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Abstract

Background

The joint study of multiple datasets has become a common technique for increasing statisti-

cal power in detecting biomarkers obtained from smaller studies. The approach generally

followed is based on the fact that as the total number of samples increases, we expect to

have greater power to detect associations of interest. This methodology has been applied

to genome-wide association and transcriptomic studies due to the availability of datasets in

the public domain. While this approach is well established in biostatistics, the introduction of

new combinatorial optimization models to address this issue has not been explored in

depth. In this study, we introduce a new model for the integration of multiple datasets and

we show its application in transcriptomics.

Methods

We propose a new combinatorial optimization problem that addresses the core issue of bio-

marker detection in integrated datasets. Optimal solutions for this model deliver a feature

selection from a panel of prospective biomarkers. The model we propose is a generalised

version of the (α,β)-k-Feature Set problem. We illustrate the performance of this new meth-

odology via a challenging meta-analysis task involving six prostate cancer microarray data-

sets. The results are then compared to the popular RankProd meta-analysis tool and to

what can be obtained by analysing the individual datasets by statistical and combinatorial

methods alone.

Results

Application of the integrated method resulted in a more informative signature than the rank-

based meta-analysis or individual dataset results, and overcomes problems arising from

real world datasets. The set of genes identified is highly significant in the context of prostate
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cancer. The method used does not rely on homogenisation or transformation of values to a

common scale, and at the same time is able to capture markers associated with subgroups

of the disease.

Introduction
The extraction of information arising from the integration of multiple datasets and its transla-
tion into domain knowledge is a significant problem in several fields. Today, more and more
biology and health related studies around the world are engaging in the useful policy of leaving
their raw results available for the common good via public domain databases. This open shar-
ing has benefitted the reproducibility of other researchers’ findings. The existing online data-
sets are also becoming very useful for the development of new mathematical and
computational approaches for pattern recognition, machine learning and artificial intelligence
methods. This healthy practice of sharing data is now being increasingly adopted by govern-
ments and scientific journals. The private and public sector is also engaged in “data-mining
competitions” in which the datasets are made widely available and crowd-sourced for data
analysis. In this new, digital and interconnected global research open data enterprise, this is
definitely a good direction for science, research and development and we are confident to af-
firm that this trend is here to stay.

The term ‘meta-analysis’ generally refers to an integrated study which aims at developing a
consensus of findings from individual studies. Sometimes authors use this term rather loosely
meaning just a ‘review’ of a set of existing studies that are independently obtained but related
to a set of common questions of interest [1]. When some conditions are met, an integrated
study can help to improve the power of the analysis by increasing the total number of samples
under consideration [2]. Meta-analyses are also an important tool when some of the existing
studies have conflicting conclusions [3] and the overall aim is to resolve them, if possible. In-
creasing the detection power of smaller studies by integrating them in a larger study has also
become a way to overcome research funding limitations. This is particularly the case in tran-
scriptomics, and there is an undeniable need for new mathematical models and algorithms
aimed at extracting information by jointly studying different datasets which often contain in-
formation extracted with different and ever-changing technological platforms.

The existence of large number of publicly available transcriptomic studies gives a strong
motivation for the development of new mathematical methods that help to extract panels of
biomarkers by employing several microarray datasets. In spite of the growing number of stud-
ies, an overall consensus has yet to be reached about how to do this [4, 5]. Researchers some-
times only highlight the obstacles ahead, for instance, by pointing at the essential differences in
microarray platforms, experimental designs, collection procedures for samples, heterogeneities
of laboratory protocols and the analysis methods used for the study [6]. Most of the studies are
unable to provide a definite answer to the question of interest since too few samples are entered
into the study [7]. However, all these confounding issues need to be considered and highlight-
ing them does not diminish the need to develop integrative techniques for joint panel of
biomarkers elicitation.

Many studies have shown that it is difficult to obtain a reliable result from a single dataset
[8–11]. Even though some researchers may eventually procure the financial resources to con-
duct studies with large number of samples, leading to greater power to detect individual mark-
ers, an integrated study can provide a clearer picture as the final result would look for
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consensus in a number of individual studies. This shows the necessity for developing combina-
torial optimization-based approaches to determine a significant list of genes from multiple
platforms when we are looking at a panel that acts together for a discrimination task across
several studies.

Multi-platform data integration remains challenging as the datasets from different experi-
ments are not directly comparable due to the factors associated with the generation of the data-
set [12]. Some of the challenges are simply technical in nature, for instance the genomic data
may come in a wide variety of data formats, thus making direct integration difficult. The data-
sets can be converted to a common data format before combining them, but this is not always
feasible [13]. Several methods have been proposed in the last few years for the meta-analysis of
gene expression data to find the set of significant genes among the selected datasets. The exist-
ing meta-analysis methods either perform statistics for each dataset or integrate all the selected
datasets into a single large dataset to estimate the differential gene expression. A rank based
method proposed by Breitling et al. [14] and later developed by Hong et al. into the RankProd
Bioconductor package [15], uses the fold changes between all interclass pair of samples to com-
pute dataset ranks for each gene, then combines ranks with the geometric mean of ranks across
sample pairs. MetaArray is another meta-analysis method proposed by Choi et al. [16] in
which the data is transformed into probability of expression [17] followed by the filtering of
genes based on the integrative correlation analysis. Mergemaid [18] is another package for
meta-analysis that helps to integrate heterogeneous platform datasets on the basis of user-pro-
vided IDs of genes. The standardized regression coefficients and z-scores are used as a measure
for the gene selection process form the integrated dataset. Although these methods are capable
to select signatures from the integrated dataset of heterogeneous platforms, they are incapable
to deal with genes not represented in all the datasets. A recently proposed method called NetSel
[19] is a heuristic rank aggregation method for feature selection that can be applied on hetero-
geneous set of lists. However, RankProd is by far the most popular of those methods, and we
have chosen it as a comparison benchmark.

