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Abstract

Computing the free energies of molecular mechanisms in multidimensional space

relies on combinations of geometrically complex reaction coordinates. We show how

a graph theory implementation reduces complexity, and illustrate this on the arrange-

ments of hydrogen bonding of a water dimer. The reaction coordinates and forces

are computed using graphs that define the dependencies on the atoms in the Free

Energy from Adaptive Reaction Coordinate Forces (FEARCF) library. The library can

be interfaced with classical molecular dynamics as well as quantum molecular dynam-

ics packages. Multidimensional interdependent reaction coordinates are constructed

to produce complex free energy hypersurfaces. The reaction coordinates are graphed

from atomic and molecular components to define points, distances, vectors, angles,

planes and combinations thereof. The resultant free energy surfaces that are a func-

tion of the distance, angles, planes, and so on, can represent molecular mechanisms

in reduced dimensions from the component atomic Cartesian coordinate degrees of

freedom. The FEARCF library can be interfaced with any molecular package. Here,

we demonstrate the link to NWChem to compute a hyperdimensional DFT (aug-cc-

pVDZ basis set and X3LYP exchange correlation functionals) free energy space of a

water dimer. Analysis of the water dimer free energy hypervolume reveals that while

the chain and cyclic hydrogen bonding configurations are located in stable minimum

energy wells, the bifurcated hydrogen bond configuration is a gateway to instability

and dimer dissociation.
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1 | INTRODUCTION

The calculation of the free energy of a system involving molecular

transitions relying on the redistribution of electrons is a computational

challenge. The dynamics of hydrogen bonding in a water pair where

the strong hydrogen bond donor and acceptor qualities of water

include significant covalent character, is a case in point. Molecular

dynamics methods relying on classical force fields have been used to

describe condensed phase structure by computing spatial distribution

functions1 and Laage et al. have shown that water reorientation

occurs via the molecular jump mechanism.2,3 To completely under-

stand the phase equilibria of water it is necessary to compute the
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thermal properties, principally the free energy of association. A central

requirement in the computation of free energy is rigorous sampling of

the association, conformational, configurational or reaction space fun-

damental to the free energy landscape for the event(s) under investi-

gation. There are several free energy methods that rely on classical

force fields including Umbrella sampling,4 adaptive biasing potential5

and meta-dynamics,6 all of which use a pre-chosen analytical biasing

potential to drive molecular systems from regions of low potential

energy to regions of high potential energy. The process of choosing

weighting function(s) presupposes knowledge of a mechanism for

which the free energy landscape is then computed. By way of exam-

ple, selecting the intermolecular distance between reacting molecules

and then implementing a series of umbrella potentials along that coor-

dinate, prevents the system from evolving freely and revealing the

interplay of multiple possible reaction mechanisms.

The Free Energy from Adaptive Reaction Coordinate Forces

(FEARCF)7–9 method instead uses numerically derived biasing forces

to facilitate complete sampling of the potential energy landscape. A

complex and rugged biasing potential is constructed from the density

distribution of a molecular system resulting from the sites visited in

MD runs. The density distribution is updated after each FEARCF itera-

tion and reaction coordinate forces are computed that drives the sys-

tem away from equilibrium low energy regions toward less probable

high energy areas. The converged iteration results in an unbiased sam-

pled landscape which categorizes it as a Flat Histogram10 method.

The name implies a convergence toward a condition where the molec-

ular system of interest is able to visit every possible state with equal

probability.

