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Over the past three decades, a large number of genetic studies have been aimed at
finding genetic variants associated with the risk of asthma, applying various genetic
and genomic approaches including linkage analysis, candidate gene polymorphism
studies, and genome-wide association studies (GWAS). However, contrary to gen-
eral expectation, even single nucleotide polymorphisms (SNPs) discovered by
GWAS failed to fully explain the heritability of asthma. Thus, application of rare al-
lele polymorphisms in well defined phenotypes and clarification of environmental
factors have been suggested to overcome the problem of ‘missing’ heritability. Such
factors include allergens, cigarette smoke, air pollutants, and infectious agents dur-
ing pre- and post-natal periods. The first and simplest interaction between a gene
and the environment is a candidate interaction of both a well known gene and envi-
ronmental factor in a direct physical or chemical interaction such as between CD14
and endotoxin or between HLA and allergens. Several GWAS have found environ-
mental interactions with occupational asthma, aspirin exacerbated respiratory dis-
ease, tobacco smoke-related airway dysfunction, and farm-related atopic diseases.
As one of the mechanisms behind gene-environment interaction is epigenetics, a
few studies on DNA CpG methylation have been reported on subphenotypes of
asthma, pitching the exciting idea that it may be possible to intervene at the junction
between the genome and the environment. Epigenetic studies are starting to include
data from clinical samples, which will make them another powerful tool for re-
search on gene-environment interactions in asthma.

Key Words: Asthma, gene, environment, polymorphism, genome, epigenetics,
variants

INTRODUCTION

Asthma is a genetically complex disease associated with familial segregation of at-
opy and increased levels of total serum IgE.! Asthma and atopy are closely correlat-
ed with increased bronchial hyperresponsiveness® and elevated blood eosinophil
count.’ These intermediate phenotypes are highly heritable and subject to intensive
genetic research. Asthmatics cluster in families, indicating that a genetic component
is likely to be involved. Twin studies represent a useful first step to determine wheth-
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er a given trait or disease has a measurable genetic compo-
nent. In a large twin study with 7000 same-sex twins born
between 1886 and 1925, the concordance rate for self-re-
ported asthma in monozygotic (MZ) twin pairs was 19%,
four times as high as the 4.8% in dizygotic (DZ) twins.* Her-
itability has been estimated as up to 60% and is thought to
be determined by genetic factors such as nucleotide variants.

Identification of single nucleotide polymorphisms
(SNPs) associated with asthma
To search for nucleotide variants as genetic factors, genome-
wide linkage analyses, biologically plausible candidate-gene
approaches, and genome-wide association studies (GWAS)
have been used over the past 30 years. While monogenic
disorders with simple Mendelian inheritance such as cystic
fibrosis have been successfully identified using whole ge-
nome linkage analysis, positional cloning, and case control
studies,’ more than 100 loci on autosomal and sex chromo-
somes have been found to be linked to asthma. Among
them, at least 5 asthma genes, including a disintegrin and
metalloprotease 33 (4ADAM33) on 20p13,* dipeptidyl pepti-
dase 10 (DPP10) on 2q14.1,” plant homeodomain zinc fin-
ger protein 11 (PHF11) on 13q14.2,® G protein-coupled re-
ceptor (GPR) for asthma susceptibility on 7p15-p14,° and
prostaglandin D2 receptor (PTGDR) on 14q24,'° have been
identified as strongly associated with asthma. However, rep-
lication studies including a large cohort of 7703 adults re-
vealed that only a minor risk of increase in asthma incidence
was linked to DPP10 and ADAM33.57 These limitations of
linkage analysis in complex human disease have caused a
redirection of focus from linkage analysis and microsatellite
markers toward single nucleotide polymorphisms (SNP) ge-
notyping and different analytical strategies based on associa-
tion and haplotype analysis."!

Consequently, the candidate gene approach led to more

than 300 genes containing asthma-associated SNPs record-
ed in the NCBI databases (www.ncbi.nlm.nih.gov). As of
March 2015, a keyword search for “asthma and polymor-
phism” returned 2851 publications, including 226 papers
published in Korea. Interestingly, almost all associated SNPs
have odds ratios (ORs) below 2.0, indicating that the candi-
date gene approach has provided information on genetic
variants causing a significant risk of increase in asthma, but
their contribution to the development of asthma may be
smaller than expected.

