanh(z). We have ver-
ified that the results presented in Fig. 2 are reproduced also with a rectified-linear
input–output function, ϕ(z)=max(−5, z), where a negative threshold is required
for achieving homeostasis. For all figures we simulate a network with N= 128
neurons, unless otherwise specified. Simulations with larger networks similarly
exhibit all of the discussed phenomena. For numerical integration we use a time
constant dt= 0.1. Synaptic weights were evolved with a plasticity rate η= 0.01, this
includes learning and homeostatic plasticity rules. For the low-pass filter y, we use a
first-order filter with timescale τ= 50 (see next “Methods” section). For the
learning process we use the time-dependent input b(t)= cu(t)u+ cv(t)v with
ui; vi � N 0; 1N

� �
and independent. The time-dependent functions cu(t) and cv(t)

each follow an independent Ornstein-Uhlenbeck process with timescale 0.01. For
retrieval, a brief (2 simulation time constants) pulse in the direction of u is applied
to the network, namely cu(t)= 10 and cv(t)= 0.

For the rate-control homeostasis rule, we draw each component of the target-
rate vector ϕ0 independently from a uniform distribution over the interval [−1, 1].
For the decorrelation homeostasis rule, we use ϕpre(x)= ϕ(x)= tanh(x) and
ϕpost xð Þ ¼ tanh x � xð Þ, where x is a first-order low-passed version of x, with
timescale τx= 20. In all cases, we model spontaneous fluctuations by a white noise
process, ξij tð Þ � N 0; 1N

� �
, independent across time and synapses ij. For the

dissipative synaptic dynamics we use β= 0.1.
In Fig. 3b, we compute the overlap between two planes, spanned by u1, v1 and

u2, v2 respectively, as follows: Compute the projection of each spanning vector of
the first plane onto the second plane:

ru1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu1 � u2Þ2 þ ðu1 � v2Þ2

q
; rv1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðv1 � u2Þ2 þ ðv1 � v2Þ2

q
;

and then the overlap is given by

overlap ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2u1 þ r2v1

q
:

In Fig. 4, we slightly modified the imaginary-coded memory representation Eq. (6).
In particular, we set connectivity to W= ρ(uv⊤− vu⊤)+ γ(uu⊤+ vv⊤), with γ > 1.
The second term emerges naturally in W when the memory is learned via our
dynamic learning protocol; without it, the origin in phase-space ℝN becomes a
locally stable fixed point and trajectories decay. Numerically, in the limit of small
integration step dt→ 0, we find that, for γ= 0, the origin is actually globally stable,
and the memory-related limit-cycle disappears. On the other hand for discrete-
time dynamics, the model with γ= 0 is stable, and this is the version used for the
capacity calculations.

For generating Fig. 5b we compute the contribution of each plasticity term Δ(t)
as the temporal average of 1

N2

P
ij
jΔijðtÞj, from a simulation of our model with the

decorrelation homeostasis rule.

Derivation of the Hebbian learning rule. In this section we derive the rate-based
learning rule ΔL. Our starting point is a Poisson spiking neuron with output spiking
activity given by a train of point events Si tð Þ ¼

P
δðt � tkÞ that follow from a time-

dependent firing rate ϕi(t)43, with δ(t) the Dirac delta function. STDP learning is
characterized by a differential update of the synaptic efficacy Wij, based on the
temporal distance Δt between spiking of unit i and unit j; the amplitude of change
is given by the ‘learning window’, or kernel, K(Δt)28. In our rate model we are
interested in variations slow compared to inter-spike intervals, and therefore we
average the effect of STDP over this timescale. The average quantity which
describes the temporal relation between inbound and outbound neural activity is
the correlation function,

Cij t; t þ Δtð Þ ¼ Si tð ÞSj t þ Δtð Þ
D E

;

where angular brackets denote ensemble averaging over the spiking activity and
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overbar denotes temporal averaging. STDP learning can then be formalized as the
convolution of this correlation function with the kernel23:

ΔL½ �ij ¼ η

Z >

�1
dsK t � sð ÞCij t; sð Þ

þ η

Z >

�1
dsK s� tð ÞCij s; tð Þ

ð9Þ

Within our slow-timescale approximation, correlations arise from local changes in
firing rate rather than differences between individual spikes. Therefore, in terms of
the instantaneous firing rates, Cij(t;s) ≈ ϕi(t)ϕj(s)43. Using a learning kernel of the
form

K Δtð Þ ¼ aPe
�Δt=τP Δt > 0

aDe
Δt=τD Δt � 0

(

where τP, τD are the two timescales of the kernel, and aP > 0 and aD < 0 are the
positive and negative amplitude for increase or decrease of the connectivity,
depending on the sign of correlation, we carry out the integration in Eq. (9) to
obtain

ΔL½ �ij ¼ η aPϕi tð ÞyPj tð Þ � aDϕj tð ÞyDi tð Þ
� �

:

where yP, yD are first-order low-pass filters of spiking rates ϕ, with respective
timescales τP and τD.

In general, the parameters of K give rise to an asymmetric learning operator ΔL.
The extent of asymmetry is determined by the discrepancy between the two pairs of
kernel parameters, i.e. the difference in timescales of potentiation and depression
τP, τD, and the two amplitudes aP, aD. When τD= τP and aD=−aP, the learning
operator is purely anti-symmetric:

ΔL½ �ij ¼ ηaP ϕiyj � ϕjyi
� �

:

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Code availability
Example code for simulating our main results can be found at https://github.com/
lsusman/stable-memory.

Data availability
Data sharing not applicable to this article as no datasets were generated or analysed
during the current study.
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