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Cardiovascular disorders, including atrial fibrillation (AF) and congestive heart failure
(CHF), are the significant causes of mortality worldwide. The diagnosis of cardiovascular
disorders is heavily reliant on ECG signals. Therefore, extracting significant features from
ECG signals is the most challenging aspect of representing each condition of ECG
signal. Earlier studies have claimed that the Hjorth descriptor is assigned as a simple
feature extraction algorithm capable of class separation among AF, CHF, and normal
sinus rhythm (NSR) conditions. However, due to noise interference, certain features do
not represent the characteristics of the ECG signals. This study addressed this critical
gap by applying the discrete wavelet transform (DWT) to decompose the ECG signals
into sub-bands and extracting Hjorth descriptor features and entropy-based features
in the DWT domain. Therefore, the calculation of Hjorth descriptor and entropy-based
features performed on each sub-band will produce more detailed information of ECG
signals. The optimization of various classifier algorithms, including k-nearest neighbor (k-
NN), support vector machine (SVM), random forest (RF), artificial neural network (ANN),
and radial basis function network (RBFN), was investigated to provide the best system
performance. This study obtained an accuracy of 100% for the k-NN, SVM, RF, and
ANN classifiers, respectively, and 97% for the RBFN classifier. The results demonstrated
that the optimization of the classifier algorithm could improve the classification accuracy
of AF, CHF, and NSR conditions, compared to earlier studies.

Keywords: atrial fibrillation, congestive heart failure, Hjorth descriptor, entropy-based features, machine learning

INTRODUCTION

Atrial fibrillation (AF) is one of the most common sustained arrhythmias affecting 59.7 million
people in 2019, more than two times the number of cases reported in 1990 (Roth et al., 2020).
Meanwhile, congestive heart failure (CHF) is an increasingly frequent cardiovascular disease that
affects 64.34 million cases according to the current worldwide prevalence in 2017 (Lippi and
Sanchis-Gomar, 2020). As cardiovascular disorders affect millions of people and potentially lead
to death, AF and CHF have become a major public health concern worldwide (Savarese and Lund,
2002). Early diagnosis of AF and CHF could potentially prevent the long-term complications and
sudden cardiac death.
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Researchers have used a non-invasive method by measuring
and analyzing the ECG characteristics, which strongly correlate
with cardiovascular conditions (Krittanawong et al., 2020; Taye
et al., 2020). Therefore, in recent decades, there has been
a significant increase in interest in the field of automatic
classification of cardiovascular disorders (Sharma et al., 2019;
Jeong et al., 2021), including AF and CHF, based on ECG signals
and machine learning approaches (Acharya et al., 2008; Rizal and
Hadiyoso, 2015; Hadiyoso and Rizal, 2017; Yingthawornsuk and
Temsang, 2019; Faust et al., 2020; Krittanawong et al., 2020).

Ping and Chen (2020) used long short-term memory ECG
signals and convolutional neural network (CNN) to classify
AF and normal conditions and obtained an f1-score value of
89.55%. Similarly, Sidrah and Dashtipour (2020) used CNN to
classify AF and normal conditions and obtained a classification
accuracy of 86.5%. Meanwhile, Nurmaini and Tondas (2020)
reported 99.17% accuracy using the CNN model to classify
ECG signals into three conditions, namely, AF, non-AF, and
normal conditions.

Sharma et al. (2018) reported 93.33% accuracy using heart rate
variability (HRV) features and support vector machine (SVM)
to classify CHF and normal sinus rhythm (NSR). Similarly,
Li (2020) used HRV features with the multifractal fluctuation
analysis to analyze the heartbeat signal of CHF conditions.
Ning et al. (2021) extracted features from the R-R interval
(the interval between R peaks) interval sequence, computed
the time spectra of the ECG signal, and used a hybrid deep
learning algorithm composed of CNN with recurrent neural
network (RNN) to classify CHF and NSR. Their proposed
method provided 99.93% accuracy. Moreover, Porumb et al.
(2020) used raw ECG heartbeat as the input of the CNN
model and obtained 100% accuracy. Their study revealed that
the morphological characteristics of ECG signals are the most
important information to identify CHF conditions.