Since the development of GWAS, genotyping of 500000
SNPs enables nearly complete surveys of all common ge-
netic variability.”> Based on this concept, whole genome
SNP genotyping arrays have been developed and employed
for investigating the genetic background of multifactorial
complex diseases over the past 8 years. As of February 2012,
2111 GWAS had been published showing statistical signifi-
cance for 17 traits of common allele complex diseases (NH-
GRI catalogue at www.genome.gov/gwastudies). GWAS on
asthma and its traits have been published from 2007 on-
wards, producing 408 publication titles containing “GWAS
and Asthma” in PubMed, including 23 with Korean asth-
matics. Among the initial eight studies (Table 1), six per-
tained to Caucasians, one to Mexicans, and Koreans were
included in two studies. Seven studies focused on asthma
risk, the remaining one on occupational asthma.

The first GWAS on asthma, published in England in
2007, found strong signals on chromosome 17q and on
chromosome 2. SNPs associated with childhood asthma
could be consistently linked to transcript levels of ORM-
DL3, a member of a gene family that encodes transmem-
brane proteins anchored in the endoplasmic reticulum.'* The
second asthma GWAS analyzed sequence variants affecting
blood eosinophil counts in Icelanders, and the ten most sig-
nificant SNPs were further studied in 12118 Europeans and

Table 1. Genes Associated with Asthma by GWAS Studies between 2007-2010

No. Gene Ethnicities OR References
1 ORMDL3 Caucasian 1.45 Moffatt, et al.”
2 CTNNA3 Korean 1.85 Kim, et al.”
3 ILIRLI Caucasian/Korean/Taiwan 1.16 Gudbjartsson, et al.*”
4 PDE4D Caucasian 2.32 Himes, et al.®
5 TLE4 Mexican 1.68 Mashimo, et al.”’
6 DENNDIB Caucasian 1.83 Sleiman, et al.®*
7 RADS0-IL13 Caucasian 1.64 Li, et al.”
8 ]g};\li]g;?lSRl Caucasian <L.5 Moffatt, et al."*

OR, odds ratio; GWAS, genome-wide association studies.
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5212 East Asians including Koreans. While SNP rs1420101
in the ILIRLI/ILISRI gene cluster at 2q12 was strongly as-
sociated with asthma (p=5.5x10"2), its OR was still below
1.5. In 2010, a large-scale, consortium-based GWAS of
asthma with 10365 asthmatics and 16110 controls con-
firmed the association of the previously defined SNPs in-
cluding the ones in ORMDL3 and ILIRL1,* yet their ORs
were within the range of 0.5 to 1.5.

Subsequently, GWAS has been applied to determine wheth-
er disease-related intermediate phenotypes are causal or
secondary to the disease progress.'> A meta-analysis on to-
tal IgE concentration showed strong association with HLA-
DQ (rs9469220) in Caucasians'® and CRIM] in Koreans
(rs848512 and 1s711254).17

Searching for the missing heritability of asthma

GWAS have identified hundreds of genetic variants associ-
ated with complex human diseases and traits, providing
deep insights into their genetic architecture. In case of age-
related macular degeneration, proportions of heritability ex-
plained by 5 SNPs were found to be responsible for 50% of
the risk (Table 2), while for Crohn’s disease 32 loci can ex-
plain 20% of the heritability. However, most variants identi-
fied so far confer relatively small increments in risk, ex-
plaining only a small proportion of heritability and leading
to the question how the missing heritability can be ex-
plained.' In the GWAS presented in Table 1, the population
attributable risk fractions (PAF) of SNPs in asthma and its’
traits ranged from 3.9% to 24%, indicating a relatively large
impact of the genetic variants on asthma development. In
the studies including asthmatics, rs7216389 in ORMDL3
returned a PAF of 21.8%, while the SNPs on the other gene
had a PAF of less than 12%. This suggests that even the
GWAS-discovered SNPs explain only limited genetic ef-
fects on the development of asthma.

Considering the causative factors of GWAS’ limitations
such as imprecise disease phenotypes, use of control groups
of questionable comparability, and inconsideration of envi-
ronmental contributors, Manolio, et al.'"® proposed the fol-
lowing three solutions to overcome the missing heritability:
discovery of SNPs of rare allele frequencies, stratification
of subjects into well defined specific phenotypes, and clari-
fication of environmental influences.