Incorporating directional hydrogen bonding between water mole-

cules in any molecular model is central to accurately simulating the

natural phenomena. However, a dynamic account of electron redistri-

bution in hydrogen bonding is only possible using quantum dynamics

methods.11,12 What remains outstanding is the computation of the

free energy of association of water that accounts for electron redistri-

bution during non-Boltzmann dynamics. Previous reporting of the

FEARCF method7,13,14 involved an implementation within the

CHARMM molecular dynamics software which limited its scope to

classical and semi-empirical systems. FEARCF has now been packaged

within an object-oriented software library enabling its utilization

within various molecular dynamics software packages including ones

suited for quantum mechanical systems. Recently we reported a com-

putationally efficient method that combines ab initio Hartree Fock

dynamics (QSL: Quantum Supercharger Library)15,16 through MD

packages with a comprehensive multidimensional Free energy method

(FEARCF)7–9 that could be applied to problems of this nature.17

A selection of a single reaction coordinate, ξ1 to compute the free

energy for complex problems such as the hydrogen bonding water

dimer is likely to result in the conflation of several events in the 1D

energy well. Constructing several reaction coordinates (RCs) that are

diverse in geometry (ξ1 = r, ξ2 = θ, ξ3 = φ etc.) representing distance

between points, angles between vectors, angles between planes, and

so on, to map out multiple dimensions in free energy space is a com-

putational challenge. The numerical approach of FEARCF avoids the

complex Jacobian corrections required by other free energy methods.

In addition, the object-oriented design of the FEARCF library enables

a more intuitive and efficient means to calculate the atomic biasing

forces. This can be best understood by the representation of sets of

RCs as graphs.

The FEARCF approach is to express the complex relationship

between the RCs and the atomic coordinates and forces on them in

terms of graphs. Graphs are composed of elements referred to as ver-

tices (nodes) where the relationship between the nodes are described

by edges that connect the nodes. Complex combinatorial selections of

multiples of these two objects can model a large variety of problems.

Chemical graph theory was first applied to the discovery and classifi-

cation of molecular isomers, particularly hydrocarbons, using trees to

represent molecular topologies.18–20 More recently other applications

have been developed including using graphs to assign unknown spec-

tral resonances in NMR data,21 discovery of new reaction mechan-

ims22 and even predicting new reactions entirely.23

Here we report the use of graphs that reduce the complexity of

defining nontrivial RCs and their role in easily combining multiple RCs

to efficiently compute high dimension free energy landscapes. The

library implementation of the FEARCF method that facilitates an

interface with classical and quantum molecular dynamics packages is

illustrated in an interface with CHARMM and NWChem to produce

classical and quantum free energy hypervolumes (FEVs). By way of

illustration the mechanism of association and dissociation of hydrogen

bonds in a water dimer is discovered from the multidimensional DFT

FEVs using NWChem/FEARCF computations.

2 | METHODS

2.1 | FEARCF method

Previously we have detailed the FEARCF as a flat histogram

method8,9,24 that produces a converged free energy surface enabling

equal sampling in molecular and atomic configurational and conforma-

tional space. Equal sampling for a set of RCs (ξ) requires that the

summed effect of the system potential W(ξ) and the biasing potential

U(ξ) must be a constant. For the sake of simplicity we can choose this

constant to be 0. To reach convergence the condition:

W ξð ÞþU ξð Þ¼0 ð1Þ

must be satisfied giving the ideal biasing potential of U(ξ) = �W(ξ),

even though initially W(ξ) is not known. To discover the form of W(ξ)

it is convenient to start with U1(ξ) = 0. Using a zero bias, a simulation

of the molecular system produces a probability density P1(ξ). The

Boltzmann relationship

W1 ξð Þ¼�kBT lnP1 ξð Þ ð2Þ

produces the first estimation of the system potential W1(ξ), from

which the next estimate of the ideal biasing potential is computed
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U2 ξð Þ¼�W1 ξð Þ¼ kBT lnP1 ξð Þ: ð3Þ

This updated estimate of the biasing potential is then used to run

a second iteration of the system from which another probability den-

sity is extracted, however the new probability density is that of the

biased simulation of the system, that is, P02(ξ). The unbiased probability

density P2(ξ) can be recovered since the biasing potential U2(ξ) is

known because it was used to produce the biased probability density

P2 ξð Þ¼CP02 ξð Þexp U2 ξð Þ
kBT

, ð4Þ

where C is a normalization constant. With this new updated unbiased

probability density, a new biasing potential U3(ξ) can be created using

the relation shown in Equation (3). This process is continued iteratively

until a roughly equal sampling occurs with a small ratio between high

and low energy regions making it possible for the system to diffuse

about the landscape freely. When this is the case, a close approximation

of the systems potential W(ξ) has been discovered. To speed up this

process, the weighted histogram analysis method (WHAM)25 is used to

combine the result of multiple simulations run at each iteration. This

embarrassingly parallel approach allows for a much faster approach to

convergence than a serial simulation computation can achieve.

