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1  | INTRODUC TION

Species’ ranges are dynamic, flexible, and capable of change 
through range shifts, contractions, and expansions (Andrewartha & 

Birch, 1954; Sexton et al., 2009). Range shifts can occur as the result 
of stochastic processes, whereby random individuals at the edge of the 
species’ range (hereafter: range edge) slowly expand the range over 
time through random movements (Skellam,  1951). Yet, range shifts 
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Abstract
1.	 Species’ ranges are dynamic, changing through range shifts, contractions, and 

expansions. Individuals at the edge of a species’ shifting range often possess 
morphological traits that increase movement capacity, that are not observed in 
individuals farther back within the species’ range. Although morphological traits 
that increase in proportion toward the range edge may differ between the sexes, 
such sex differences are rarely studied.

2.	 Here, we test the hypotheses that body size and condition increase with proximity 
to an expanding range edge in the flightless ground beetle, Carabus hortensis, and 
that these trait changes differ between the sexes.

3.	 Male, but not female, body size increased with proximity to the range edge. Body 
size was positively correlated with male front and mid tibia length and to female 
hind tibia length, indicating that body size is indicative of movement capacity in 
both sexes. Body condition (relative to body size) decreased with increasing pop-
ulation density in males but not females. Population density was lowest at the 
range edge.

4.	 Our results indicate that sex is an important factor influencing patterns in trait 
distribution across species’ ranges, and future studies should investigate changes 
in morphological traits across expanding range margins separately for males and 
females. We discuss the implications for sex differences in resource allocation and 
reproductive rates for trait differentiation across species’ shifting ranges.
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may often be driven by a subset of individuals residing at the range 
edge, who are characterized by traits that increase capacity for for-
ward movement, not possessed by individuals farther back within the 
species’ range (Chuang & Peterson, 2016; Phillips et al., 2006; Shine 
et al., 2011). Such traits are often associated with morphology.

Understanding how traits associated with morphology differ 
across expanding or shifting ranges is important because such pat-
terns in trait distribution may alter the pace of range changes (Bowler 
& Benton,  2005; Roff,  1984; Zera & Denno,  1997) and influence 
population dynamics (e.g., Gadgil & Bossert,  1970; Stearns,  1976). 
Intraspecific (Bolnick et al., 2003) and interspecific (Rudolf, 2007) in-
teractions, including predator–prey interactions (Cohen et al., 1993), 
resource use (Polis, 1984), and individual capacity to overcome en-
vironmental change (Huey & Kingsolver, 1989), may also be affected 
by trait differentiation at range edges. In invasive species, traits 
associated with morphology that propel the species forward could 
amplify the negative effects that the invader has upon native flora 
and fauna (Phillips et al., 2006). Hence, traits that drive range shifts 
at range edges can have large-scale ecological impacts.

Differences in traits associated with morphology among individ-
uals from the center or “core” of a species’ range versus the range 
edge have been documented across different taxa (e.g., Berthouly-
Salazar et  al.,  2012; Bonte et  al.,  2012; Brandner et  al.,  2013; Hill 
et al., 1999; Phillips et al., 2006). For example, across homogenous 
environments, individual body condition may increase toward the 
range edge (e.g., Brown et al., 2013) where population densities and 
associated competition for resources are typically low. Individuals 
that have increased locomotor capacity (i.e., those with longer legs 
(Phillips et al., 2006), increased flight muscle mass, and/or wing size 
(Heidinger et al., 2018; Hill et al., 1999)) also increase in frequency 
with proximity to the range edge. Patterns in trait distribution across 
species’ ranges may occur through (a) trait-dependent dispersal (e.g., 
Heidinger et  al.,  2018), whereby only individuals with traits that 
confer the highest dispersal capacity disperse to the range edge 
(Heidinger et  al., 2018); (b) phenotypic plasticity to environmental 
variation (e.g., Tejedo Madueño et  al.,  2010), in which individuals 
plastically respond to environmental differences in the core versus 
the edge of the range; or (c) the process of spatial sorting (Phillips 
et al., 2008; Shine et al., 2011), whereby genes that improve move-
ment propensity become sorted in space, such that individuals with 
a greater capacity for forward movement reach the range edge at a 
time where the only available mates are similarly adapted individu-
als. Assortative mating (Fisher, 1919) then occurs at the range edge.