Discovery and application of rare variants

Until recently, much of the speculation about missing herita-
bility from GWAS has focused on the possible contribution
of rare variants (minor allele frequency MAF<0.5%), be-
cause the previous GWAS had analyzed common variants
of MAF>5%. To provide more information on these rare
variants on human chromosomes, the 1000 Genomes Proj-
ect (www.1000genomes.org/page.php) of sequencing 1000
individual genomes has already identified more than 15 mil-
lion new SNPs, 1 million short insertions and deletions, and
20000 structural variants.”” The Project pilot data revealed
that African populations show the highest density of rare
variants followed by Asian and European populations.”® The
newly discovered SNPs have started to be applied to recent
genetic association studies on the traits of asthma.”!

Improvement in attributable risk fraction of genetic
variants by stratification of phenotypes

The definition of phenotype under study is of major impor-
tance, as asthma is a heterogeneous disease. Well defined
subphenotypes improve the genetic power of SNPs. The
ORMDL3 SNP was reanalyzed in Caucasians and Koreans
according to onset age of asthma development (Table 3).2
When subjects were stratified around age 16, the association
of 157216389 at 17q21 became more apparent in Caucasians
and Koreans under that age, with ODs ranging from 1.26 to

Table 2. Estimates of Heritability and Number of Loci for Several Complex Traits

Disease/trait Number of loci Proportion of heritability, % Heritability measure

Age-related macular degeneration 5 50 Sibling recurrence risk
Crohn’s disease 32 20 Genetic risk (liability)
Systemic lupus erythematosus 6 15 Sibling recurrence risk

Type 2 diabetes 18 6 Sibling recurrence risk

HDL cholesterol 7 5.20 Residual” phenotype variance
Height 40 5 Phenotypic variance

Early onset myocardial infarction 9 2.80 Phenotypic variance

Fasting glucose 4 1.50 Phenotypic variance

HDL, high density lipoprotein.

*Residual is after adjustment for age, gender, diabetes. Adapted from Manolio, et al."
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1.49, while ODs of the older group ranged from 0.87 to 1.12
(Fig. 1). Attributable risk fractions were 0.269 in the early
and 0.057 in the late onset group. These data indicate the ne-
cessity of stratification of asthma phenotypes according to
age, because the two types of asthma may have different
pathogeneses.

Various ways have been tried to develop subphenotypes.
Schematically, the pathogenic mechanism of asthma can be
divided into two major pathways*—the adaptive immune
response pathway and the innate immunity pathway. In the
former, Th2 cells, mast cells, and eosinophils participate in
an antigen-specific IgE- and Th2 cytokine-dependent man-
ner, a process usually starting at young age. In the latter,
macrophages, dendritic cells, epithelial cells, and neutro-
phils are involved, causing IgE-independent, adult onset
asthma. Therefore, asthmatics should be stratified into sev-
eral subphenotypes as shown in Table 4.

Regarding environmental and lifestyle factors as triggers,
asthma can be subgrouped into IgE-dependent allergic asth-
ma, aspirin-exacerbated respiratory disease, occupational

asthma, exercise-induced asthma, and menstruation- or obe-
sity-associated asthma. Inflammatory patterns on sputum
analysis have revealed eosinophilic, neutrophilic, and pauci-
granulocytic types of asthma. Therefore, asthmatics can be
stratified into several clinical and physiological subgroups.
Recently, biological phenotypes (endotypes) have been in-
troduced to classify parts of the asthma process. Many bio-
logical mediators such as immune and constitutional cells in
allergy, inflammation, and airway remodeling are candidates
for determining endotypes, e.g., Th2, Th17, innate Th2, epi-
thelial and smooth muscle dysfunctions (Table 4). Thus, fu-
ture genetic association studies should be applied to asth-
matics stratified into well defined subphenotypes using
cluster analysis and new endotypes.***

Gene-environment interactions

Whereas there are certainly genetic factors involved in the
development of multifactorial diseases, the prevalence of
childhood and adult-onset asthma has increased dramatical-
ly in both developed and developing countries during the

Table 3. Comparison of Odds Ratios of T Allele rs7216389 in ORMDL3 between Early Onset and Adult Onset of Asthma