The manner in which the biasing potential U(ξ) is used to calculate

individual biasing forces on each of the atoms used to define ξ is

through a simple application of the properties of conserved potentials,

especially the relation that states that the force is the gradient of the

scalar potential, that is, F
!¼�rU. The gradient is presented in terms

of Cartesian coordinates however in FEARCF the potential is defined

in terms of ξ. To resolve this discrepancy, we consider the chain rule.

rU ξð Þ¼ dU ξð Þ
dx
! ¼ ∂U ξð Þ

∂ξ

∂ξ

∂ x
! : ð5Þ

The first term on the right hand side is the gradient of the biasing

potential which can be numerically approximated using interpolation

schemes such as cubic splining. The second term is the partial deriva-

tive of the RCs in terms of the Cartesian coordinates of the atoms

used to define ξ. In the case of multiple dimensions this term is split

into several partial derivatives which have known analytical solutions

and are computable.26,27 This separation of the atomic forces into a

product of partial derivatives is the rationale for representing RCs as

graphs. The FEARCF library's use of objects aids in the efficiency and

flexibility of computing free energies as a combination of points, dis-

tances, planes, vectors, or angles.

2.2 | FEARCF library

The FEARCF library written in Fortran 90 is composed primarily of

several defined modules. These modules range from containing com-

mon math functions and expressions that are called repeatedly by

other modules, to the complex equations needed to perform both

cubic and B-spline interpolation. The central module executes variable

definition and calculation functions that are needed to construct the

RC, as well as transforms potentials in terms of RCs to atomic poten-

tials. These objects are essential components that map to the nodes

and edges of the RC graphs.

A second significant module translates atomic coordinates,

masses and forces data provided by the MD package into FEARCF

syntax. The force and position data is amended as described above

and directed back to the MD package. A library call to FEARCF is

placed inside the MD package, typically at the end of the step update

section as is illustrated in Figure 1.

The QMD implementation in NWChem has been previously

reported.28 Briefly it has the functionality to perform ab initio molecu-

lar dynamics from methods including Hartree–Fock (HF), Density-

Functional Theory (DFT) and Møller–Plesset perturbation (MP2). This

is achieved with a Born-Oppenheimer approximation treatment of the

nuclei, and modeling the electronic structure using Gaussian basis

functions. In the case of DFT where the Kohn–Sham equations are

given as

�1
2
r2þvC r

!� �� �
ψ i r

!� �
þ
ð
vXC r

!
, r
!0� �

ψ i r
!0� �

d r
!0 ¼ ϵiψ i r

!� �
, ð6Þ

where the nuclei are represented in the vC r
!� �

term as well as the

electronic contributions to the Coulomb potential

vC r
!� �

¼�
X

i

Zi

R
!
i� r

!��� ���þ
ð ρ r

!
, r
!� �

r
!� r

!0��� ��� d r!0
: ð7Þ

The nuclei positions R
!

i are updated using the Velocity-Verlet

algorithm while the electronic structure ρ r
!
, r
!� �

is updated by solving

F IGURE 1 Illustration of linking the FEARCF library to a
molecular dynamics package
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the Schrödinger equation consistent with DFT theory.29 Through the

FEARCF interface a biasing force is applied to each atom included in

the graph definition and integrated into the NWChem force routine

as is illustrated in Figure 1 prior to the start of the Velocity-Verlet

updating the nuclei positions. This separation of the nuclei and elec-

tronic motion is ideal since the graphs are constructed using the nuclei

positions as the first set of nodes, meaning that the FEARCF biasing

force can be seamlessly applied to the atomic nuclei without interfer-

ing in the electronic structure computation. This enables an interroga-

tion of the role of molecular electron density in non-Boltzmann state

configurations. To achieve a canonical ensemble thermostats such as

Langevin, Berendsen, and simple velocity scaling are used.

2.3 | Graph Theory applied to reaction coordinates
and biasing forces

The graphs constructed in FEARCF show in detail the relationships

between the ξi and the atomic coordinates from which they are ulti-

mately derived. The nodes represent several types of elements

(atoms, vectors, planes, angles, etc.) while the edges represent the

subroutines that both calculate the quantities themselves, as well cal-

culate the partial derivative terms needed for the biasing force. In this

way the constructed RCs can be represented as directed, colored

graphs although an explicit inclusion of directed edges is not incorpo-

rated since every edge is implicitly bidirectional.