We may observe a stronger gradient in the distribution of traits 
associated with movement in one sex over the other, if species’ range 
shifts are primarily driven by one sex (Berthouly-Salazar et al., 2012). 
Such sex biases in movement may arise because (a) sexual traits se-
lected for in males and females are often divergent due to funda-
mental differences in male and female reproductive investment 
(Bateman,  1948; Darwin,  1871; Maynard Smith,  1978) where males 
generally maximize reproductive fitness through increasing mating 
opportunities, while female reproductive success depends on egg and 
offspring production (Trivers, 1972); and (b) some sexually dimorphic 
traits, such as behavior or body size, affect movement capacity and 

may therefore enhance the propensity for one sex to disperse (Bowler 
& Benton, 2009). Strong sexual disparities in trait distribution across 
species’ ranges may be especially prominent in scramble-competition 
type mating systems, in which males evolve adaptations that improve 
locomotion to increase mate searching efficiency (Husak & Fox, 2008). 
Although sex differences in morphological traits at range edges have 
been observed in a few studies, results differ and studies are largely 
restricted to vertebrates (e.g., Bodden & Puschendorf, 2019; Campbell 
& Echternacht,  2003; Gunnarsson et  al.,  2012; Miller et  al.,  2017; 
Simberloff et al., 2000, but see Laparie et al., 2013 for a study on an 
insect species). This may be explained by differences in reproductive 
and mating systems across the different taxa. Consequently, further 
investigation of patterns in trait distribution across species’ ranges in 
taxa with different reproductive and mating systems is required if we 
are to fully understand the mechanisms underlying morphological dif-
ferentiation across species’ shifting ranges.

Here, we study sex-specific changes in body size and body con-
dition along an expanding range margin of the flightless ground bee-
tle, Carabus hortensis L., at its western distribution edge in northern 
Germany. Previous monitoring of this population (Völler et al., 2018) 
allows us to pinpoint the precise range edge of the species in previous 
years, meaning that traits of individuals from the center or “core” of 
the range can be systematically compared to traits of individuals from 
the range edge. We predict that individuals at the range edge should 
be larger in body size than those from the “core”, if body size is directly 
related to leg length and associated movement capacity. We test this 
prediction, assessing the correlation between leg length and body size.

Male C. hortensis, like other Carabus species (e.g., Drees & 
Huk,  2000; Weber & Heimbach,  2001), are generally more active 
than females (Szyszko et al., 2004). Because males of other Carabus 
species are known to actively search for females with whom to mate 
(Turin et al., 2003), male C. hortensis activity may be an adaptation to 
increasing mate searching capacity. Male C. hortensis are therefore 
likely to be the more dispersive sex owing to mate searching behav-
ior (Turin et al., 2003). Thus, we predict that the change in body size 
across the C. hortensis range will be stronger in males than females, 
with body size increasing toward the range edge.

We further predict that population density will decline with prox-
imity to the expansion front. Thus, we predict that, as long as condi-
tions at the range edge are suitable, and population density is lower at 
the range edge than at the core, individuals will have better body con-
dition at the range edge than at the core of the species’ range, owing to 
reduced intraspecific competition for resources (Brown, 1984).