The goal of this article is to present a new method for the integration of microarray gene ex-
pression datasets which may have been obtained using different platforms. We do this without
needing to transform the values to a common uniform format and range of values. We also
propose a new combinatorial optimisation approach to select the best set of common features
that can discriminate the given classes. The method is a generalised version of the proven and
very successful (α,β)-k-Feature Set methodology previously pioneered by our group [20, 21]
and we show here how it can be applied to the combined dataset. We benchmark our new
method by analysing the integration of six prostate cancer datasets produced using different
platforms and highlight its main findings. We deliberately turn our attention to relatively small
and also relatively old datasets, somewhat disregarded as potentially “uninteresting” due to the
advances of current biotechnologies. We compare the integrated results against the collection
of results of individually applying traditional statistical analysis and the (α,β)-k-Feature Set
methodology to each dataset. We aim to illustrate the potential of secondary analyses of these
datasets using the proposed technique.

The structure of the article is as follows; the materials and methods employed in this paper
are explained in detail in Section 2; in Section 3 we present our results by applying the proposed
integration and feature selection method on prostate cancer datasets. In Section 4 we present
some discussion on the basis of the result. Section 5 gives a conclusion of this study and
future directions.
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Materials and Methods

2.1 Datasets
The six publicly available prostate cancer gene expression datasets used in this study were col-
lected from Gene Expression Omnibus (GEO) or from the original source. The details of all the
datasets in this work are summarised in Table 1.

The selected datasets have been generated using two different platforms. The gene expres-
sion levels of three of them were measured using cDNA two-channel arrays and the other three
using Affymetrix arrays. The datasets are named according to the name of the first author of
the published article. As shown in, the last three datasets are collected form the same article, so
the datasets have been named with the first author’s initial and the GEO platform number (eg.
L-2695). Details of the datasets are as follow.

In [22], Singh et al. introduced an outcome prediction model to distinguish between tumour
and normal samples. The dataset used in this study contains 102 tissue samples collected after
radical prostatectomy. The sample consists of 50 normal samples and 52 primary prostate can-
cer samples. This dataset was generated using Affymetrix HG-U95A v2 (GPL8300) arrays.

The second dataset has been contributed by Welsh et al. [23] in 2001. The study investigates
a therapeutic approach to differentiate the tumour and normal samples. The dataset contains
55 samples that are hybridised to HG-U95A v2 (GPL8300) arrays. The samples are of 25 pri-
mary tumour and 9 normal tissues and the rest of the samples were taken from different do-
nors with different types of cancers.

The third dataset has been published by Uma et al. in 2007 [24]. This study introduces an
experimental design to address the differences in cellular content between primary and meta-
static tumours. The dataset contains 63 tumour tissue samples and 17 normal tissue samples
and has been produced using Affymetrix HGU95Av2 arrays.

Lapointe et al. [25] introduced a hierarchical clustering technique to distinguish tumour
from normal samples and to identify the subclasses of prostate cancer in 2004. This study was
performed using three different datasets produced using cDNA two-channel arrays; the first
Lapointe dataset (L-2695) contains 26 samples (13 primary tumour tissue, 9 normal tissue and
4 metastasis tissue samples). The second Lapointe dataset (L-3044), with a total sample count
of 41, has 23 primary tumour samples, 16 normal samples and 2 metastasis samples. The third
dataset (L-3289) contains a total of 45 samples, of which 26 are primary tumour, 16 normal
and 3 metastasis samples.

Table 1. Summary of datasets used in this study.

Name Plat Series NS Norm PT Met Probes EF

Singh [22] Affymetrix [HG-U95Av2] N/A 102 50 52 0 12558 1519

Welsh [23] Affymetrix [HG-U95Av2] N/A 55 9 25 21 12560 2429

Uma [24] Affymetrix [HG-U95B] E-GEOD-6919 80 17 63 0 37691 3484

L-2695 [25] SHBB GSE3933 26 9 13 4 44161 4288

L-3044 [25] SHCQ GSE3933 41 16 23 2 43009 4082

L-3289 [25] SHBW GSE3933 45 16 26 3 43009 4953

Name is the name assigned to the study throughout this paper. Plat is the platform details of each dataset. Series is the Gene Expression Omnibus

Series identifier for the dataset. NS is the original number of samples in the study, of which Norm are the number of healthy tissue samples, PT are the

number of primary tumour samples, Met is the number of metastasis samples present in each dataset, Probes is the number of probes present in each

dataset, EF is the number of probes present after entropy filtering.

doi:10.1371/journal.pone.0127702.t001
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We have restricted our study only to those samples which originate in either primary tu-
mours or normal tissue. The total numbers of samples are then 319, of which 202 are primary
tumours and the rest are from normal tissue.

2.2 Integration method
The direct integration of microarray gene expression data from multiple platforms is, in princi-
ple, greatly facilitated when there exists commonality between the platforms used. However
different gene expression platforms will target genes or transcripts differently by using different
sets of probes. There may be many probes mapping the same gene due to duplicate spotted
probes in microarray chips. On the other hand, there may be a single probe that maps to sever-
al genes (or loci) if the specificity of the probe sequence is not good enough. These probes must
be discarded from the preliminary analysis as it is difficult to analyse these multiple genes. In
addition, the interpretation of the results via Gene Ontology or pathway-informed databases
could be compromised by the multiple mapping problems. In addition to these difficulties, we
may also face the problem that one probe targeting different regions of the same gene could be
indirectly monitoring possible different abundances of protein isoforms. This many-to-many
nature of the mapping problem makes it difficult to take a simplistic approach to the essentially
different maps that platforms produce by their probe sets.

In this contribution, we map at the gene level. In order to map the probes across the plat-
forms in Table 1 to genes, we have used a simple alignment policy, explained below; with no
distinction of isoforms and also ignored the mentioned problems. The probes were mapped
using the hg19-GRCh37 version of the Genome Browser’s table produced by the Genome Ref-
erence Consortium to avoid the misnaming and misalignment of genes. In order to obtain a
relatively large number of probes that could be used in the final integrated dataset, we collected
those that satisfy any of the given three conditions:

• Where the probes are targeting the same sequence

• Where the targeting sequences are overlapping

• Where the targeting sequences are at a distance of at most 1000 base pairs

The probes from each dataset have been mapped to genes and the associated transcription
start and end position of the targeting genes compared according to the conditions mentioned
above. Whenever there is a common targeting gene for different probes from multiple datasets,
we consider the different combinations of those probes in the combined dataset. Similarly, if
the features (the transcription start and end sequences) have an overlap between them, or are
at a distance of at most 1000bp, the combination of those probes is also selected to be part of
the combined dataset. The selected list of combination of probes is given in the Supplementary
Materials (S1 Table). Each unique combination of probes from different datasets becomes a
feature in the combined dataset.

