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 Abstract 
  Purpose:  To characterize total outflow facility across the live adult mouse lifespan as a refer-
ence for mouse glaucoma studies and the common C57BL/6 background strain.  Methods:  
Microperfusion was performed by single-needle cannulation and feedback-controlled cou-
pling of pressure and flow to maintain a constant pressure in the anterior chambers of live 
C57BL/6NCrl mice aged 3–4 months ( n  = 17), 6–9 months ( n  = 10), and 23–27 months ( n  = 
12). This mouse age range represented an equivalent human age range of young adult to el-
derly. We characterized the following across age groups in vivo: (1) outflow facility based on 
constant pressure perfusion in a pressure range of 15–35 mm Hg, (2) perfusion flow rates, and 
(3) anterior segment tissue histology after perfusion. Thirty-nine live mice underwent perfu-
sion.  Results:  Pressure-flow rate functions were consistently linear for all age groups (all  R  2  > 
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   What Is It about? 

Mice have an aqueous drainage system that is similar in organization and function to that of primates. 
Live mice and ex vivo mouse eyes are increasingly being used as glaucoma research models to better 
understand aqueous physiology, dissect out pathophysiology, and test new therapies. We measured 
total outflow facility in vivo across the adult lifespan of C57BL/6 mice, a common background strain for 
engineered mice. Our data provides outflow facility reference information for live C57BL/6 mice that 
may be used as background controls in age-related glaucoma studies.
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0.96). Total outflow facility in mice aged 3–4, 6–9, and 23–27 months was 0.0066, 0.0064, and 
0.0077 μL/min/mm Hg, respectively. Facility was not significantly different between age 
groups (all  p  > 0.4). The groups had closely overlapping frequency distribution profiles with 
right-sided tails. Post hoc estimates indicated that group facility differences of at least 50% 
would have been detectable, with this limit set mainly by inherent variability in the strain. A 
trend toward higher perfusion flow rates was seen in older mice aged 23–27 months, but this 
was not significantly different from that of mice aged 3–4 months or 6–9 months ( p  > 0.2). 
No histological disruption or difference in iridocorneal angle or drainage tissue structure was 
seen following perfusion in the different age groups.  Conclusion:  We did not find a significant 
difference in total outflow facility between different age groups across the live C57BL/6 mouse 
adult lifespan, agreeing with some human studies. The possibility that more subtle differ-
ences might exist ought to be judged with respect to the heterogeneity in facility at different 
ages. Our findings provide reference data for live perfusion studies pertaining to glaucoma 
involving the C57BL/6 strain. 

 

© 2017 The Author(s)
Published by S. Karger AG, Basel 

   Introduction 

 Mice have an aqueous drainage system that is similar in organization and function to that 
of primates. Live mice and ex vivo mouse eyes are increasingly being used as glaucoma 
research models to better understand aqueous physiology, dissect out pathophysiology, and 
test new therapies  [1–14] . The mouse also offers practical advantages for studying age-
related glaucoma as its lifespan and period of ageing are relatively short, spanning a period 
of up to 2 years  [15]  compared with equivalent ageing in nonhuman primates of 20–30 years 
 [16–19] . 

  We have established a 1-needle anterior chamber microperfusion approach for live 
mouse eyes  [1, 14]  that is suited to tiny mouse anterior chambers compared with 2-needle 
approaches traditionally used in larger primates  [20, 21] . A feedback control system coupling 
pressure and perfusion flow rate permits reliable constant-pressure perfusion of the mouse 
anterior chamber through a single needle. Pressure transduction in this system is accurate, 
flow measurements are stable and reproducible  [1, 14] , and outflow facility values agree with 
other reports  [4–6] .

  We measured total outflow facility in vivo in C57BL/6 mice, a common background strain 
for engineered mice. Perfusion studies were performed in mice aged 3–4 months, 6–9 months, 
and 2 years to measure total outflow facility across the adult mouse lifespan equivalent to 
young adult to elderly humans  [15] .