2  | MATERIAL S AND METHODS

2.1 | Study species, trapping, and maintenance

Carabus hortensis Linnaeus, 1758 (Coleoptera, Carabidae) ground bee-
tles were studied from August to September 2018 in the Lüneburger 
Heide, Lower Saxony, Germany, where the species has expanded its 
range westward from ancient forests into adjacent forested areas at a 
constant pace over the last 25 years (Völler et al., 2018).
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To sample individuals from the range edge and from regions far-
ther back in the species’ range (i.e., across the expansion front), rows 
of live pitfall traps (hereafter “trap rows”) were installed parallel to the 
most westerly edge of the species’ range, starting from the leading 
edge of the expansion and spanning across 3 km to the point at which 
the species was first observed in this area in 1995 (Völler et al., 2018). 
A map of the study site with some trap rows included in our study 
can be found in Völler et al.  (2018). Habitat across the sample area 
consisted of coherent forests of coniferous, broad-leaved, and mixed 
stands, and there were no clear systematic habitat differences across 
the expansion front. We installed 17 trap rows, which reflected 
the positions of the C. hortensis’ westerly range edge for the years 
1995, 1999, 2001, 2003, 2005, and 2007–2018. Because C. hortensis 
has dispersed westward by approximately 130  m each year (Völler 
et al., 2018), an additional trap row was placed 130 m beyond “trap 
row 2018” where we expected beetles to arrive the following year, in 
2019: “trap row 2019”. This trap row mainly served to assess whether 
C. hortensis had expanded its range further than expected and to 
ensure that, if it had, we would catch those individuals. Thus, we in-
stalled 18 trap rows in total. Each trap row contained 12 live pitfall 
traps that were separated by 10 m to span 120 m. To ensure that bee-
tles were caught at the range edge where population densities were 
expected to be low, 12 additional pitfall traps were positioned at each 
of the five most westerly trap rows, such that trap rows 2015–2019 
contained 24 traps and all other rows contained 12 traps. We found 
beetles at “trap row 2018”, which was the expected range edge when 
our study took place in 2018, but not “trap row 2019.” This suggested 
that C. hortensis were still expanding their range westward by at least 
130 m per year, but not as far as 260 m per year.

Live pitfall traps (10 cm diameter, 500-ml plastic cup inside) were 
dug into the ground so that they were level with the surface soil. 
A drainage tube around the cup served as a structural support and 
water drained through holes in the bottom of each trap. A metal 
mesh cover prevented small vertebrates, leaves, and sticks from 
falling into the traps. All traps were baited with a piece of cellu-
lose soaked in red wine and were emptied and rebaited once every 
7–8 days (Schuett et al., 2018).

The total number of individuals caught at each trap row from 
August to September 2018 was used as a proxy for population density 
(Baars,  1979). However, because sampling efforts at each trap row 
differed depending on whether the trap row contained 12 or 24 pit-
fall traps, the population density at each trap row was divided by the 
total number of pitfall traps present in that row and this was divided 
by the total number of days over which each trap row was sampled. 
This provided the number of beetles caught per trap and trapping day 
for each trap row, which was used as a proxy for population density. 
The female-to-male sex ratio at each trap row was also quantified, by 
dividing the total number of females caught at each trap row by the 
total number of males caught at that trap row. When more than 30 
individuals (15% of the cases) were caught at a particular trap row in 
one week, we did not record their sex. Consequently, our measure of 
sex ratio is only an estimate in these cases.

Individuals were either taken to the laboratory for further studies 
or released to the site of capture. Released individuals were marked 
using permanent marker pens (Edding 781, Edding International 
GmbH, Ahrensburg, Germany), to avoid retesting upon capture. Each 
week, where possible (based on the number of individuals in a trap 
row), the body size and mass were measured for four females and 
four males selected randomly from each trap row. In total, 161 fe-
male and 92 male C. hortensis were weighed to the nearest milligram 
(CA-103 Phoenix Instrument, Phoenix Instrument GmBH, Garbsen, 
Germany). Individual pronotum width was then measured as a proxy 
for body size. Pronotum width has previously been used as a proxy 
for movement ability in other studies of flightless carabid beetles 
(e.g., Laparie et al., 2013), because it describes the space available for 
locomotor muscles (Berwaerts et  al.,  2002). Dorsal photographs of 
each individual were taken over a laminated page of mm grid paper 
using a camera phone (Wileyfox Swift 2X, Wileyfox), and the widest 
section of the pronotum was later measured to the nearest 0.1 mm, 
using ImageJ (Schneider et  al., 2012). To assess our prediction that 
pronotum width was indicative of movement capacity, we later mea-
sured the leg lengths of retained specimens. The tibia and femur of 
the front, mid, and hind leg from the left-hand side of each beetle 
were carefully removed and mounted upon a piece of card using in-
sect glue. Photographs of each leg were taken using a digital camera 
(Canon EOS 7D; Canon, Tokyo, Japan) mounted on a stereoscopic mi-
croscope (Nikon SMZ-U; Nikon Corp., Tokyo, Japan), and the length of 
each front, mid, and hind tibia and femur was measured to the nearest 
0.1 mm using ImageJ. Two photographs taken of each leg showed that 
the measurements were significantly repeatable. Each leg length was 
then calculated as the mean of the two measurements.