2.3 Feature selection method
Initially, we used Fayyad and Irani’s entropy-based heuristic on each individual dataset to re-
move uninformative features. This univariate selection mechanism is a pre-processing step re-
lated to the Minimum Description Length Principle (MDL) [26]. The purpose of using this
step in this method is twofold: it removes features that are not significantly different in healthy
and disease samples (thus it helps by reducing the dimensionality of the problem), and second
it helps discretise the values (which in turn facilitate the combinatorial approach).
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In this contribution we propose and analyse a new combinatorial approach to select a set of
k significant features that can explain the multi-platform integrated datasets. We call this prob-
lem the Coloured (α,β)-k-Feature Set problem. The approach is a generalised version of the (α,
β)-k-Feature Set problem methodology [27, 28] which is a supervised feature selection method
to select a significant set of features that can collectively separate the sample groups. The meth-
od has been successfully used in several studies by Moscato et al. for finding biomarkers for dif-
ferent diseases [20, 21, 28–34].

The (α,β)-k-Feature Set problem provides a significant set of genes that collectively maxi-
mise the inter-class discrimination and the intra-class coherency [33]. The method seeks to dif-
ferentiate all sample pairs which belong to different classes by selecting a minimum set of genes
that do not necessarily present a uniform expression level across samples in each class but col-
lectively provide the maximum amount of evidence. In contrast, rank methods that score and
order genes by their differential expression across the classes bring gene sets that may not work
together as a signature, particularly in complex diseases whose molecular characterisation may
present subgroups.

The mentioned feature selection method works well with a single uniform dataset, but not
for an integrated dataset. The Coloured (α,β)-k-Feature Set problem handles the integrated
dataset in a consistent manner and selects features that differentiate sample pairs across the
datasets. The application of an (α,β)-k-Feature Set problem based method for meta-analysis
thus helps provide the best set of features from the combined dataset, allowing researchers to
reveal the genetic pathways that take part in the development of the disease.

Here we more formally present the decision versions of the generalization of the k-Feature
Set problem called the (α,β)-k-Feature Set problem, the Coloured (α,β)-k-Feature Set problem
and the Generalised (α,β)-k-Feature Set problem. In what follows, let B represent the set of bi-
nary values, i.e. B ¼ f0; 1g; let n be the number of features andm the number of samples, p be
the number of sample groups (i.e., different platforms/cohorts/datasets) and the tuple y be the
class labels of the samples.

2.3.1 (α,β)-k-Feature Set.
Instance:. A set X ¼ fxijxi 2 B

n ^ 1 � i � mg, a tuple y 2 Bm, integers α> 0, β� 0,
k> 0

Parameters:. α, β and k
Question:. Is there a set I� {1,. . ., n} with |I|� k such that for all i, j 2 {1,. . .,m}

• If yi 6¼ yj there exists Iai;j � I with jIai;jj � a such that xi,s 6¼ xj,s for all s 2 Iaði;jÞ;

• If yi = yj there exists I
b
i;j � I with jIbði;jÞj � b such that xi,s = xj,s for all s 2 Ibði;jÞ?

Detailed explanation of safe reduction rules that help to reduce the dimensionality of the (α,
β)-k Feature Set problem are given in [20, 32].

2.3.2 Coloured (α,β)-k-Feature Set.
Instance:. A set X ¼ fxijxi 2 B

n ^ 1 � i � mg, a colouring function c: {1,. . .,m}! {1,. . .,
p}, a tuple y 2 B

m, integers α> 0, β� 0, k> 0
Parameters:. α, β and k
Question:. Is there a set I� {1,. . ., n} with |I|� k such that for all i, j 2 {1,. . .,m} where c

(i) = c(j)

• If yi 6¼ yj there exists Iai;j � I with jIai;jj � a such that xi,s 6¼ xj,s for all s 2 Iaði;jÞ;

• If yi = yj there exists I
b
i;j � I with jIbði;jÞj � b such that xi,s = xj,s for all s 2 Ibði;jÞ?
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In words, the Coloured (α,β)-k-Feature Set problem instance is constructed from a collec-
tion of individual (α,β)-k-Feature Set instances with common features, where the comparison
of feature values is limited to sample pairs formed from each individual instance. The “col-
oured” name stems from assuming samples in each individual instance are coloured with the
same unique colour, then only same coloured samples can be combined in pairs.

It is evident that the same set of data reduction rules presented in [21] for the (α,β)-k-Fea-
ture Set problem applies to an instance of the Coloured (α,β)-k-Feature Set problem, as the lat-
ter is formally equivalent to a larger instance of an (α,β)-k-Feature Set problem by an
appropriate relabelling of samples.

2.3.3 Generalised (α,β)-k-Feature Set.
In the most general form appropriate for meta-analysis of datasets with common features, the
(α,β)-k-Feature Set problem can be stated as follows:

Instance:. A set X ¼ fxijxi 2 B
n ^ 1 � i � mg, a function g : f1; . . . ;mg �

f1; . . . ;mg ! B; a tuple y 2 B
m, integers α> 0, β� 0, k> 0

Parameters:. α, β and k
Question:. Is there a set I� {1,. . ., n} with |I|� k such that for all i, j 2 {1,. . .,m} where g

(i, j) = 1

• If yi 6¼ yj there exists Iai;j � I with jIai;jj � a such that xi,s 6¼ xj,s for all s 2 Iaði;jÞ;

• If yi = yj there exists I
b
i;j � I with jIbði;jÞj � b such that xi,s = xj,s for all s 2 Ibði;jÞ?

The Generalised (α,β)-k-Feature Set problem has been devised to deal with the more general
situation in which some samples in one sample group may be compared to samples in another
sample group, for example. The binary function g(i, j) indicates when feature values for a given
arbitrary sample pair (i, j) can be compared.