To demonstrate how graphs can show this kind of relationship, a

simple graph (Figure 2) is constructed between a single atom (A1)

and a RC (ξ1) that has an explicit dependency on A1. Following this ξ1

is used to define a free energy W(ξ1). To illustrate that the nodes of

the graph represent a variety of elements, the nodes are depicted as

different color nodes. They share an edge which represents the

potential flow of information (via subroutines) between them. For

clarity, this edge is be split in two to represent the two types of

information transfers namely calculation of the value of ξ1 as a func-

tion of A1, and the propagation of the biasing force via a product of

partial derivatives, that is, ∂W ξ1ð Þ
∂ξ1

∂ξ1
∂A1

.

At every integration step of a FEARCF simulation the values of

the chosen RCs need to be calculated from the atomic positions. To

do this each chosen RC node retrieves information from the nodes,

a level below, that are used to define it. If those nodes do not repre-

sent atoms, they in turn retrieve information from the nodes a fur-

ther level below, that were used to define them. This creates a chain

of information retrieval that terminates in the nodes representing

the atoms of the system. The atomic coordinates are provided by

the FEARCF interfaced MD package. From the atomic coordinates,

all other nodes are defined and computed culminating in the RC

values.

Once all RC values are known, the cubic or B-spline interpolation

subroutine is used to calculate the gradient, in particular the partial

derivatives, of the free energy volume at these ξi values. The gradient

partial derivatives received from the interpolation subroutine for each

chosen ξ is sent to the nodes used to define it. These nodes then cal-

culate the partial derivative term required to transform the received

derivative to be in terms of the variable each node represents. These

nodes then in turn send this derivative to the nodes used to define

them. This is repeated in a chain-like manner until the nodes that rep-

resent the atoms have accumulated all the partial derivatives needed

for the biasing force on each atom (see Equation (5)). The atomic bias-

ing forces are then added to the forces calculated by the MD package

interfaced with the FEARCF library in order to update the atomic

velocities and positions using both the system and biasing potential.

An early graphing approach defining RCs was implemented in the

CHARMM module RXNCOR and a limited precursor to FEARCF30

expanded on this to undertake QM/MM reactions relying on a pair of

distance RCs in two dimensions used for umbrella sampling.30–32 The

original implementation in CHARMM was limited by umbrella sam-

pling that is not ideally suited to free energy simulations of more than

two dimensions and further is not efficiently parallelizable. The limit

to two dimensions is due to the analytical nature of the biasing poten-

tial used in umbrella sampling that requires increasingly complex cor-

rections with increasing dimensionality. The early implementation in

CHARMM of the adaptive umbrella sampling method which uses

WHAM to combine results from multiple parallel simulations has not

been developed further to date.

The FEARCF library rectifies these limitations by sourcing its bias-

ing potential from a numerical potential, which does not rely on

change of frame corrections. The library being located outside of MD

packages such as CHARMM better enables efficient integration of

WHAM for parallelization. The graphing approach uses an adjacency

matrix A defined as A = [aij], aij � 0, 1ð Þ if node i and j share an edge. A

simple graph representing the RCs and its adjacency matrix is given as

F IGURE 2 Simple graph illustrating basic function of a graph in
the FEARCF library, with information being exchanged between an
atom A1 and a reaction coordinate ξ1
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ð8Þ

An associated matrix representing the forces, named here

the derivative matrix D, which rather than simply having 1s

representing the edges, they can be replaced by terms such

Dij ¼ ∂ i
∂ j which is the partial derivative of node i with respect to j. The

atomic biasing forces can then be found by finding a path in the

derivative matrix from each reaction coordinate to each connected

atom node. The net atomic biasing force on an atom can then be

expressed as the sum of the products of the derivatives along each

path.33 An update of the previously computed proton exchange

reaction [H3N H NH3]
30 in CHARMM now defined using a graph

representation of the reaction coordinates in FEARCF is shown in

Figure 3.