The aforementioned studies developed a binary classification
system to classify AF and NSR or CHF and NSR. Therefore,
several studies classify ECG signals into three conditions, namely,
AF, CHF, and NSR. Rizal and Hadiyoso (2015) and Hadiyoso
and Rizal (2017) used the Hjorth descriptor approach to evaluate
ECG signals based on activity, mobility, and complexity features.
Several classifier algorithms used in the classification process
included k-mean clustering, k-nearest neighbor (k-NN), and
multilayer perceptron and obtained 88.67, 99.3, and 99.3%
accuracy, respectively, in 2015 and 94% accuracy using the k-NN
classifier in 2017 (Hadiyoso and Rizal, 2017).

Furthermore, Yingthawornsuk and Temsang (2019) used 90
recordings from the primary datasets of these three conditions
and provided 84.89, 88.22, and 76% accuracy using least-
squares (LS), maximum likelihood (ML), and SVM, respectively.
Their results demonstrated that the Hjorth descriptor efficiently
separated groups with cardiac arrhythmia.

Apart from using statistical approaches such as Hjorth
descriptor for feature extraction to represent AF, CHF, and
NSR conditions, several researchers used entropy-based features
to extract information from ECG signals. Zhao et al. (2018)
proposed an entropy-based AF detector, which obviously
distinguishes AF and non-AF by providing the performance area

under the curve (AUC) score of 0.981. Tang et al. (2017) used
sample entropy as one of the features in detecting AF signals and
obtained the AUC score of 0.972. Moreover, Hussain et al. (2020)
reported an AUC score of 0.97 using entropy-based features with
an SVM classifier to classify CHF conditions. In addition, Yoon
et al. (2017) calculated entropy features from ECG signals such as
Shannon entropy and sample entropy features and showed that
the entropy features successfully represented AF, CHF, and NSR
by providing the classification accuracy of 91.08%.

The most challenging aspect of classifying ECG signals is the
feature extraction process. The aforementioned studies (Rizal
and Hadiyoso, 2015; Hadiyoso and Rizal, 2017; Yingthawornsuk
and Temsang, 2019) used a statistical approach by applying the
Hjorth descriptor method to extract features from ECG signals.
However, certain limitations of earlier studies that used Hjorth
descriptors include susceptible noise that impacts the value of
variance or activity in Hjorth descriptor features. Therefore, the
statistical approach is insufficient to extract the features perfectly
and represent the information contained in ECG signals.

Another limitation of the earlier studies is not implementing
signal decomposition before calculating the features that
potentially improve the performance accuracy (Rizal and
Hadiyoso, 2015). Discrete wavelet transform (DWT) is
an essential tool widely used to analyze the nonstationary
signal. DWT is provided to extract the features in the
time-frequency domain. In addition, DWT decomposes the
signal into several sub-bands consisting of approximation
(low frequency) and detail component (high frequency).
Extracting the features separately in each sub-band will
generate more detailed information on ECG signals. The study
proposed by Chashmi and Amirani (2019) for arrhythmia
classification reported an accuracy of 99.83% by applying DWT
to decompose the ECG signal.

To overcome certain limitations of the aforementioned
studies, we proposed a new approach by applying the DWT
to decompose the ECG signal into sub-bands prior to applying
Hjorth descriptor features and adding entropy-based features
in the DWT domain as the feature extraction method. The
statistical approach using Hjorth descriptor (activity, mobility,
and complexity) and entropy-based features, including Shannon
entropy, sample entropy, permutation entropy, dispersion
entropy, bubble entropy, and slope entropy, potentially extracts
the features of ECG signals perfectly and represents the condition
of AF, CHF, and NSR. Furthermore, the optimization of various
classifier methods that commonly used to classify ECG signals
in the previous studies, including k-NN, SVM, random forest
(RF), artificial neural network (ANN), and radial basis function
network (RBFN), was investigated to improve the performance
accuracy in classifying AF, CHF, and NSR conditions.