Adults, early onset Adult onset
Study group
na/nc p value OR (95% CI) na/nc p value OR (95% CI)
Iceland 617/30898 1.4x10” 1.44 (1.28, 1.63) 744/30898 0.064 1.11 (0.99, 1.23)
Australia 370/564 0.016 1.26 (1.04, 1.52) 226/564 0.22 0.87 (0.70, 1.08)
The Netherlands 156/1564 0.0081 1.37 (1.09, 1.73) 57/1564 0.55 1.12 (0.77, 1.63)
Korea 211/558 0.0049 1.49 (1.13, 1.96) 1176/558 0.35 1.08 (0.92, 1.28)
United Kingdom 81/241 0.07 1.39(0.97, 1.99) 60/241 0.63 1.10 (0.74, 1.65)
Combined non-icelandic 818/2927 1.6x10° 1.35(1.19, 1.52) 1519/2927 0.74 1.02 (0.91, 1.15)
Combined all 1435/33825 1.5x10™ 1.40 (1.28, 1.52) 2263/33825 0.11 1.07 (0.99, 1.16)
na/nc, number of asthmatics and controls; OR, odds ratio; Cl, confidence intervals.
Adapted from Halapi, et al
25
3
05 H
0 I I I I I I I I I I I I I I I I
0 4 12 16 20 24 28 32 36 40 44 43 52 56 60 64 68

Onset age of asthma (years)

Fig. 1. Age-dependent changes of odds ratios of T allele rs7216389 in ORMDL3 in respect to the association with asthma. Permission license number:
3596250009660. Taken with permission from Halapi, et al. Eur J Hum Genet 2010:18:902-8.2
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Table 4. Categories of Asthma According to Etiology, Clinical Patterns, and Underlying Mechanisms

Related triggers (environment) Inflammatory patterns Clinical courses Mechanisms
Aspirin or NSAID Eosinophilic Severity-defined Th2 dominant
Environmental allergens Neutrophilic Exacerbation-prone Th1 dominant
Occupational irritants Pauci-granulocytic Chronic airflow restriction Th17 dominant
Hormonal changes Resistance to steroids Innate Th2 dominant
Exercise Age at onset Epithelial dysfunction

Viral infection
Obesity

NSAID, nonsteroidal anti-inflammatory drugs.

last two to three decades.?® Epidemiological studies have
demonstrated that the entirety of SNPs discovered so far is
not able to explain all phenotypic differences. The twin co-
hort study mentioned above, for example, showed a concor-
dance rate for self-reported asthma in MZ twin pairs of
19%.%” Assuming that MZ twins have identical genetic vari-
ants, they should develop asthma almost concurrently. How-
ever, a concordance rate of less than 20% indicates that non-
genetic factors may play a role in the development of asthma.
One possible explanation for this discordance is epigenetics,
which is fundamentally affected by the environment. Al-
though the concept of gene-environment (GxE) interactions
emerged in the 19th century, investigation of GXE interac-
tions has been mainly limited to candidate genes or candi-
date environmental exposures. In 1938, Haldane?® suggest-
ed that genetic differences might explain the variability of
respiratory symptoms and survival of potters in response to
industrial exposures.

While the effects of environmental factors certainly de-
pend on genetic susceptibility, exposure to smoking and
malnutrition during pre- and post-natal periods are well
known risk factors for asthma. Moreover, asthma is trig-

232 indoor and outdoor

gered and exacerbated by allergens,
air pollutants,® occupational exposures,*** microbial and
viral pathogens,***® nutrition,** and lifestyle.**

The first and simplest situation is a candidate interaction:
both the gene and the environmental factor are known and
assumed to be involved in a kind of direct physical or chem-
ical reaction. Well known and extensively studied candidate
interactions are the interactions between the CD/4 gene and
environmental exposure to endotoxin, an essential compo-
nent of the gram-negative bacterial cell wall,** between
Toll-like receptor genes and infectious agents,* and between
HLA genes and allergens,* which are presented to T lym-
phocytes via HLA molecules on dendritic cells.