  Methods 

 Animal Husbandry, Anesthesia, and Perfusion Apparatus 
 Mouse experiments were performed in accordance with the Association for Research in 

Vision and Ophthalmology (ARVO) Statement for Use of Animals in Ophthalmic and Vision 
Research. Institutional Animal Care and Use Committee (IACUC) approval was obtained. 
C57BL/6NCrl mice aged 3–4 months and 6–9 months were purchased from Charles River 
Laboratories (Wilmington, MA, USA). Mice 23–27 months were aged from the pool of mice 
obtained originally at 6–9 months. The study group comprised 20 male and 19 female mice. 
The mice were raised and housed in air-filtered clear cages with a bedding of pine shavings, 
subject to a 12-h light/dark cycle, and fed ad libitum. 
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  Mice were anesthetized by intraperitoneal injection of a mixture of ketamine (60–85 mg/
kg), xylazine (6–8.5 mg/kg), and acepromazine (1.5–2.5 mg/kg), and titrated based on 
observed mouse movement as well as moment-to-moment monitoring for irregular flow rate 
and pressure as traced by perfusion recording software (LabChart 7.3.4; ADInstruments, 
Colorado Springs, CO, USA).

  Anterior chamber cannulation was performed with a 35-gauge needle (Medicom, Lachine, 
QC, Canada) connected to a perfusion apparatus with a calibrated glass microsyringe (50 μL, 
Hamilton 1705TLL; Hamilton Inc., Reno, NV, USA), microperfusion pump (PHD Ultra; Harvard 
Apparatus, Holliston, MA, USA), and a computer ( Fig. 1 ), as previously described  [1] . The 
needle insertion site on the cornea was monitored for leakage as judged by external pooling 
of leaking aqueous, alteration of fluorescein dye applied to the cannulation site in which clear 
fluid appeared with the leakage, or disruption of a silicone grease smear across the external 
corneal needle insertion site. With correct cannulation, it was rare to see leakage around the 
needle entry site. The sharp needle afforded easy corneal penetration during cannulation 
without tissue contusion. Needle blockage did not occur, as evidenced by the sharply increased 
outflow rate typically seen with needle removal. Needles were not reused.

  Perfusion Protocols and Analysis 
 For constant pressure perfusion, the anterior chamber was perfused to achieve a stable 

constant pressure for at least 3 min during which flow and pressure were recorded. This 
process was repeated for constant pressure perfusions at physiologically relevant pressures 
of 15, 20, 25, 30, and 35 mm Hg. To determine total outflow facility of each animal, pressure 
and flow rate data were extracted from the software at a rate of 1 per 10 ms for 15,000 consec-
utive data points for each pressure condition. Perfusion flow rate represented the physio-
logical outflow rate and perfusion pressure represented intraocular pressure. The rela-
tionship between pressure and flow rate for each animal was analyzed in scatter plots and 
modeled by regression analysis. Measurement accuracy, control algorithm, and flow rate 
variability at each pressure was reported in a previous publication  [1] .
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  Fig. 1.  Schematic diagram of ex-
perimental setup for feedback-
controlled single-needle constant 
pressure anterior chamber perfu-
sion in live mice. A 35-G needle for 
live mouse anterior chamber can-
nulation was connected via rigid 
tubing to a pressure transducer 
and then microsyringe pump, 
bridge amplifier, and digital I/O 
unit integrated with analytical 
software on a computer. The 
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  Live mouse total outflow facility (C; μL/min/mm Hg) was determined as the slope of the 
flow rate (F; μL/min) versus pressure (P; mm Hg) regression function. Frequency distri-
bution analysis of outflow facility in the different groups was performed and compared. 
Group data were compared using the nonparametric Mann-Whitney U test with  p  < 0.05 
considered significant. Data was log-transformed where necessary for analysis of variance 
(ANOVA) and  t  tests. Mean flow rates for equivalent pressures were determined and analyzed 
for differences between age groups by ANOVA. Histological analysis (hematoxylin and eosin) 
of formalin-fixed paraffin-embedded sections of the outflow tissues from mice of different age 
was performed to ascertain if tissue disruption occurred during perfusions.

  Results 

 Thirty-nine live C57BL/6NCrl mice underwent constant pressure anterior chamber 
perfusion within a perfusion pressure range of 15–35 mm Hg. Mean (±SD) body weight was 
27 ± 1.6, 27 ± 1.5, and 42 ± 14 g for mice aged 3–4 months ( n  = 17), 6–9 months ( n  = 10), and 
23–27 months ( n  = 12), respectively. Mice aged 23–27 months, having gained weight during 
ageing, were heavier than 3- to 4-month-old ( p  = 0.004) and 6- to 9-month-old mice ( p  = 
0.003). Mice 3–4 months and 6–9 months were similar in weight ( p  = 0.6). 