In all previous formulations, the samples have been presented as an array of n+1 binary val-
ues, although this is not strictly necessary. The class label can be a categorical variable taking
values over a (typically small) set of categories or classes. The features can have values of any
kind, as long as there exists a meaningful comparison able to decide if any two values are con-
sidered equal or different.

2.3.4 Coloured (α,β)-k-Feature Set as an Integer Programming Problem.
Next, we present the Coloured (α,β)-k-Feature Set problem as an Integer Programming optimi-
sation problem. Let p, n,m and y be as given before. As the sample groups are disjoint, there
are no common samples between any two of them. For any sample j and any feature s 2 {1,. . .,
n}, let cj 2 {1,. . ., p} be the sample group it belongs to, and xjs the value of the feature for the
sample. For any sample pair (i, j) let

aijs ¼
1 if yi 6¼ yj and ci ¼ cj and xis 6¼ xjs

0 otherwise

(

and

bijs ¼
1 if yi ¼ yj and ci ¼ cj and xis ¼ xjs

0 otherwise

(

The objective function and constraints for the Coloured (α,β)-k-Feature Set problem integer
programming optimisation models are given below, where the binary variable fs is 1 if the
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feature s is selected to the feature set, and 0 otherwise. The problem seeks the minimum of:

k ¼ min
Xn

s¼1

fs ð1Þ

subject to the conditions:

Xn

s¼1

aijs f s � a 8ði; jÞ ð2Þ

Xn

s¼1

bijs fs � b 8ði; jÞ; ð3Þ

where:

fs 2 f0; 1g

A Coloured (α,β)-k-Feature Set problem instance can have more than one optimal solution
with k features in each. This multiplicity is resolved by a subsequent optimisation problem
which searches for the solution of size k with maximum cover. We then define the optimal so-
lution of the Coloured (α,β)-k-Feature Set problem as the one that maximises:

V ¼ max
Xn

s¼1

esfs ð4Þ

subject to the conditions:

Xn

s¼1

f s ¼ k ð5Þ

Xn

s¼1

aijs fs � a 8ði; jÞ ð6Þ

Xn

s¼1

bijs fs � b 8ði; jÞ; ð7Þ

where:

fs 2 f0; 1g

In Eq 4, the cover es is the number of pairs of samples that feature s covers, and can be speci-
fied as:

es ¼
X

i;j2f1;...;mg
ðaijs þ bijsÞ

The solution of the optimisation problem (1–3) requires the specification of the parameters
α and β. One way of requiring a robust solution of the problem is to specify α as large as possi-
ble. This value is determined by the instance of the problem, and is equal to the minimum
number of features that differentiate any sample pair of different class labels. Once the value of
k is obtained with β = 0, we can then repeatedly solve the problem (4–7) for increasingly large
values of β in (7), until the problem becomes unfeasible. The last feasible solution is the
signature sought.
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A final note about the computational complexity of this family of problems. The (α,β)-k-
Feature Set problem is at least as complex as the classical k-Feature Set problem, which is NP-
complete [35, 36]. The (α,β)-k-Feature Set problem is not only NP-complete, but W[2]-com-
plete [37, 38].

2.4 t-test
In order to benchmark against traditional statistical methods, we perform a t-test analysis of
the individual datasets. The t-test is a statistical significance test method used here to select
genes that exhibit differential gene expression between two different conditions [39], in our
case normal vs. primary tumour, above a certain p-value level of confidence. The procedure of
t-test is described below:

Let S1 and S2 be the mean values of a particular gene in the two different class labels 1 and 2,
of sizesm1 andm2. The t-statistic for this particular gene is computed as:

t ¼ S1 � S2

X
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
m1
þ 1

m2

q
where X is the pooled sample variance

X ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m1x21 þm1x22
m1 þm2 � 2

s

Here x21 and x
2
2 are the variance of replicated observations in each condition and n1 + n2 − 2

is the number of degrees of freedom. In our study we used the ‘genefilter’ Bioconductor pack-
age [40] with a chosen p-value of 10−4 to perform our t-test.

2.5 RankProd
We compare our results to those obtained by another popular meta-analysis method. Rank-
Prod is a non-parametric meta-analysis tool introduced by Hong et al. [15] to detect differen-
tially expressed genes. It arguably is the most widely used gene expression meta-analysis
method, and is provided as a Bioconductor package that modifies and extends the rank product
method proposed by Breitling et al. [14]. Fold Change (FC) is used as scoring criteria to rank
and compare genes within each dataset. An overall ranked gene list is produced by aggregating
the individual ranks across datasets.

A pair-wise fold change (pFC) is computed for each gene g within a given dataset k as,

Tg
1=C

g
1;T

g
1=C

g
2; . . . ;T

g
2=C

g
1; . . . ;T

g
nTk
=Cg

nCk

in which Tg
j and C

g
l are the expression values of gene g for sample j (belonging to experimental

condition T–e.g. “tumour”) and l (belonging to experimental condition C–e.g. “control”), and
nTk

and nCk
are the number of replicates which produce a total of Kk ¼ nTk

� nCk
pFC values

per gene. Then the corresponding pFC ratios are ranked and are denoted as rgi, where g = 1,. . .,
G represents the number of genes and i = 1,. . ., Kk represents the pairwise comparison between
samples. The rank product of each gene g is defined as the geometric mean,

RPg ¼
YK

i
rgi

� �1=K

Expression values for each gene within each datasets is independently permuted L times

and produce RP ðlÞ
g where l = 1,. . ., L by repeating the above steps. A reference distribution is

Meta-Analysis by Combinatorial Optimization: A Prostate Cancer Study

PLOS ONE | DOI:10.1371/journal.pone.0127702 June 24, 2015 9 / 26



obtained from all RP ðlÞ
g and the adjusted p-value and the false discovery rate for each

gene calculated.
In this study, the datasets are combined in terms of common genes across the platforms.

We have applied RankProd on the combined dataset to select genes associated to the condition
being investigated.