METHODS

In this study, we applied DWT to the decomposition signal
prior to calculating the Hjorth descriptor features and entropy-
based features as the feature extraction method, followed by
several classifier algorithms such as k-NN, SVM, RF, ANN, and
RBFN (Figure 1A).
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FIGURE 1 | Overall diagram of the proposed system. The general block diagram of the classification system based on discrete wavelet transform and Hjorth
descriptor feature extraction (A), the flowchart of the k-nearest neighbor algorithm (B), the flowchart of the support vector machine algorithm (C), the topology of
random forest classifier algorithm (D), and the architecture of neural network algorithm (E).

Dataset
The ECG signal data comprised three conditions, namely, NSR
from MIT-BIH Normal Sinus Rhythm Database (Moody, 1999),
AF from MIT-BIH Atrial Fibrillation Database (Moody and
Mark, 1983), and CHF from BIDMC Congestive Heart Failure
Database (Baim et al., 1986). The dataset was created from the
original data, with a sampling rate of 250 Hz, and each file
comprised 2–3 cycles of QRS of the ECG signals. Each class
consists of 50 files of ECG signals; therefore, there are 150 ECG
signals divided into 112 train data and 38 test data.

Preprocessing
In the preprocessing step, the ECG signal amplitude was
normalized. If the ECG signal is x (n), where n = 1, 2, ..., N, the
value of N indicates the length of the signal; then, the signal is
normalized using the following equations (Rizal and Hadiyoso,
2015; Hadiyoso and Rizal, 2017):

y (n) = x (n)−
1
N

N∑
i=1

x (n) (1)
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FIGURE 2 | One-dimensional wavelet decomposition. The ECG signal is
passed into the low-pass filter (LPF) to produce an approximation component
(cA) and is passed into the high-pass filter (HPF) to produce a detailed
component (cD). In one-dimensional wavelet decomposition, five-level
decomposition generated six sub-bands, which comprised one cA and five
cD sub-bands.

z (n) =
y (n)

max
∣∣y (n)∣∣ (2)

The amplitude of the z(n) signal is -1 to +1; therefore, the
difference in the amplitude range of the signal due to differences
in signal recording can be eliminated. The normalization process
did not change the morphology of the ECG signal, which is used
in differentiating AF, CHF, and NSR conditions. In addition,
normalization is an essential stage of data preparation in machine
learning which can transform different data into the same scale
to standardize the data as the input of feature extraction and
classification process.

Discrete Wavelet Transform
The ECG signal was passed into the low-pass filter (LPF) and
high-pass filter (HPF) according to the mother wavelet used
and then downsampled (Rizal, 2015). The output of the LPF
produced an approximation component (cA), and the output of
the HPF produced a detailed component (cD) (Kociolek et al.,
2001). In this study, we applied a five-level decomposition that
generated six sub-bands, which comprised one cA and five cD
sub-bands (Figure 2).

We calculated the Hjorth descriptor parameters such
as activity, mobility, and complexity for each sub-band.
Furthermore, we also calculated entropy-based features such
as Shannon entropy, sample entropy, permutation entropy,
dispersion entropy, bubble entropy, and slope entropy for each
sub-band. Therefore, 54 features were generated as input for the
classifier algorithms.

Hjorth Descriptor
Consider x (n) as a signal, for n = 0, 1, 2, 3, ...,N − 1. Then,
x(n)

′

can be defined as the first difference of the signal as shown in

the following equation (Mouzé-Amady and Horwat, 1996; Rizal
et al., 2015; Grover and Turk, 2020):

x(n)
′

= x (n)− x (n− 1) for n = 0, 1, 2, 3, ...,N − 1 (3)

Furthermore, x(n)
′′

is defined as the second difference of the
signal as shown in the following equation:

x(n)
′′

= x(n)
′

− x(n− 1)
′

for n = 0, 1, 2, 3, ...,N − 1 (4)

Consider σx as the SD of x(n). Then, σx1 and σx2 can be defined
as the SD of x(n)′ and x(n)

′′

, respectively. The SD of x(n) can be
calculated using the following equation:

σx =

√∑N−1
n=0 (x(n)− x)2

N
(5)

where x =
1
N

N−1∑
n=0

x (n) . (6)