Individual body condition scores (relative mass to body size, in 
g) were calculated separately for males and females. Several differ-
ent methods to obtain measures for body condition exist, including 
taking direct measurements of energy stores (e.g., Weatherhead & 
Brown,  1996), calculating body condition from the residuals from 
reduced major axis regressions of body mass versus body size 
(Green, 2001), and calculating body condition as the residuals from 
ordinary least-squares (OLS) regression of body mass versus body 
size (e.g., Cordero et al., 1999; Dobson et al., 1999). Here, we employ 
the latter, more commonly used method, using residual scores from 
a linear model (LM) of body mass against pronotum width (males: 
y = 0.027 * x + 0.295 g, R2 = 0.096, F1,90 = 9.673, p =.003, N = 92; 
females: y = 0.030 * x + 0.377 g, R2 = 0.087, F1,159 = 15.360, p <.001, 
N  =  161) to calculate body condition. We note, however, that, as 
with other methods, calculating body condition by this means is 
not without its caveats. For example, several assumptions must 
be made to permit calculation of body condition from OLS mass/
body size residuals (outlined in: Green, 2001). Moreover, some vari-
ation in body condition calculated via OLS mass/body size residuals 
may be attributed to intraspecific variation in lean dry body mass 
(e.g., Schulte-Hostedde et al., 2005), meaning that OLS mass/body 
size residuals may somewhat inaccurately describe lipid stores and 
therefore body condition (Moya-Laraño et al., 2008).
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2.2 | Statistical analysis

All statistical analyses were carried out using R version 3.3.2 (R 
Core Team,  2019). We performed Spearman's rank correlations 
(Spearman, 1904) to assess the relationships between body condition, 
body size, and body mass, and between body size and leg lengths. 
Spearman's rank correlations were used because not all data followed 
a normal distribution. Body condition and body size were not highly 
correlated (Rs < 0.3; Table S1). Body condition and body mass were 
highly positively correlated (Rs > 0.9), and body mass and body size 
were significantly positively correlated in both male and female C. 
hortensis (Table  S1). To avoid multicollinearity, only data concerning 
individual body size and body condition were analyzed further. Our 
measures of pronotum width were significantly positively correlated 
with leg length (Table S1). To corroborate our hypothesis that male 
C. hortensis may be the more dispersive sex, owing to mate searching 
behavior (Turin et al., 2003), we performed additional Spearman's rank 
correlations to assess the relationship between the female-to-male 
sex ratio at each trap row and position along the expansion front.

We predicted that C. hortensis population density should decline 
with increasing proximity to the range edge. The effect of position 
along the expansion front upon population density was determined 
using a LM, with population density as the response variable and 
the position along the expansion front as the explanatory variable. 
Position along the expansion front was a discrete variable, in which the 
positions of the C. hortensis westerly range edge for the years 1995, 
1999, 2001, 2003, 2005, and 2007–2018 were the values (“trap row 
2019” was excluded from analyses as no beetles were caught there), 
2018 was the range edge, and the greatest distance was between 
2018 and 1995 (Völler et al., 2018). For the purpose of analysis, the po-
sition along the expansion front was treated as a continuous variable.