  A consistently linear relationship between perfusion flow rate and pressure in a pressure 
range of 15–35 mm Hg was seen across all age groups (all  R  2  > 0.96). Total outflow facility in 
mice aged 3–4 months, 6–9 months, and 23–27 months was 0.0066, 0.0064, and 0.0077 μL/
min/mm Hg, respectively, as shown in  Figure 2 . 

  The pressure-flow relationship curve for mice aged 23–27 months had a slight vertical 
offset compared with mice aged 3–4 months and 6–9 months, as seen in  Figure 2 . A trend 
toward higher perfusion flow rates for a given perfusion pressure was seen in mice aged 
23–27 months compared with mice aged 3–4 months and 6–9 months, but apparent differ-
ences were not significant (all  p  > 0.2;  Table 1 ).

  Total outflow facility in mice aged 3–4 months was not significantly different from mice 
aged 6–9 months ( p  = 0.94) or 23–27 months ( p  = 0.44), as shown in  Figure 3 . Total outflow 
facility in mice aged 6–9 months and 23–27 months was also not significantly different ( p  = 
1.0). 
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 Table 1.  Comparison of perfusion flow rates (μL/min) at different perfusion pressures in mice aged 3–4 
months, 6–9 months, and 23–27 months

Age 15 mm Hg 20 mm Hg 25 mm Hg 30 mm Hg 35 mm Hg

3–4 months 0.08±0.05 0. 09±0.07 0.12±0.08 0.16±0.11 0.21±0.13
6–9 months 0.09±0.06 0.11±0.08 0.13±0.08 0.19±0.09 0.21±0.12

23–27 months 0.11±0.08 0.13±0.09 0.16±0.11 0.21±0.12 0.26±0.14

 Values are presented as means ± standard deviation. p > 0.2 for comparisons between age groups.
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  Fig. 3.  Outflow facility measurements in different age groups: scatter plot ( a ), box and whisker plot ( b ), and 
significance testing using the Mann-Whitney U test ( c ). Green: 3–4 months. Red: 6–9 months. Blue: 23–27 
months. Box and whisker plots show minimum, 1st quartile, median, 3rd quartile, and maximum outflow 
facility for each age group. 
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  Outflow facility frequency distributions for the different age groups were non-Gaussian 
with a right tail, as shown in  Figure 4 . The nonparametric Mann-Whitney U test did not show 
significant differences between the age groups, as reported in  Figure 3 . 

  Histological analysis showed no morphological differences in the drainage tissues or 
iridocorneal angle structures after perfusion, as shown in  Figure 5 .

  Discussion 

 We measured total outflow facility in C57BL/6 mice of different ages representing 
sampling across a significant portion of the adult mouse lifespan: mice aged 3–4 months 
represented young adults, mice aged 6–9 months were middle-aged, and mice 23–27 months 
represented elderly mice. Typical human ages over which primary open-angle glaucoma 
develops fall within this range  [15] . Total outflow facility measurements in our live C57BL/6 
mice were similar to those reported following constant pressure perfusion in enucleated  [4]  
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  Fig. 4.  Outflow facility frequency distribution analysis for mice aged 3–4 months ( a ), 6–9 months ( b ), and 
23–27 months ( c ). Distribution analysis is shown as superimposed curves ( d ) for the different age groups 
identified as green: 3–4 months, red: 6–9 months, and blue: 23–27 months. 
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and live C57BL/6 eyes  [1] , as well as other strains of live mice, such as NIH Swiss white 
(0.0051 μL/min/mm Hg)  [5] .

  We did not find a significant difference in outflow facility between the age groups. Sample 
size calculation was based on our prior published data using the same perfusion system and 
mouse strain (baseline outflow facility of 0.006 μL/min/mm Hg; standard deviation of 0.002 
μL/min/mm Hg)  [1, 14] . Estimated age-related facility decline was extrapolated from data 
covering an equivalent lifespan in nonhuman primates  [17]  ( ∼ 50%, to 0.003 μL/min/mm 
Hg). Post hoc analysis to test group differences when modeling all 3 age groups together by 
ANOVA estimated that the minimum detectable difference in mean facility between the oldest 
and youngest age groups for our samples was 50% ( Table 2 ). Our analysis of outflow facility 
frequency distributions showed a non-Gaussian distribution with right tail of values that was 
reproducible across all age groups. The lack of significant change was associated with marked 
overlap in facility values, as seen in superimposed group scatterplots and frequency distribu-
tions in  Figures 3  and  4 . It should be kept in mind that the 90% power level of our sample 
calculation, while reasonably stringent, carries a 10% chance of β error (type II; false nega-
tives). Also, our study, which was powered to detect a difference of at least 50%, may have 
missed smaller facility differences. The clinical significance of this possibility would have to 