Activity refers to the signal variation or the squared SD of the
amplitude, as shown in the following equation (Mouzé-Amady
and Horwat, 1996; Rizal et al., 2015; Grover and Turk, 2020):

activity = variance = σx
2 (7)

Mobility calculates the SD of the slope in relation to the SD of the
amplitude, as shown in the following equation:

mobility = Mx =
σx1

σx
(8)

Complexity measures the number of standard slopes generated
in the average time to generate one standard amplitude, as
determined by the mobility shown in the following equation:

complexity = FF =
Mx
′

Mx
=

σx2
σx1
σx1
σx

(9)

Entropy
Entropy is a method for calculating the uncertainty of
information contained in the systems. Shannon entropy is a
measure of uncertainty associated with random variables based
on the probability distribution of energy which can be calculated
using the following equation (Li and Zhou, 2016):

ShanEn (X) = −
∑

i

pi.ln(pi) (10)

where X = xi, i = 1,..., N is a time series and pi represents the
time-series probability.

Sample entropy is a negative natural logarithmic of the
sequence of probability data vector in time series as shown in the
following equation (Horie et al., 2018):

SampEn = −ln

[N−mτ∑
i=1

Cm+1,i(r)/

N−mτ∑
i=1

Cm,i(r)

]
(11)

where Cm,i(r) is the correlation integral representing the number
of points in a distance r (filter threshold) from the ith point
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while embedding the signal in m-dimensional space, and τ

represents the time lag.
Permutation entropy is an entropic measure according to the

comparison between the neighboring values of a time series. The
permutation entropy measures the diversity of the ordinal pattern
distribution which could be defined by the following equation
(Xia et al., 2018):

PermEn = −
∑

i

p (π)ln p(π) (12)

where π represents an ordinal pattern, and p (π) represents the
relative frequency of each π.

Dispersion entropy is a powerful and fast approach to
measure the randomness of the signal, which can explore the
amplitude and frequency changes of the signal simultaneously.
The dispersion entropy can be calculated based on Shannon
entropy represented in the following equation, with m as
embedding dimension and a as the number of classes (Shi et al.,
2020):

DispEn = −
am∑
i=1

p(πu0u1...um−1)ln(p(πu0u1...um−1)) (13)

Bubble entropy is an entropic measure based on permutation
entropy (Manis et al., 2017). The bubble entropy can be calculated
using the following equation as the normalized difference of the
entropy of the swaps needed to sort the vectors of lengths m +1
and m:

bEn =
(

Hm+1
swaps −Hm

swaps

)
/log

(
m+ 1
m− 1

)
(14)

Hm
swaps = −log

m
2

∑
i=0

pi
2 (15)

Meanwhile, slope entropy is a new statistical measurement that
includes amplitude information in symbolic representation from
the time-series input (Cuesta-Frau, 2019).

Classifier Algorithms
The general process of the k-NN algorithm is illustrated in
Figure 1B. The classification performance of the k-NN algorithm
depends on the features used as the input of the k-NN algorithm
and the k-value of the k-NN algorithm. The optimization was
performed using the grid search method to select the best
parameter, including the best k-value selection for varying values
of k (1–31), and the distance matrices including Euclidean,
Minkowski, and Chebyshev.

Figure 1C illustrates the general process of the SVM
algorithm. Three types of kernel functions, namely, linear, radial
basis function (RBF), and polynomials, were applied in this study.
The optimization procedure of the SVM algorithm was evaluated
using the grid search method to find the best γ parameter
selection of the linear, RBF, and polynomial kernel functions
(from 1e–01 to 1e–06) and the best regularization parameter C
selection for SVM (from 1 to 1e+ 05).

The topology of the RF classifier is represented in Figure 1D.
RF is known as an ensemble of decision tree classifier (Pandey
et al., 2020). In the classification process, all of the trees give a class
vote, and RF will classify the input based on the majority vote. The
optimal parameter of RF is selected using the grid search method
to determine the best number of trees and the best criterion that
provides the best performance result.