To determine whether individuals from different positions along 
the expansion front differed in their body size and body condition, 
we performed linear mixed models (LMMs) with body size and body 
condition as the response variables and the position along the ex-
pansion front as the main explanatory variable. The week (week 1 to 
week 6) in which individuals were collected was included as a random 
term. In 34% of the cases, beetles were collected from traps from 
which at least one other beetle was collected in the same week. To 
account for any potential interdependence of beetles collected from 
the same trap on the same week, the trap from which individuals 
were collected nested within the week of collection (week 1 to week 
6) was included as a second random term. Again, the position along 
the expansion front was treated as a continuous variable during anal-
yses. Population density was included in the models as a covariate 
(Tables  1 and 2). To test whether the relationships between body 
size/body condition and position along the expansion front differed 
between the sexes, we added the explanatory variable of sex as well 
as its interaction with position along the expansion front.

The sex specificity of the effect of position along the expan-
sion front on individual body size and condition was determined by 
using two additional LMMs per response variable using only female 
or male data. The structure of the models was the same as above 

excluding “sex” and its interaction with the position along the expan-
sion front as explanatory variables.

Because a significant negative relationship was found between 
population density and position along the expansion front, popula-
tion density might mask the effects of position along the expansion 
front. Thus, body size and body condition LMMs, for male and female 
combined data, female data alone, and male data alone, were rerun 
without population density as an explanatory variable. Removal of 
population density from the maximal models for body size (Table 1) 
or body condition (Table 2) did not qualitatively change our results 
(Tables S2 and S3).

3  | RESULTS

As predicted, population density decreased with proximity to the C. 
hortensis expansion front in the Lüneburger Heide (LM; R2 = 0.406, 
F1,15  =  10.250, p  =.006; Figure  1). The female-to-male sex ratio 
was negatively correlated with position along the expansion front 
(RS = −0.492, p =.044, N = 17), meaning that proportionally fewer 
females were found at the range edge.

Female C. hortensis were larger than males (Table 1). Female prono-
tum width was 8.0 ± 0.1 mm (mean ±SE) (range: 5.8 – 9.8 mm), while 
male pronotum width was 7.8 ± 0.1 mm (range: 5.8 – 9.2 mm). Males 
and females did not significantly differ in their body condition (Table 2).

The body size of all beetles (Table 1) and male beetles (Table 1; 
Figure 2) increased toward the range edge. However, female body 
size did not significantly change with position along the expansion 
front (Table 1; Figure 2). There was a marginally significant trend for 
an interactive effect of sex upon the relationship between body size 
and position along the expansion front. Body size was independent 
of population density in both sexes (Table 1). Male front tibia length, 
male mid-tibia length, and female hind tibia length were positively 
correlated with body size (Table S1).

There was no significant relationship between body condition 
and position along the expansion front for either males or females 
(Table 2). However, the body condition of all beetles (Table 2) and 
male beetles alone (Table 2; Figure 3) increased with decreasing pop-
ulation density. Female body condition, however, was independent 
of population density (Table 2; Figure 3).

4  | DISCUSSION

We investigated variation of traits associated with morphology 
across an expansion front on a sex-specific basis in the ground bee-
tle Carabus hortensis. As we hypothesized, body size increased with 
proximity to the range edge in males but not in females. Although 
body condition did not increase with proximity to the range edge in 
either sex as we had predicted, male body condition alone improved 
with decreasing population density, which was lowest at the edge 
of the C. hortensis range. This may indicate that male body condi-
tion was generally higher in areas with low intraspecific competition. 
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Sex differences in the relationships between body size and position 
along the expansion front, and between body condition and popula-
tion density, may be rooted in sex differences in activity. Together, 
our findings provide evidence of sex-specific relationships between 
morphology and position along an expansion front.

Consistent with our predictions, male but not female C. hortensis 
were larger at the range edge than toward the core of the species’ 
range. Such sex-specific changes in body size distribution across the 
C. hortensis range could occur if divergent selection pressures act 
upon males and females to produce differences in traits associated 
with morphology between the sexes (Bateman, 1948; Darwin, 1871; 
Trivers, 1972) that alter movement capacity. Moreover, differences 

in male and female activity could underpin the differences between 
the sexes in the distribution of body sizes across the C. hortensis 
range. Male C. hortensis are the more active sex (Szyszko et al., 2004); 
if higher activity levels in males support a male-led range expansion, 
male body size may change more strongly than female body size 
across the C. hortensis range. That the female-to-male sex ratio de-
clined with proximity to the range edge supports that range expan-
sion by C. hortensis in the Lüneburger Heide may be mainly male-led. 
Increases of male body size toward the C. hortensis range edge may 
be further reinforced through sexual selection (e.g., Hengeveld & 
Haeck, 1982); where population densities and mate availability are 
lower at the range edge, males may be sexually selected for larger 