20 μm

3–4 months 6–9 months 23–27 months

a b c

  Fig. 5.  Representative hematoxylin and eosin-stained paraffin sections of perfused mouse anterior segments 
and drainage tissues at ages 3–4 months (a), 6–9 months (b), and 23–27 months (c). Red arrowheads indicate 
the anterior edge of the iridocorneal angle. Blue arrowheads indicate the location of Schlemm’s canal and 
overlying trabecular meshwork. 

 Table 2. Mean outflow facility in the different mouse age groups

Age Mean outflow facility, 
μL/min/mm Hg

Group 
SD

ANOVA 
SEM

3–4 months 0.0074 0.0051 0.0012
6–9 months 0.0062 0.0031 0.0015
23–27 months 0.0074 0.0059 0.0014

Method
Pairwise contrast in
3-group ANOVA

SEM Minimum detectable difference % change

0.00185 0.0037 50%

Mean facility values tabulated here were calculated by averaging individual outflow facility of mice within 
each age group. These values are expected to differ slightly from the values obtained by linear regression of 
each group’s average flow rates with reference to perfusion pressure [1, 3], as shown in Figure 2. SD, standard 
deviation; SEM, standard error of the mean.
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be judged with respect to intraocular pressure, which has been reported as unchanged or 
slightly increased over a 1- to 2-year age range in C57BL/6 mice  [22, 23] .

  Our observation that total outflow facility did not change with age in live C57BL/6 mice 
agrees with perfusion studies of enucleated eyes of C57BL/6 mice  [4] . Our study extended the 
upper age limit previously reported for live mouse facility  [22]  to over 2 years, and still we 
did not observe a change in outflow facility. A recent live C57BL/6 mouse perfusion study 
showed a trend, but not significant age-related increase, of outflow facility in mice aged up to 
14 months  [22] . Rhesus monkeys show a decline of outflow facility with age  [16, 17] . Human 
studies report reduced or unchanged outflow facility with age  [24–33] . 

  We observed a slight offset of the flow-pressure function in the presence of unchanging 
slope in mice aged 23–27 months relative to other age groups. While this suggests a trend 
toward increased perfusion flow rate across perfusion pressures in our oldest mice, apparent 
differences between age groups were not significant for any of the perfusion pressures we 
used (15, 20, 25, 30, or 35 mm Hg; all  p  > 0.2). True increased perfusion flow with unchanged 
outflow facility in this scenario may reflect a concurrent increase in outflow rate (e.g., uveo-
scleral) or decrease in inflow (pseudofacility or aqueous formation) with age and during 
perfusions  [34, 35] . In primates, uveoscleral outflow, aqueous formation, and pseudofacility 
are reported to decline with age  [18, 25, 33, 36–39] , episcleral venous pressure is steady with 
age, and ocular rigidity increases with age  [25, 33, 39–41] .

  We did not study other mouse aqueous dynamics parameters, which have been reported 
 [5, 7, 42, 43] . It is possible that the separate outflow components of conventional (trabecular) 
and unconventional (uveoscleral) facility change relative to each other with age. Establishing 
whether mouse conventional facility changes with age requires specific methodology adapted 
for mice to study whether other factors such as scleral rigidity, pseudofacility, and uveo-
scleral outflow also change with age in mice  [16–19, 24, 25, 44] .

  In summary, our data provides outflow facility reference information for live C57BL/6 
mice that may be used as background controls in age-related glaucoma studies. Our post hoc 
estimates indicated that a facility change of at least 50% would have been detectable using 
our methodology in the animals we tested. We did not find a significant difference in total 
outflow facility across age groups covering the C57BL/6 mouse adult lifespan. This agreed 
with a number of human observations  [30–33] , but not other studies in humans  [24–29]  or 
primates  [16, 17] . It is possible that subtler facility differences existed, which to ascertain 
requires testing of significantly more animals. The practicality of embarking on this should 
be judged by the heterogeneity in our facility data at the different mouse ages and cost and 
time needed to age the animals.
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