An ANN is a fully connected structure that includes
three main layers, namely, input, hidden, and output layers
(Figure 1E). The feature extraction results were assigned as
inputs for the ANN architecture. Therefore, there are 54 nodes
in the input layer. The hidden layer processes the input of the
previous layers and transfers the result to the output nodes. In
determining the number of nodes in the hidden layer, there are
several theories regarding this case, which are the number of
nodes must be between the input layer size (54 nodes) and the
output layer size (3 nodes) (Blum, 1992), the number of nodes in
the hidden layer is around 70–90% of the input size (Boger and
Guterman, 1997), and the number of nodes should be no greater
than two times as much as the input layer (Swingler, 1996). In this
study, we proposed the simple ANN model, which consists of one
hidden layer, with the number of nodes in the hidden layer equal
to 32. The rectified linear unit (ReLU) activation function was
applied for the hidden layer, and the softmax activation function
was applied to the output layers, which comprised three nodes
representing the AF, CHF, and NSR conditions. While training
the model, we used categorical cross-entropy as a loss function
and Adam as optimizer algorithms to minimize error during
training with a learning rate of 0.001 and 200 epochs.

The topology of RBFN is generally similar to the structure of
feed-forward ANNs, as shown in Figure 1E. However, there are
fundamental differences, such as the RBFN has only one hidden
layer and the activation function of the hidden layer uses a radial
basis activation function (Satapathy et al., 2019). While training
the model, we used 32 nodes in the RBFN layer, mean square
error as a loss function, RMSprop as an optimizer algorithm with
a learning rate of 0.001 and 500 epochs.

RESULTS

In this study, we used the ANOVA test for the statistical
analysis of the difference between features for AF, CHF,
and NSR conditions with statistical significance at p<0.05.
As explained in Table 1, Hjorth descriptor features obtained
statistical significance with p-value (p<0.05). Moreover, the
boxplot distributions of the conditions of Hjorth descriptor
features are shown in Figure 3A. Based on Figure 3A, activity and
mobility features obviously can differentiate between AF, CHF,
and NSR conditions. Meanwhile, the complexity feature showed
a slight overlapping between AF, CHF, and NSR conditions.
However, the p-value of the complexity feature was 5.81e–05
(p<0.05), which means the feature was statistically significant to
differentiate between AF, CHF, and NSR conditions.

In addition, the p-value of entropy-based features was
statistically significant by obtaining p<0.05 as shown in
Table 1. However, bubble entropy obtained a p-value of 0.382
(p>0.05) which means the feature is statistically insignificant
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TABLE 1 | Mean and p-values of features for atrial fibrillation (AF), congestive heart failure (CHF), and normal sinus rhythm (NSR) conditions.

Feature extraction
method

Features AF
Mean ± std

AF
Mean ± std

NSR
Mean ± std

p-value

Hjorth descriptor Activity 0.127 ± 0.033 0.230 ± 0.101 0.026 ± 0.015 4.54e–34

Mobility 1.557 ± 0.061 1.511 ± 0.097 1.326 ± 0.063 1.37e–33

Complexity 1.151 ± 0.060 1.204 ± 0.095 1.225 ± 0.090 5.81e–05

Entropy-based features Shannon entropy 0.656 ± 0.020 0.591 ± 0.020 0.506 ± 0.033 1.5e–63

Sample entropy 0.509 ± 0.126 0.768 ± 0.108 0.323 ± 0.115 1.14e–40

Permutation entropy 0.991 ± 0.006 0.990 ± 0.007 0.984 ± 0.018 2.27e–03

Dispersion entropy 0.135 ± 0.012 0.156 ± 0.011 0.133 ± 0.009 5.77e–23

Bubble entropy 0.429 ± 0.035 0.437 ± 0.031 0.437 ± 0.032 3.83e–01

Slope entropy 0.140 ± 0.006 0.139 ± 0.011 0.109 ± 0.010 3.61e–40

FIGURE 3 | The boxplot distributions for each feature. The distribution value of Hjorth descriptor features for atrial fibrillation (AF), congestive heart failure (CHF), and
normal sinus rhythm (NSR) conditions (A) and the distribution value of entropy-based features for AF, CHF, and NSR conditions (B).

to differentiate AF, CHF, and NSR conditions. As shown in
Figure 3B, the boxplot distribution of entropy-based features
showed that mostly the entropy-based features can distinguish
AF, CHF, and NSR conditions. Meanwhile, permutation entropy
and bubble entropy showed similar values for each condition.