2.6 Robustness
To evaluate the robustness of our method with respect to perturbations in the data we have
performed a series of experiments. The presence of noise in the gene expression data is difficult
to estimate, as it depends on platform-specific factors as well as experimental conditions. How-
ever, the final manifestation of perturbations in the datasets would be a change in the composi-
tion of the set of probes that pass the MDL criterion. We have thus analysed the robustness of
the final integration results with respect to varying compositions of the individual datasets, for
different perturbation models, inspired by the ‘leave one out’ approach. Specifically, we have
modelled the following setups: a) removal of one, two and five genes from the combined data-
set, and b) removal of one gene from one and two individual datasets. In order to estimate the
worst case scenario, all genes were restricted to those that appear in our final signature as ex-
pressed in all six datasets. In each case, all combined probes corresponding to the chosen gene
(s) are removed. An integrated signature is then obtained and compared with our original sig-
nature. The procedure is repeated 10 times for the a) case and 5 times for the b) case, with ran-
dom selection of gene(s) and dataset(s), and average results reported.

Results
As we have mentioned before, to evaluate the applicability and usefulness of the proposed
method, we have selected primary tumours and normal samples from six prostate cancer data-
sets measured with different platforms. Since the method proposed in this work is a generaliza-
tion of the (α,β)-k-Feature Set approach for probe set selection, the most natural comparison is
to evaluate their results by contrasting them to those that are obtained by applying (α,β)-k-Fea-
ture Set individually. This means that we need to solve the feature set problem for each of the
datasets and find the individual gene signatures that discriminate the sample classes. We then
apply our proposed method, Coloured (α,β)-k-Feature Set problem. This experimental scenario
has been designed to observe the benefit of an integrated approach against the comparison of
gene lists obtained by analysing each of the individual experiments by separate.

For completeness we include the results of the individual datasets t-test analysis. In this way,
we compare the benefits of our integrated approach against a frequently used feature selection
method based on a univariate statistical test.

To evaluate the relative performance of the proposed method, we compare results obtained
by the RankProd method. As explained in the introduction, many meta-analysis methods are
not applicable in the general conditions of a multi-platform meta-analysis. RankProd is a pop-
ular choice that is able to do it, and somewhat similar in the sense that ranks genes based on
the comparison of values for pairs of samples of different class labels.

3.1 Individual (α,β)-k-Feature Set problem results
The application of the (α,β)-k-Feature Set methodology consists of a pre-filtering step and the
solution of a combinatorial optimisation problem. The pre-filtering selects features based on
the class information content and discard less informative features thus reducing the
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dimensionality for the subsequent combinatorial problem. Details of the methods are provided
in Section 0. The characteristics of the individual dataset result are given in Table 2.

Each dataset resulted in molecular signatures with a large number of genes (provided in the
S2 Table). Surprisingly the number of common genes between them is only seven and they rep-
resent a negligible overlap of results between all experiments. This shows the need of an inte-
grative method as it would be infeasible to come up with any form of statistical support that
could link these genes to putative pathways that could be deregulated. On the positive side,
however, all seven genes in the overlap already have reported association with prostate cancer.
The list and literature references are given in Table 3.

3.2 t-test Results
In order to have a baseline for comparison with another methodology common in practice, a t-
test was conducted on each of the six individual datasets to compare the gene expression levels
of normal and primary tumour samples. We compare this with our individual (α,β)-k- Feature
Selection results. The method is explained in detail in Section 2 and the individual dataset re-
sults are given in Table 4.

Large numbers of genes are filtered out from each dataset using the t-test approach (the re-
sulted list of genes is provided in S3 Table). The only genes common to the results of all six ex-
periments are EPCAM (epithelial cell adhesion molecule), also a known marker [17, 41–48],
SOX4, EEF2 and AMACR. This shows even less genes in common than the overlap between

Table 2. The results of the numerical solution of the (α,β)-k-Feature Set problem on each of the six individual datasets.

Dataset Feat.No After EF α β k (signature size)

Singh 12558 1519 215 329 754

Welsh 12560 2429 1188 1068 1768

Uma 37691 3484 881 1079 1857

L-2695 44161 4288 2266 2421 3533

L-3044 43009 4028 966 862 1800

L-3289 43009 4953 1397 1216 2696

Dataset is the short name used in this paper for the dataset. Feat. No is the initial number of features (probes) present in the dataset, After EF is the

number of features after applying entropy filtering, α and β are the values for the parameters α and β for any feasible solution, and k (signature size) is

the number of probes in the resulting solution to the individual (α,β)-k-Feature Selection problem for the dataset. For method details refer to Materials and

Methods.

doi:10.1371/journal.pone.0127702.t002

Table 3. List of common genes among all the individual dataset results from Table 2.

Gene Symbol Gene Name Reference

EEF2 Eukaryotic Translation Elongation Factor 2 [82, 83]

SPG20 Spastic Paraplegia 20 No associated reference

ERG Erythroblastosis Virus E26 Oncogene Homolog [89, 90]

AMACR Alpha-Methylacyl-CoA Racemase [59, 91]

SOX4 SRY (Sex determining Region Y)-box 4 [64, 90]

APOC1 Apolipoprotein C-I [92, 93]

GUCY1A3 Guanylate Cyclase 1, soluble, alpha 3 [94]

Gene Symbol is the official gene symbols. Gene Name is the expanded gene name. Reference is the

reference for each gene which shows the relation with prostate cancer.

doi:10.1371/journal.pone.0127702.t003
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individual (α,β)–k-Feature Selection signatures. The t-test result is consistent with the individu-
al (α,β)-k-Feature Selection results as SOX4, EEF2 and AMACR are also present in the overlap-
ping genes of individual (α,β)-k-Feature Selection results.

3.3 Coloured (α,β)-k-Feature Set problem results
To apply the proposed feature selection method we prepared a combined dataset collecting the
entropy filtered probes from the individual studies. This ensures that selected probes in each
individual study carry some differential expression information with respect to the sample clas-
ses, and also provides a well-defined discretization which respects the individual
study conditions.

Probes in one platform were matched to probes in another platform based on gene names
and genomic positions as explained in Section 0. The combined dataset contains 319 samples
and 16157 combined probes. Out of these, 1405 contain values for all six datasets and 10729
for three or more datasets which is annotated to 1454 unique genes. The number of combined
probes covering only one dataset was 3425. This uneven cover of datasets is due to some probes
being discarded by the entropy filtering as uninformative only in some datasets and not in oth-
ers. However, the large number of combined probes with values in three or more datasets indi-
cates a good level of coverage after dataset integration.