TA B L E  1   Summary of test statistics from LMMs with the pronotum width as a proxy for body size as a response in males and females 
(M + F), females alone (F), and males alone (M)

Response Variable Sex Random Term Var. Fixed Term Coeff. χ2 DF
p-
value

Pronotum Width
(N = 253)

M + F Week 0.020 Intercept −27.18

Week/trap 0.177 Sex (males): Position [0.02] 2.92 1 .088

Residual 0.331 Sex (males) −0.23 6.30 1 .012

Population Density [−0.33] 0.49 1 .484

Position 0.02 5.06 1 .024

Pronotum Width
(N = 161)

F Week 0.003 Intercept 8.04

Week/trap 0.203 Position [0.01] 0.40 1 .529

Residual 0.352 Population Density [<−0.11] 0.05 1 .829

Pronotum Width
(N = 92)

M Week 0.048 Intercept −66.62

Week/trap 0.134 Position 0.04 9.88 1 .002

Residual 0.264 Population Density [−0.65] 0.91 1 .341

Note: Sex, position along the expansion front (position), and population density (the number of beetles caught per trap and trapping day for each 
trap row) were used as fixed terms. Coefficients (Coeff.) in square brackets belong to nonsignificant terms just before dropping those terms from the 
model. Bold p-values denote significant terms. Variance (Var.) of the random terms “Week” and “Week/trap” (the trap from which individuals were 
collected nested within the week of collection) and residuals are presented.

TA B L E  2   Summary of test statistics from LMMs with body condition as a response in males and females (M + F), females alone (F), and 
males alone (M)

Response variable Sex Random term Var. Fixed term Coeff. χ2 DF
p-
value

Body Condition
(N = 253)

M + F Week 0.002 Intercept 0.02

Week/trap 0.002 Sex (males): Position [<−0.01] 0.01 1 .921

Residual 0.005 Population Density −0.14 10.02 1 .002

Sex (males) [<0.01] 0.01 1 .923

Position [<−0.01] 0.72 1 .398

Body Condition
(N = 161)

F Week 0.002 Intercept −0.01

Week/trap 0.002 Population Density [<−0.12] 3.55 1 .060

Residual 0.007 Position [<−0.01] 0.25 1 .619

Body Condition
(N = 92)

M Week <0.001 Intercept 0.03

Week/trap 0.002 Population Density −0.17 9.93 1 .002

Residual 0.002 Position [<−0.01] 1.02 1 .313

Note: Sex, position along the expansion front (position), and population density (the number of beetles caught per trap and trapping day for each trap 
row) are used as fixed terms. Coefficients (Coeff.) in square brackets belong to nonsignificant terms just before dropping those terms from the model. 
Bold p-values denote significant terms. Variance (Var.) of the random terms “Week” and “Week/trap” (the trap from which individuals were collected 
nested within the week of collection) and residuals are presented. Bold p-values denote significant terms.
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body size, which may improve movement capacity and related mate 
searching ability (e.g., Arnold et  al.,  2017; Zollikofer,  1994). Again, 
this hypothesis is supported by our findings that the female-to-male 
sex ratio decreased toward the range edge. To understand the mech-
anisms underlying sex-specific trait differentiation across species’ 
shifting ranges, more studies investigating species with different 
mating systems are needed.