We applied fivefold cross-validations to get the best model
in training the model. Furthermore, the optimization of each
classifier algorithm is performed using the grid search method
to find the best parameter that provides the highest classification
accuracy. A total of 38 test data that included 12 AF, 14 CHF,
and 12 NSR data were used to evaluate the system performance.
Table 2 summarizes the classification accuracy of each feature set
for each algorithm.

For the k-NN classifier algorithm, optimization was conducted
by selecting the best k-values (k = 1, 3, 5, 7, . . ., 31) and the
distance matrices (i.e., Euclidean, Chebyshev, and Minkowski)
using the grid search method. The optimal value of k = 1
obtained with the Minkowski distance was selected as the best

parameter of the k-NN algorithm that provided the highest
accuracy. The performance accuracy of the k-NN method
reached 92% using the Hjorth descriptor features (i.e., activity,
mobility, and complexity) and obtained an accuracy of 100%
using entropy-based features (Shannon entropy, sample entropy,
permutation entropy, dispersion entropy, bubble entropy, and
slope entropy) as well as using a combination of Hjorth
descriptor and entropy-based features which provided an
accuracy of 100%.

For the SVM classifier algorithm, optimization was performed
using the grid search method to find the best kernel (RBF, linear,
and polynomial), the best γ parameter (from 1e–01 to 1e–06),
and the best regularization parameter C (from 1 to 1e + 05).
The best values of C = 1,000 and γ = 0.01 with an RBF kernel
were selected as the optimal parameters to provide the highest
accuracy. The performance accuracy of SVM with RBF kernel
obtained 92% using Hjorth descriptor features, provided an
accuracy of 89% using entropy-based features, and provided an
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TABLE 2 | Classification performance of each feature set.

Feature sets Classification accuracy (%)

k-NN SVM Random forest ANN RBFN

Hjorth descriptor features 92 92 95 95 97

Entropy features 100 89 97 100 97

Hjorth descriptor and
entropy features

100 100 100 100 97

accuracy of 100% using a combination of Hjorth descriptor and
entropy-based features. In addition, the performance accuracy of
SVM with linear kernel obtained 95% using Hjorth descriptor
features, provided an accuracy of 92% using entropy-based
features, and provided an accuracy of 95% using a combination
of Hjorth descriptor and entropy-based features. Meanwhile, the
performance accuracy of SVM with polynomial kernel obtained
an accuracy of 63% using Hjorth descriptor features, obtained an
accuracy of 89% using entropy-based features, and obtained an
accuracy of 97% using a combination of Hjorth descriptor and
entropy-based features.

The RF classifier algorithm optimization was conducted using
the grid search method to find the best number of trees (from
10 to 500) and the best criterion (Gini and entropy) which
provide the highest classification accuracy. The number of trees
equals 150, and the criterion “Gini” was selected as the best
parameter of RF that provides the highest classification accuracy.
The classification accuracy of RF obtained 95% using Hjorth
descriptor features, obtained an accuracy of 97% using entropy-
based features, and obtained an accuracy of 100% using a
combination of Hjorth descriptor and entropy-based features.
The ANN classifier algorithm provided an accuracy of 95%
using Hjorth descriptor features, provided an accuracy of 100%
using entropy-based features, and used all combination features.
Meanwhile, the RBFN classifier algorithm provided an accuracy
of 97% using Hjorth descriptor features, entropy-based features,
and combination of all features, respectively.

According to the results, the combination of Hjorth descriptor
features and entropy-based features successfully extracted the
information contained in the ECG signal. Theoretically, the ECG
signal is a complex signal which has the complexity characteristic.
There are several approaches to measure the complexity signals.
The statistical approach, such as the Hjorth descriptor, which
measures activity, mobility, and complexity, is commonly used
to analyze the complexity of the signal. However, the statistical
approach is insufficient to extract all of the information in ECG
signals. Therefore, we need entropy-based features to extract
more detailed information associated with the characteristics of
AF, CHF, and NSR conditions. The classification performance
improved significantly using Hjorth descriptor features and
entropy-based features.