Occupational exposure to inducers or triggers is an impor-
tant and easily accessible environmental factor, e.g., toluene

diisocyanate (TDI)-induced asthma in Korean patients as
analyzed by GWAS.*” Genetic polymorphisms of CTNNA3
(catenin alpha 3, alpha-T catenin) were significantly associ-
ated (OR=5.84 for rs10762058) with the TDI-induced asth-
ma phenotype, and PAF increased up to 24%, indicating that
missing heritability of asthma can be compensated by intro-
duction of environment factors into the genetic analysis.
Other examples of environmental effects on susceptible in-
dividuals are drug-induced reactions such as aspirin exacer-
bated respiratory disease (AERD). Association studies on
AERD began with biologically plausible genes responsible
for over- or under-production of critical modulators in the
metabolism of arachidonic acids. LTC4S, ALOX5, NAT2,
CysLTRI, and CYSLTR? of the cysteinyl leukotriene path-
way have AERD-associated SNPs with ORs ranging from
1.88 to 9.78 (Fig. 2).* Mediators in the pathways of lipox-
ins, thromboxanes, and prostaglandins also contribute to ad-
verse aspirin reactions, with some genes of those pathways,
and others discovered by GWAS,* showing strong, yet
slightly lower ORs than the genes of the cysteinyl leukotri-
ene pathway. However, diagnosis of AERD is hampered by
the low penetrance of these genotypes, i.e., if genetically
susceptible subjects do not take aspirin or nonsteroidal anti-
inflammatory drugs (NSAID) in their lifetime, they will not
develop AERD or aspirin-induced urticaria. Thus, history of
aspirin or NSAID intake should be assessed at diagnosis, al-
though exact amounts and times of intake are hardly record-
ed by patients or physicians.

In the first asthma GWAS, identifying a strong association
of asthma with the 17g21 locus (Fig. 3),® a further interest-
ing finding on 17q21 variants came out after the 1511 sub-
jects from 372 families were grouped by passive exposure
to environmental tobacco smoke early in life.*> ORMDL3
variants at rs8076131 showed significant association (OR=
2.5) with the risk of asthma in families with offspring ex-
posed to cigarette smoke, in contrast to the unexposed (OR=
1.38). This result, which was later replicated,’*? hinted at
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Fig. 2. Genetic impact of SNPs in candidate genes of the arachidonic acid pathway on aspirin exacerbated respiratory disease. Data are represented as
odds ratios (OR). Taken with permission from Park, et al. Allergy Asthma Immunol Res 2013;5:258-76.” SNPs, single nucleotide polymorphisms.
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Fig. 3. Genetic impact of SNPs in candidate genes of inmune and inflammatory pathways on aspirin exacerbated respiratory disease. Data are represented
as odds ratios (OR). Taken with permission from Park, et al. Allergy Asthma Immunol Res 2013;5:258-76." SNPs, single nucleotide polymorphisms.
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Fig. 4. Example of candidate interaction between gene and environment. A
variant (rs8076131) in ORMDL3 (gene) is associated with early asthma and
exposure to environmental tobacco smoke (ETS, environment). OR increas-
es two times in cases with positive ETS than in cases with negative ETS.
Modified from Bouzigon, et al. OR, odds ratio.

the importance of environmental factors in genetic studies
on asthma (Fig. 4). The first published genome-wide GXE
interaction study for asthma explored interactions between
farm-related exposure and genome-wide SNPs in 1700 chil-
dren from four rural areas in Central Europe.> This well de-
signed study did not reveal any significant interactions with
common SNPs previously associated with asthma. Never-
theless, interactions were detected with rare SNPs, e.g., in
genes of the glutamate receptor pathway.>* For the most
complex future scenario in which both genes and environ-
ment are unknown, exposomes—large sets of environmental
exposures®—and specific asthma phenotypes™ need to be
defined. While agnostic approaches to GXE interactions are
still in their infancy, methodological progress towards opti-
mization of study design and analytical methods has been
made.*® Recently, both gut and airway microbiomes were
found to contribute to chronic asthma, introducing envi-
ronmental microbiomes as further complicating factors of
complex GxE interactions in asthma development.