We then applied Coloured (α,β)-k-Feature Set selection methodology in the combined data-
set and obtained a resulting list of 3190 combined probes with a maximum of α and β value of
612 and 776 respectively, which corresponded to 1788 unique genes. The resulted number of
probes for selected number of datasets and their corresponding number of genes are given in
Table 5 (The list of genes can be found in S4 Table).

Table 4. t-test results on individual dataset.

Dataset Feat.No Signature size

Singh 1519 616

Welsh 2429 717

Uma 3484 690

L-2695 4288 286

L-3044 4028 654

L-3289 4953 647

Dataset is the short name used in this paper for the dataset. Feat.No is the number of features (probes)

present in the dataset before applying t-test, and Signature size is the number of genes in the resulting

solution for each dataset. For method details refer to Section 2.

doi:10.1371/journal.pone.0127702.t004

Table 5. Result of Coloured (α,β)-k-Feature Set selectionmethodology.

No of Datasets No of Combined Probes No of Genes

Four or more 2272 327

Five or more 1806 186

Six 792 120

No of Datasets is the considered number of datasets to find the coverage. No of Combined Probes is the

resulted number of features after applying Coloured (α,β)-k-Feature Set selection methodology and No of

Genes is the number of genes corresponds to the number of combined probes.

doi:10.1371/journal.pone.0127702.t005
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An gene ordering algorithm, presented in [49], has been applied on this set of genes to gen-
erate a heatmap that brings out the correlation between the resulted genes and is shown in Fig
1, heatmap for the 186 genes that cover five or more datasets and Fig 2 for the 120 genes that
cover all six datasets, respectively.

If we consider the genes that appear in the overlap of the t-test, (α,β)-k-Feature Selection
and Coloured (α,β)-k-Feature Selection results individually, we get very few genes in the case of
t-test and the individual (α,β)-k-Feature Selection, but Coloured (α,β)-k-Feature Selection gives
120 unique genes (The list of genes and the details can be found in S5 Table). That shows a sig-
nificant difference in the number of common genes from 7 to 120. The number of overlapping
genes in different method is given in Table 6.

3.4 RankProd Result
The RankProd ordered the genes by increasing pfp (percentage of false positive likelihood)
value, and the top genes with a 0.05 pfp cut-off from both up and down regulated list of genes
were used for the comparison. This resulted in a list of 1883 genes from the combined dataset
(the list of genes can be found in S6 Table).

The comparison between Coloured (α,β)-k-Feature Set methodology result (120 genes) with
the RankProd result shows that 80 out of our 120 genes are present in the top listed genes of
RankProd result of the combined dataset. This signals a high level of agreement between the
two meta-analysis methods. The comparison of Coloured (α,β)-k-Feature Set problem result
and RankProd result is given in Table 7. All genes in RankProd result also appearing in Col-
oured (α,β)-k-Feature Set result are marked in a supplementary material table (S6 Table). In
addition to the common 80 genes, notice there are also genes marked as four or five datasets in
Coloured (α,β)-k because they have been filtered by the entropy filtering as non-informative
for one or two datasets. This increases the agreement to 260 genes out of 327 (almost 80%) ap-
pearing in four or more datasets for Coloured (α,β)-k.

However, further analysis with RankProd including genes missing in one or more datasets
places these genes at the top of the list, making further analysis difficult. Similarly, when genes
with sparse missing values are included, these genes artificially escalate in the ranked lists to-
wards the significant side as more missing values are introduced. This shows the inability of
this method to deal with two frequent situations found in microarray datasets.

3.5 Robustness
To evaluate the robustness of the proposed method, we performed a sensitivity analysis by iter-
atively removing one or a set a genes at a time and compared the result with the original result.
Summary results are given in Table 8. On average, our results remain the same for more than
97% of the signature list, while the signatures size remain essentially the same (less than 0.5%
increase in the worst case). This point to a highly robust result which does not depend on a
(small) set of genes, even if they are on the high coverage set.

3. 6 Functional and Pathway Analysis
Functional and pathway analysis has been performed on these 120 genes for further validation
of our results. We have used DAVID [50] and STRING [51] for the functional annotation of
the association between these genes. Functional annotation of these 120 genes clustered as 8
functionally related groups. Most of the genes in each group are related with prostate cancer
and the most known genes in relation with prostate cancer with the clusters of genes can be
found in S7 Table.
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Fig 1. Heatmap for the Coloured (α,β)-k-Feature Selection resulted genes that cover five or more datasets. It contains 186 up and down regulated
genes (columns). The genes are ordered using a memetic algorithm introduced by Moscato et al. in [49]. The blocks of greenish blue colour represent the
absence of gene values in particular datasets. The first colour bar at the right indicates Primary Tumour (blue) and Normal [13] samples. The second colour
bar represents each sample group in different colour. L-2695 (blue), L-3044 (red), L-3289 (orange), Welsh (grey), Uma (cyan) and Singh (dark grey).

doi:10.1371/journal.pone.0127702.g001
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Fig 2. Heatmap for the Coloured (α,β)-k-Feature Selection resulted genes that cover six datasets.
There are 120 up and down regulated genes (columns) which are differentially expressed between normal
and tumour classes. The two colour bars at the right represent the ordering of samples and sample groups,
respectively, as explained in Fig 1.

doi:10.1371/journal.pone.0127702.g002

Meta-Analysis by Combinatorial Optimization: A Prostate Cancer Study

PLOS ONE | DOI:10.1371/journal.pone.0127702 June 24, 2015 15 / 26



To find the prostate cancer related pathways, we performed a pathway analysis using data-
bases like DAVID [50], KEGG [52], FatiGO [53]. The resulted pathways with significant p-
value are given in Table 9. A Pubmed search confirmed that all the resulting pathways are relat-
ed to prostate cancer. Our analysis also identified several other genes that have no related pub-
lications in relation with prostate cancer.

Discussion
The microarray technology has a tremendous impact on cancer research in assessing the pres-
ence of cancer cells in patient tissues. The rapid acquisition of microarray data makes it possi-
ble to integrate this large amount of data across a range of platforms. In this study, we
identified robust cancer gene expression signatures common to all datasets. The comparison of
our proposed method with individual study results highlights the advantages of meta-analysis
over individual studies. The comparison of our method with one of the state of the art methods
shows the robustness of this method.