The distance reaction coordinates (ξ1 and ξ2) as defined in terms

of the molecular representation (Figure 3A) are simply represented in

a two layer graph (Figure 3B). The force computation in FEARCF is

shown in the derivative matrix (Figure 3C). The atomic biasing force

dependencies and net force on the hydrogen being exchanged can be

mathematically defined and computed (Equation (9)). Here i is an

index over the set of reaction coordinates and j is an index over the

edges that make up the path connecting the reaction coordinates to

the atom.

FH ¼
X

i

∂W
∂ξi

Y
j
Di,j ¼ ∂W

∂ξ1
Dξ1Hþ

∂W
∂ξ2

Dξ2H ¼ ∂W
∂ξ1

∂ξ1
∂H

þ ∂W
∂ξ2

∂ξ2
∂H

: ð9Þ

The subroutines used to calculate partial derivatives are defined

and represented as edges in the FEARCF library. Theoretically, these

routines are needed for every node type pairing; however, there are

mathematical conditions that guide the combinations of nodes that

define new reaction coordinate nodes (e.g., an angle node is only

defined by two vector nodes). This significantly reduces the number

of subroutines needed. With this construct of nodes and edges any

multidimensional graph representing a combination of several geo-

metric and/or conformational and/or configurational molecular prop-

erties is calculable by the FEARCF library. This is only possible

because of the library's object-oriented structure and the representa-

tion of every ξi as graphs.

2.4 | Simulation conditions

All classical MD simulations are run in CHARMM 42b231 using the

CHARMM force field, run at 300 K in periodic boxes of size 12 Å each

side, with non-bonded interactions cut-off at 14 Å, with the Velocity-

Verlet integrator in a Nose–Hoover ensemble thermostat with 1 heat

bath, a tau value of 0.1 ps and 10 sub-steps per time step. Each simu-

lation is run with a 1 fs time step, with no equilibrium steps and a

unique set of four 7 digit random seed numbers.

All quantum MD simulations are run in NWChem 7.0.229 compiled

with OpenMPI using the Gaussian basis ab initio QMD module, using the

DFT level of theory with a Langevin thermostat with a friction value of

0.001. All simulations took place within a cubic cavity of 12 Å which applies

a spring force to any atom straying outside the cavity with a spring constant

of 5.5083 � 10�6 Eh=a2o. All simulations are run at 298.15K, with a 1 fs

time step, no equilibrium steps and a unique 7 digit random seed num-

ber. NWChem enables the parallelization of each simulation using a

combination of the Global Array toolkit and MPI to enable efficient

data transfer and load balancing during multi-core simulations.

3 | RESULTS AND DISCUSSION

Here we demonstrate the effective graphing structure of the FEARCF

library applied to the interplay of hydrogen bonding in a water dimer.

The value of multidimensional FEVs is illustrated by first computing a

simple 1D free energy curve, followed by a 2D free energy surface.

These computations have previously been performed using classical34,35

and quantum36 methods. In these low dimension free energy computa-

tions each point on the line and surface is made up of an ensemble of

configurations that are a conflation of linear chain (C), cyclic (Cy) or

bifurcate hydrogen bonds making it impossible to distinguish between

them and their contributions to the free energy of the system.

3.1 | Free energy graph based computation

Free energy is an essential component needed to understand molecu-

lar mechanisms. The value of multidimensional reaction dynamics

using FEARCF's have been shown for complex enzymatic catalyzed

F IGURE 3 Representations of ammonium proton exchange reaction (A) molecular representation, (B) atoms defining ξ1 and ξ2 in colored
graph, and (C) force computation from partial derivatives for each edge presented in derivative matrix
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reactions.17,37 Further the hypersurface FEVs using FEARCF for the

TIP water system illustrated the sensitive nature of FEVs showing that

they can be used to distinguish between TIP3P, TIP4P, and TIP5P

models.14 However we did point out that a true mechanism of inter-

molecular hydrogen bond exchange was not possible using only classi-

cal methods. Here, the free energy volumes are computed for a

classical water dimer model only to illustrate (i) the graphing approach

to reaction coordinate force computation and (ii) demonstrate the flat

histogram convergence of FEARCF. The mechanism of hydrogen bond

association and dissociation are derived exclusively from an analysis

of the QMD FEVs.