The performance accuracy after applying DWT, Hjorth
descriptor features, and entropy-based features using the k-NN,
SVM, RF, and ANN classifier algorithm achieved the accuracies
of 100%, respectively, and achieved an accuracy of 97% using the
RBFN classifier algorithm. This result outperformed the system
performance achieved in earlier studies, which also used the

Hjorth descriptor as a feature extraction method to classify AF,
CHF, and NSR which achieved the accuracy of 99.3% (Rizal
and Hadiyoso, 2015) and 94% using k-NN (Hadiyoso and Rizal,
2017) and an accuracy of 76% using SVM (Yingthawornsuk and
Temsang, 2019). The result also outperformed the previous study,
which used entropy-based features to classify AF, CHF, and NSR
that obtained an accuracy of 91.08% (Yoon et al., 2017).

Furthermore, the accuracy performance of the proposed
method was compared with several related works that also
developed a system to detect the occurrence of AF and CHF
in ECG signals. The previous studies showed good performance
accuracy in classifying AF and normal conditions using the CNN
model that obtained the f1-scores of 89.55% (Ping and Chen,
2020) and an accuracy of 86.5% (Sidrah and Dashtipour, 2020).
Meanwhile, the highest performance accuracy in classifying CHF
and normal conditions was performed using various methods,
such as HRV features and SVM classifier, which obtained an
accuracy of 93.33% (Sharma et al., 2018), an accuracy of 99.93%
using CNN composed with RNN model (Ning et al., 2021), and
an accuracy of 100% using CNN model (Porumb et al., 2020).
However, the aforementioned studies are the binary classification
that classifies AF and normal conditions or classifies CHF and
normal conditions. Therefore, the results of this study, which
can classify the condition of ECG signals into three conditions
(AF, CHF, and NSR), can be concluded to provide a promising
contribution for further development in ECG classification.

DISCUSSION

The broader objective of this study was to develop machine
learning algorithms that would improve the accuracy
performance achieved by the earlier studies in classifying
AF, CHF, and NSR conditions (Rizal and Hadiyoso, 2015;
Hadiyoso and Rizal, 2017). To achieve this objective, we applied
the DWT, Hjorth descriptors, and entropy-based features as
the feature extraction methods to generate the feature sets and
trained them using several classifier algorithms, including SVM,
k-NN, RF, ANN, and RBFN to recognize a set of features that are
associated with a particular condition of ECG signal.

The feature extraction method based on statistical approach
using Hjorth descriptor method obtained the promising
classification accuracy performance using several classifier
algorithms as shown in Table 2. However, the result using
Hjorth descriptor features was still affected by false detection that
influenced the performance of classification accuracy since the
statistical approach could not perfectly extract the information
of the ECG signal. In contrast, combining Hjorth descriptor
features with entropy-based features significantly improved
the classification accuracy up to 100% using the k-NN, SVM,
RF, and ANN classifier algorithm and obtained an accuracy
of 97% using the RBFN classifier algorithm. Hjorth descriptor
features and entropy-based features successfully extracted the
information of ECG signals and were appropriate to distinguish
the conditions of ECG signals. Therefore, instead of using
the Hjorth descriptor only as a feature extraction method,
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combining the Hjorth descriptor features with entropy-based
features will provide significant information associated with the
condition of ECG signals.

Based on the results, we can consider that the advantage of this
study is successfully provided the highest classification accuracy
performance in classifying AF, CHF, and NSR conditions of
ECG signal. The improvement of the classification accuracy
performance from the previous studies could be attributed to the
application of the DWT method, the feature extraction method-
based statistical approach using Hjorth descriptor and entropy-
based features, and the extensive optimization for each classifier
algorithm, including k-NN, SVM, RF, ANN, and RBFN classifier
algorithm. However, the proposed model needs to be validated
with a real and larger dataset for clinical implementation. We
believe that it will improve even further when we use a more
extensive dataset.
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