Results of (α,β)-k-Feature Set selection for each individual dataset provide signatures of rea-
sonable size capable of discriminating between primary tumours and normal samples. Howev-
er even though individual signatures consist of a large number of features, the number of
common genes is limited to seven and is too little for further analysis. The result of Coloured
(α,β)-k-Feature Set problem shows a vast difference in the number of resulting genes and is reli-
able for further analysis. The combined dataset contains 10729 out of 16157 combinations of
probes from three or more datasets. That confirms we get a good coverage on all the datasets
by using the proposed method of integration. Furthermore, the Coloured (α,β)-k-Feature Set
problem results show that around 2272 out of 3190 resulted features cover four or more
datasets.

Table 6. Overlapping genes in t-test, Coloured (α,β)-k and (α,β)-k-Feature Selection.

Number of Datasets t-test (α,β)-k-Feature Selection Coloured (α,β)-k-Feature Selection

Six 4 7 120

Five or more 22 57 327

Four or more 36 139 623

Number of Datasets shows the number of datasets considered to find the overlapping. t-test gives the

number of overlapping genes in t-test results for the considered datasets, (α,β)-k Feature Selection gives

the number of overlapping genes between individual (α,β)-k feature selection result for each case.

Coloured (α,β)-k-Feature Selection gives the number of common genes in the result of Coloured (α,β)-k-

feature selection considered case of datasets. For method details refer to Section 2.

doi:10.1371/journal.pone.0127702.t006

Table 7. Comparison of Coloured (α,β)-k-Feature Set problem result and RankProd result.

RankProd No of CABK resulted genes

Dataset No of genes as input pfp Cut off No of resulted genes Six datasets (120) Five datasets (327) Four datasets(623)

Combined dataset 6929 0.05 1883 80 169 260

6929 0.01 1484 58 140 214

RankProd is the result of RankProd for Combined dataset with 0.05 and 0.01 pfp (percentage of false positive likelihood cut-off). No of CABK resulted

genes is the number of genes resulted from Coloured (α,β)-k-Feature Set problem which covered six, five and more, four and more datasets.

doi:10.1371/journal.pone.0127702.t007
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Even though the (α,β)-k-Feature Set methodology and t-test provided good results on indi-
vidual datasets, a large number of genes have been eliminated from the common set of genes
which may include potential biomarkers. So when we performed the data integration instead
of considering common genes on individual dataset results, the number of resulting genes is
significantly increased. This shows that the proposed method makes it possible to uncover ro-
bust biomarkers by increasing the sample size to a sufficient level and helps to capture the con-
sistent features that might have been masked because of the limitations of individual studies.
As we have a reasonable number of genes, they can also provide more information about
prostate cancer.

The result of Coloured (α,β)-k-Feature Set problem evidences a high level of agreement with
the top listed genes of RankProd result, where almost 80% of our signature is included in Rank-
Prod’s result. However, RankProd results are considerably larger in size, hindering interpreta-
tion. Additionally, as mentioned before, RankProd artificially reduces the rank of any gene
with missing values (escalating its position to the significant side of the list), which: i) restricts

Table 8. Result of sensitivity analysis.

Case a Case b

Exp-1 (1 gene) Exp-2 (2 genes) Exp-3 (5 genes) Exp-4 (1 gene / 1DS) Exp-5 (1 gene / 2DS)

Average Signature Length 3203.1 (28.68) 3201.4 (28.21) 3204.9 (9.48) 3190.2 (0.45) 3190.8(1.30)

Average % Overlap with Original 97.42 (3.31) 97.62 (3.03) 98.04 (0.51) 99.41 (0.52) 99.15 (0.63)

Average Number of New Features 46.1 (11.47) 50.5 (17.67) 77.3 (17.97) 18.6 (16.80) 27.6 (20.98)

Average Cover of New Features 3.6 3.17 3.4 1.47 1.4

Average Signature length variation 0.41% 0.36% 0.47% 0.01% 0.03%

Case a is the result of sensitivity analysis after removing one gene (Exp-1), two genes (Exp-2) and five genes (Exp-3) from the combined dataset. Case b

gives the result of sensitivity analysis after removing one gene from one (Exp-4) and two (Exp-5) individual datasets. For more details refer to Section 2.

Values in parenthesis are the standard deviations for the 10 repetitions (Case a) and 5 repetitions (Case b).

doi:10.1371/journal.pone.0127702.t008

Table 9. The top 14 resulted pathways from pathway analysis.

Pathway name Pathway Classification P-value Reference

Integrin signalling pathway Cell communication 1.03E-08 [85, 95]

Smooth Muscle Contraction Organismal Systems; Circulatory system 5.98E-08 [96, 97]

Oxytocin signalling pathway Organismal Systems; Endocrine system 1.23E-08 [98–100]

Collagen biosynthesis and modifying enzymes Metabolism; Amino acid metabolism 1.13E-07 [88, 101]

Axon guidance Development 1.34E-06 [102]

Gap junction trafficking Cell communication 3.12E-06 [103, 104]

Protein digestion and absorption Organismal Systems; Digestive system 3.6E-06 [101]

Ras activation Regulation of translation and transcription 3.46E-05 [105, 106]

regulation of pgc-1a Cell motility 3.61E-05 [107]

Assembly of collagen fibrils and other multimeric structures Metabolism 3.68E-05 [108]

CREB phosphorylation Metabolism; Energy metabolism 6.31E-05 [109]

Syndecan-1-mediated signalling events Genetic Information Processing 6.3E-05 [110]

NCAM1 interactions Signal Transduction 6.72E-05 [111]

regulators of bone mineralization Metabolism 6.7E-05 [112]

Pathway Name is the name of the pathways. Pathway Classification is the class of each pathway. P-value is the respective p-value for each pathway.