3.1.1 | Reaction coordinate and convergence of the
1D FE water dimer

While water is a simple molecule the collective structures and proper-

ties in bulk liquid and solid are complex. In hexagonal ice, a water mol-

ecule forms a tetrahedral structure with its four closest neighboring

water molecules where it participates as a donor in two hydrogen

bonds and as an acceptor in two more hydrogen bonds. This local

structure is retained in the water solvent form.38 A key reason for this

is the intermolecular hydrogen bonds that form between water mole-

cules. A single water molecule is able to form up to four hydrogen

bonds at once, a large number for a molecule of such low molecular

weight. These numerous hydrogen bonds are the reason for water's

high boiling point and greater density as a liquid compared to a solid.

First let us consider one reaction coordinate, namely the well-

studied scalar distance between the oxygen atoms for the water

dimer system (Figure 4A) along with the graph that represents this

reaction coordinate (Figure 4B). The oxygen atoms are represented as

points through which a distance between the two waters are defined.

This distance is the reaction coordinate. The flow of information via

the edges in Figure 4B where the value of node r is simply given by

r¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x
!
W2 Oð Þ � x

!
W1 Oð Þ

� �2r
. The atomic biasing forces computed

through the addition of the derivative in terms of r, is the unit vectorbr. This is given in Equation (10).

F
!

r ¼� ∂V
∂r
br:

F
!

W1 ¼ F
!

r :

F
!

W2 ¼�F
!
r :

ð10Þ

The 1D classical Water Dimer FEARCF simulation is run for 50 ps

each iteration, with 128 simultaneous simulations in each iteration,

each simulation run with a single core.

The sampling along ξ = r during the first FEARCF iteration where

the biasing force = 0 is centered at 3 Å with the ratio of highest to

lowest sampling being 19.3:1 (Figure 4C). After the 15th FEARCF iter-

ation (Figure 4E) the sampling along r converges toward a flat histo-

gram with a high to low sampling ratio of 2.5:1. The minimum free

energy occurs at r =2.9Å. Considering that the covalent bond length

between the oxygen and the hydrogen in the TIP3P model is

0.9572Å the minimum well is presumed to be a combination of

hydrogen bond configurations with average length 1.9428Å.

The magnitude of the free energy well at �1.88 kcal/mol does

agree with the hydrogen bond strength being between that of Van

Der Waals forces and Covalent/Ionic bonds. However, this one

dimensional FEV gives us no insight into the actual orientational pref-

erence of water dimer hydrogen bonds.

3.1.2 | Reaction coordinates and convergence of
the 2-D FE water dimer surface

Next we show another common setup for investigating water dimer

interactions where two reaction coordinates (Figure 5A) include a dis-

tance (between the center of mass of each water molecule) and an

angle (between the two dipole moments of each water molecule). An

illustration of the graphing construct for these reaction coordinates is

given in Figure 5B. Since the distance is now between centers of

mass, all of the atoms in the system are represented as points. The

oxygen atom and two hydrogens of a water is needed to define the

center of mass Wi. This reaction coordinate is the scalar distance

ξ1 = r between the centers of mass. The second reaction coordinate

F IGURE 4 (A) 1D reaction coordinate for 1D water dimer system,
(B) 1D water dimer RC graph representation with yellow nodes for
atoms, blue/purple node for distance, (C) histogram showing sampling
of 1st iteration, (D) FE surface of 1st iteration, (E) histogram showing
sampling of 15th iteration, and (F) FE surface of 15th iteration with
annotated minimum free energy value
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requires a definition of the dipole moment vector bi
!

for each water

molecule. This is done by simply defining a vector that points from

the oxygen atom to the center of mass for each water molecule.

While these are not actually the true dipole moment vectors, they are

parallel to them which allows us to get the correct value for our angle

reaction coordinate φ.

To translate the data via edges shown in Figure 5B

r¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x
!
W2 � x

!
W1

� �2r
and ϕ¼ arccos b

!
1 � b

!
2= b

!
1 � b

!
2

��� ���� �
are needed for

the ξ nodes. In the case of the atomic biasing forces a similar approach

for r as in Equation (10) is used. However, for ϕ the forces for the

nodes are given in Equation (11).

F
!

W1 ¼� ∂V
∂ϕ

∂ϕ

∂ x
!

W1

, F
!
W1 Oð Þ ¼� ∂V

∂ϕ

∂ϕ

∂ x
!