Mechanisms behind gene-environment interactions in
asthma

Epigenetics comprises changes in gene expression due to
mechanisms other than variations of the underlying DNA
sequence,®® which may induce phenotypic alterations and

persist through cell divisions for the remainder of a cell’s
life, possibly lasting for multiple generations without any
change in the intrinsic DNA sequence of an organism. Epi-
genetic changes include histone deacetylation, DNA meth-
ylation, and non-coding RNAs. Particularly regions of meth-
ylated DNA, i.e., methyl groups covalently added to cytosine
residues in CpG dinucleotides,”’ have been correlated with
tissue-specific expression of several genes and with active
coding regions across the genome.®

In the human genome, about one fifth of CpG islands at 5’
UTRs are variably methylated, and one third of methyl-
ations correlate with amounts of transcripts. As epigenetics
plays a role in main immunological aspects of asthma such
as T-cell differentiation and regulation, genome-wide studies
of methylation status at various loci may identify new asth-
ma initiating and modulating genes and pathways.

So far, genome-wide CpG methylation changes have been
found in a few studies of asthmatics, e.g., methylation pat-
terns of whole genome DNA were significantly different be-
tween nasal polyps of subjects with AERD and aspirin toler-
ant asthma (ATA) patients, whereas less differences were
found in buffy coat.®® Differences between AERD and ATA
comprised 332 CpG sites in 296 genes that were hypometh-
ylated, and 158 sites in 141 genes that were hypermethyl-
ated (Fig. 5). CpG site methylations of nasal polyps did not
correlate with those of bufty coats, indicating that differenc-
es in methylation patterns were a nasal tissue-specific find-
ing. Among the genes of the arachidonic acid pathway, pros-
taglandin E synthase was hypermethylated and prostaglandin
D synthase, arachidonate 5-lipoxygenase-activating protein,
leukotriene B4 receptor, and lipoxygenase homology do-
mains 1 were hypomethylated, indicating that different meth-
ylation patterns of these candidate genes may be responsible
for the penetrance of specific phenotypes such as AERD in
asthma. In the bronchial mucosa of atopic asthmatics, hy-
permethylation was detected at 6 loci in 6 genes, while hy-
pomethylation was found at 49 loci in 48 genes, compared
to non-atopic asthmatics.®

CONCLUSIONS

The definition of phenotypes is of major importance to ge-
netic studies. Ways of improving phenotype definition in-
clude physiologic or biological phenotypes related to dis-
ease processes (endotypes) and the use of unbiased and
statistically based approaches such as cluster analysis, which
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Fig. 5. CpG DNA methylation patterns of nasal polyps and peripheral blood mononuclear cells obtained from subjects with AERD and ATA. (A) Volcano plot of
differential methylation levels between AERD and ATA in nasal polyp tissues (A) and buffy coat samples (B). Red dots, deltabeta>0.5 and p value<0.01; blue
dots, deltabeta<-0.5 and p value<0.01; grey dots, -0.5<deltabeta<0.5 and p value>0.01. Deltabeta, difference of DNA methylation level (subtracting DNA meth-
ylation level of ATA from AERD). -log (p), log-transformed t-test p values. (C) Distribution of DNA methylation levels of AERD and ATA in buffy coat and nasal
polyps. Average Beta, DNA methylation level (0 to 1). (D) Heat map of 490 differentially methylated CpGs between AERD and ATA in buffy coat and nasal pol-
yps. Taken with permission from Park, et al. Allergy Asthma Immunol Res 2013;5:258-76.® AERD, aspirin exacerbated respiratory disease; ATA, aspirin toler-

ant asthma.

are promising because they may define new phenotypes
from a number of features related to disease occurrence,
evolution, therapy, and biological phenotypes. As time-de-
pendent change plays a major role in clustering-based ap-
proaches, more precise phenotyping should be obtainable
from longitudinal studies. Taking into account time of asth-
ma onset can characterize novel GXE interactions, extending
the two-dimensional problem of GXE interactions to a three-
dimensional problem. Although most genetic studies so far
have examined single phenotypes, joint analysis of multiple
phenotypes through multidimensional and multivariate meth-
ods can improve statistical power for identifying genes with
a pleiotropic effect. Although a number of multivariate meth-
ods have been proposed, improvements are needed to inte-
grate information from various data types, including ““-omics”
data. Moreover, as for GWAS, meta-analysis of gene-envi-
ronment interaction studies can increase driving power fur-
ther and provide robust estimates of GXE interactions. As

the identification of functional regulatory elements for hu-
man gene expression is an active subject of research in the
postgenomic era, longitudinal studies, including collection
of biological samples over time, are a desirable way to vali-
date the positive results obtained on GXE interactions.
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