Reference is the papers which show the relation of each pathway with prostate cancer.

doi:10.1371/journal.pone.0127702.t009
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applicability to the genes represented in all platforms, and ii) introduces non-linear rank scal-
ing in the presence of scattered missing values. In contrast, Coloured (α,β)-k-Feature Set meth-
odology automatically deals with any amount of missing values (that is, a gene may not be
present in a dataset but still be significant to explain a large number of sample pairs in the
other datasets), providing a more reliable result. Although not used in our investigation, Col-
oured (α,β)-k-Feature Set methodology allows for weights to be assigned to genes and samples
independently, and account for an external perceived relative confidence in each experimental
condition, if so desired.

The sensitivity analysis shows a high level of consistency with the original solution. Each
step of the sensitivity analysis confirms that the proposed method is not relying on a single or a
small set of genes. The results of the analysis also show that the significance of the gene is not
dependent on a single dataset. The consistency of the results shows the robustness of our pro-
posed method and validates the findings.

It is not surprising that most of the signature genes have been reported to be related with
prostate cancer. For instance, AMACR [54–59], HPN [60–62], SOX4 [63–67], DAXX [68, 69],
EPB41L3 [70–72], CXCR3 [73–79], TGFB3 [80, 81], EEF2 [82, 83] are the most well-known
biomarkers for prostate cancer. As defined by the Gene Ontology Consortium, most of the re-
sulted genes are involved in cell cycle (MYH11), regulation of transcription (SOX4, SMARCC2,
ZIM2, PDLIM5, ZNF217, PSIPI, ACRC, PEG3, TAF1, ZMYM3), receptor activity (JAM3,
TAPBP, COL4A5, CXCR3, COL4A6, HPN, COL9A2, PTPRN2, COL6A1) and other biological
activities like transportation, cell adhesion and cell organisation (the list of genes with the relat-
ed literature references can be found in S8 Table).

Most of the genes mentioned above and in S8 Table are highly correlated with prostate can-
cer. However we could find only some of them in the individual dataset results. We have also
uncovered genes which participate in the same pathway class as genes related to prostate can-
cer, but have not yet been reported in relation to prostate cancer. For instance, the gene
NUDT3 is not yet reported in relation to prostate cancer, but NUDT3 participates in the Colla-
gen biosynthesis and modifying enzymes pathway which has been identified as a prostate can-
cer related pathway [84]. This indirectly suggests that this gene may also have some influence
on cancer development.

Interestingly, the most significant pathway overrepresented in our results is the Integrin sig-
nalling pathway and focal adhesion. Integrins are transmembrane receptors and play an impor-
tant role in cell survival, proliferation, migration, gene expression, and activation of growth
factor receptors. Studies show that integrins are down regulated in the transition from normal
prostate tissue to primary localized prostate cancer [85]. From our resulted list of genes
COL4A5, COL4A6, COL6A1 and ITGB1BP2 are participating in integrin signalling pathway.

Smooth muscles found in the walls of reproductive tract of male and female which is made
up of actin and myosin, together have the capacity to contract and relax. The prostate helps to
control urine flow and ejaculations, via contractions and relaxation of its smooth muscle layers.
The uncontrolled contraction of prostate smooth muscle may result in urinary tract problems
in addition to prostate growth [86]. The smooth muscle contraction pathway has already been
reported related with prostate cancer [87]. From our list of genes MYH11, MYL6, MYL6B and
GUCY1A3 are related with smooth muscle contraction.

Collagen biosynthesis is the biosynthetic pathway responsible for collagen production. Stud-
ies have shown that the Gleason sum is increasing with decreasing cancer collagen content
[88]. From our list of genes TGFB, COL4A5, COL4A6, COL6A1 and COL9A2 are related with
collagen biosynthesis.

The outcomes of our work support the claim that the proposed method is a viable meta-
analysis method for feature selection. The functional and pathway analysis results show that
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the Coloured (α,β)-k-Feature Set approach is capable of uncovering genes with significant and
biologically relevant functions that other, non-integrative methods fail to identify.

Conclusion
We have presented the Coloured (α,β)-k-Feature Set problem as a combinatorial optimisation
approach for multi-platform integration analysis without the need for normalisation of the
data between datasets. The results indicate that the method is capable of providing highly sig-
nificant signatures, even where the individual datasets before integration are small and thus
lacking informational content. The method is generic and does not depend on inherent proper-
ties of gene expression data, allowing it to be potentially applied to any dataset where the no-
tions of features, class based classification and equality between feature values is meaningful. In
applying this methodology to an integrated prostate cancer dataset we have identified potential
novel prostate cancer associated pathways and genes. As the number of cancer datasets in-
creases we will be able to use this novel and robust method to combine more cancer datasets
and identify more candidate pathways and genes.

Supporting Information
S1 Table. List of combination of probes. List of combination of probes resulted by applying
the integration method. The probes are selected according to the conditions and the selected
probe ID is given with the corresponding dataset name. The table also contains the gene names
correspond to each combination of probe. (XLS)
(XLS)

S2 Table. Individual (α,β)-k-Feature Set problem Results. The list of genes resulted by apply-
ing (α,β)-k-Feature Set methodology on individual datasets. Single XLS contains six work-
sheets, one for each dataset result. The worksheets are names according to the dataset name.
(XLS)

S3 Table. t-test result. List of genes resulted after applying t-test on each dataset. XLS contains
six worksheets, for each dataset. Each worksheet is named according to the dataset name.
(XLS)

S4 Table. Coloured (α,β)-k-Feature Set problem Result. The list of 3190 combined probes
and 1788 genes resulted after applying the Coloured (α,β)-k-Feature Set methodology on the
combined dataset. Also another worksheet with the annotation result of 1788 genes.
(XLS)

S5 Table. List of common genes resulted from Coloured (α,β)-k-Feature Set problem. An
XLS file contains the list of 120 genes which are common in all the six datasets and the annota-
tion details with the heatmap in sheet 1 and the list of 186 genes common in five or more data-
sets with annotation details and heatmap in sheet 2.
(XLS)

S6 Table. RankProd Result. The list of RankProd resulted genes with related rank, pfp and p-
value.
(XLS)

S7 Table. Result of functional analysis. The details of eight clusters resulted from functional
analysis using DAVID.
(XLS)
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S8 Table. List of 120 genes with related literature references.Word document with the list of
120 genes which are common in all six datasets and the related literature references
(DOCX)
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