W1 Oð Þ
,

F
!
W2 ¼� ∂V

∂ϕ

∂ϕ

∂ x
!
W2

, F
!

W2 Oð Þ ¼� ∂V
∂ϕ

∂ϕ

∂ x
!
W2 Oð Þ

,

∂ϕ

∂ x
!

W1

¼� 1
b1j j

bb1� bb2�bb1� �� �
,

∂ϕ

∂ x
!
W2

¼� 1
b2j j

bb2� bb2�bb1� �� �
,

∂ϕ

∂ x
!

W1 Oð Þ
¼� ∂ϕ

∂ x
!
W1

,
∂ϕ

∂ x
!
W2 Oð Þ

¼� ∂ϕ

∂ x
!

W2

: ð11Þ

For the atom nodes used to define the center of masses, forces

are simply weighted according to their atomic masses. The 2D classi-

cal water dimer FEARCF simulation is run for 50 ps each iteration,

with 128 simultaneous simulations in each iteration, each simulation

runs on a single core. The sampling for both r and ϕ (Figure 5C) for

the first FEARCF iteration that has a zero biasing force has a high-to-

low sampling ratio of (ξ1 = r; ξ2 = ϕ) is (8:1; 28:1) while after the con-

vergence toward a flat histogram the ratio is (1.14:1; 26:1).

While the same minimum energy distance is observe (Figure 5F)

as in the 1D case (Figure 4F) now the preference of the dipoles to ori-

ent themselves between 40� and 120�, that is, a preference for

orthogonal configurations hints at hydrogen bonding configurations.

Orthogonal dipole orientations more closely resemble linear chain

compared with bifurcated hydrogen bonding. However, there is no

single minima for the φ angle. This is consistent with an understanding

that φ cannot distinguish between an orientation where the hydrogen

bonding is donated from one water giving a bifurcated configuration

or when the waters are laying alongside each other. As we have previ-

ously noted, dipole interactions are typically described by two degrees

of freedom, that is, the separation of the centers and the angle

between them. This is a sparse description and contains not much

more information than W(r).14

3.1.3 | Reaction coordinates and convergence of
the 4-D FE water dimer hypersurface

Previously we concluded that four reaction coordinates was a useful

description leading to the 4D W(r, θ1, θ2, and ϕ).14 Here, the parame-

ters are distance between centers of masses (r), the molecular vector

angles (θ1 and θ2) and their relative orientation (ϕ) as shown in

Figure 6A. It is similar to the 2D system with the same definition for

r however, φ is now a dihedral angle. In addition we have defined

angles between the dipole moment vectors bi
!

and the vector version

r
!
of our previously defined distance r. Constructing a graph that best

represents these reaction coordinates is illustrated in Figure 6B. Again

firstly all the atoms in the system are defined as points from which

the center of masses m for each water molecule can be described.

This alone defines the distance reaction coordinate r as well as its vec-

tor r
!
. Following this, the vectors parallel with the dipole moment vec-

tors bi
!

can be described which in turn allows for a definition of the

dihedral angle φ between. In addition two angles θ1 and θ2 between

the dipole moment vectors bi
!

and the intermolecular vector r
!

are

needed.

The value for the r RC node in Figure 6B is the same as for the

2D case while θ1 ¼ arccos b
!
1 � r!

b
!
1 � r!

�� �� , θ2 ¼ arccos b
!
2 � r!

b
!
2 � r!

�� �� , and

ϕ¼ arccos m
!�n!
m
!�n!j j where m

!¼ b
!

1� r
!

and n
!¼ b

!
2� r

!
which are the nor-

mal to planes defined for each water molecule's dipole moment. The

F IGURE 5 (A) 2D reaction coordinate for 2D water dimer system
and (B) 2D water dimer RC graph representation with yellow nodes
for atoms, blue node for distance, red nodes for center of masses,
cyan nodes for vectors and orange node for angle, (C) Histograms
showing sampling of 1st iteration, (D) FE surface of 1st iteration with
contours at ½ kT intervals, (E) Histograms showing sampling of 12th
iteration, and (F) FE surface of 12th iteration with contours at ½ kT
intervals
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atomic biasing forces resulting from r, θ1, and θ2 are much the same

for the 1D and 2D cases, however for the dihedral angle ϕ Equa-

tion (12) gives the forces sent via edges to the point nodes used to

define the vector nodes r
!
, b
!
1, and b

!
2.