In line with previous studies of intraspecific competition ef-
fects on carabid beetles (Lenski, 1984), male C. hortensis from trap 

rows with lower population densities had a better body condition. 
Female body condition, however, was unrelated to population den-
sity. Population density influences body condition both by altering 
competition for resources (Iba et  al.,  1995) and by influencing in-
dividual activity level (Le Galliard et al., 2015; Tuda & Shima, 2002) 
and associated energy expenditure. Consequently, sex differences 
in the relationships between population density and body condition 
may arise if there are (a) sex differences in activity level and/or (b) 
sex differences in the motivations for activity, because population 
density will influence activity (and associated energy expenditure) 
differentially between the sexes. For instance, because male C. hort-
ensis activity is likely associated with reproductive success, males 
may be similarly motivated to be active irrespective of whether they 
are in areas of high or low population density. This may create an 
imbalance between energy consumption and expenditure under 
high population densities, because males living under high popula-
tion densities will experience high intraspecific competition, lead-
ing to lower resource availability and associated energy intake than 
males living under low population densities that have similar energy 
expenditure levels. In contrast, female C. hortensis may adjust their 
activity levels to match the population density and related resource 
availability. Our results suggest that sex can be an important factor 
in determining how population density will relate to body condition, 
where males and females differ in activity level. Further investiga-
tions into the effects of population density on body condition in sys-
tems where males and females differ substantially in their behaviors 
and life histories could help to reinforce our findings.

Very few studies have investigated patterns in sex-specific traits 
associated with morphology across invertebrates’ shifting ranges 
and, thus far, results are mixed. Some studies report that differen-
tial morphological traits between the sexes increased with proxim-
ity to the range edge (Hughes et al., 2003), while others state that 

F I G U R E  2   The relationship between individual C. hortensis body size and position along the expansion front in males (N = 92) and 
females (N = 161). Years denote the previous locations of the westerly range edge of C. hortensis in that year, such that 2018 is the range 
edge at the time of study in 2018. Predicted line is fitted using outputs from LMM estimates. 95% confidence interval is shown in gray

F I G U R E  1   The relationship between C. hortensis population 
density and position along the expansion front (N = 17). Years 
denote the previous locations of the westerly range edge of C. 
hortensis in that year, such that 2018 is the range edge in 2018. 
Population density is the mean number of beetles per trap and 
trapping day across a trap row. Predicted line is fitted using outputs 
from LM estimates. 95% confidence interval is shown in gray
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the same morphological traits increased toward the range edge in 
both sexes, but with a stronger effect in one sex over the other 
(Laparie et al., 2013). We believe that our study is the first to report 
the increase in size of morphological traits associated with move-
ment toward a species’ range edge in just one sex, in an insect. Some 
vertebrate studies of morphological changes across species’ range 
expansions are in line with our own, reporting that only male mor-
phological traits increase with proximity to the range edge of an ex-
panding or shifting range (Bodden & Puschendorf, 2019; Campbell & 
Echternacht, 2003; Gunnarsson et al., 2012). Conversely, for other 
vertebrates, traits that increased with proximity to the range edge 
did so in both sexes, but the effect was stronger in males than fe-
males (Padilla et al., 2019; Simberloff et al., 2000). In general, it ap-
pears that traits such as body size, wing length, and muscle mass (i.e., 
traits that improve movement propensity) are most likely to increase 
with proximity to the range edge in males. Still, there are too few 
studies to draw conclusions upon the role of sex in the distribution 
of morphological traits across species’ ranges, especially in insects. 
Further work evaluating sex-specific patterns in trait distribution 
across species’ shifting ranges in a range of species with different 
mating systems will help to further this field.

5  | CONCLUSIONS

Ours is the first study of an insect species to report that morphologi-
cal traits associated with movement may change across a species’ 
range in just one sex. We demonstrated that body size increased 
across the expansion front in male but not female C. hortensis bee-
tles. Males at the range edge of the expansion front were larger 
than conspecifics farther back in the species’ range. Furthermore, 
male body condition declined with increasing population density. In 

contrast, we found no significant relationship between female body 
size and position along the expansion front and no significant rela-
tionship between female body condition and population density. We 
argue that the observed differences between male and female C. 
hortensis may be linked to differences in the reproductive biology of 
the sexes and sex differences in activity level, leading to differential 
distributions of male and female body size in space (Bateman, 1948; 
Trivers, 1972). Our results move the field forwards, demonstrating 
that sex and sex differences in behavior play an important role in 
determining the distribution of morphological traits across species’ 
shifting ranges.
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