F
!

W1 ¼� ∂V
∂ϕ

rj j m
!

mj j2
, F
!
W2 ¼� ∂V

∂ϕ
rj j n

!

nj j2
,

F
!
W1 Oð Þ ¼�F

!
W1 þ

r
!� b!1

r2

 !
F
!

W1 þ
r
!� b!2

r2

 !
F
!
W2 ,

F
!
W2 Oð Þ ¼�F

!
W2 �

r
!� b!1

r2

 !
F
!
W1 �

r
!� b!2

r2

 !
F
!
W2 : ð12Þ

The 4D classical water dimer FEARCF simulation is run for 50 ps

each iteration with 128 simultaneous simulations in each iteration;

each simulation being run on a single core. The sampling for all ξi in

the first FEARCF iteration with no biasing forces has (ξ1 = r; ξ2 = θ1;

ξ3 = θ2; ξ2 = φ) a high-to-low ratio for the distance of (57.4:1) in

Figure 6C while after the 5th FEARCF iteration approximate conver-

gence was reached with high-to-low ratios of (1.8:1) in Figure 6E.

The preference for φ = 180� and θ1 = 52�/128� is due to 52�

being half of the TIP3P parameter angle formed between the two

hydrogen-oxygen covalent bonds. At θ1 = 52� one of the hydrogen

atoms of the first water is now in line with the vector r
!

facing the

oxygen of the second water, while one of the hydrogens of the sec-

ond water is also in line with r
!

but facing away from the other oxy-

gen. Lastly φ = 180� indicates that the second hydrogen of each

F IGURE 6 (A) 4D reaction
coordinate definitions for 4D
water dimer system, (B) 4D water
dimer RC graph representation
yellow nodes for atoms, blue/
purple node for distance, red
nodes for center of masses, cyan
nodes for vectors, orange nodes
for angles and red node for

pucker angle, (C) histograms
showing sampling of 1st iteration,
(D) 2D Boltzmann averaged FE
surfaces for 1st iteration with
contours at intervals of ½ kT kcal/
mol, (E) histograms showing
sampling of 5th iteration, and
(F) 2D Boltzmann averaged FE
surfaces for 5th iteration with
contours at intervals of ½
kT kcal/mol
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water molecule orient themselves away from each other due to elec-

trostatic repulsion.

3.2 | Water dimer DFT QMD free energy volumes

All ab initio water dimer simulations were run with 10 ps per iteration,

30 simultaneous simulations, with 8 cores for each simulation using

the aug-cc-pVDZ basis set and the X3LYP exchange-correlation func-

tional. This is following Plumley and Dannenberg39 reporting that aug-

cc-pVDZ basis set and the X3LYP exchange-correlation functional

reproduced similar binding energies to functionals with larger number

of terms (like aug-cc-pVTZ) without CP-corrections. In addition they

found that the bond distances for O H and O O were better mod-

eled unlike some small functionals that over or underestimate the

bond length.

There is a clear difference between the classical 1D water dimer

free energy compared to the 1D ab initio free energy. The TIP3P

model has a minimum of �1.88 kcal/mol while ab initio has a mini-

mum of �3.92 kcal/mol. This is due to the limitations of the classical

CHARMM TIP3P forcefield which fails to capture the subtle nature of

hydrogen bonds that relies on a reordering of electron density to

represent strong hydrogen bonds that have significant covalent

character.

F IGURE 7 (A) 3D FEV for 30th FEARCF iteration with iso-surfaces and contours, along with overlaid electron density contours at Chain,
Cyclic, and Bifurcated configurations and (B) molecular orbital plot of 3a1 for proton donor and 1b1 for proton acceptor at 0.03 au for the
3 hydrogen bonding configurations with positive density in red and negative density in blue along with illustrations of each configuration
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Previously Van Thiel et al.40 described three potential configura-

tions for a water dimer to form hydrogen bonds that they named

Chain (C), Cyclic (Cy), and Bifurcated (B) which are illustrated in

Figure 7B. There is a minima well observed in the 4D ab initio water

dimer FEV that comprises two configuration types C and Cy. Since

the system is symmetrical two equivalent Chain configurations are

seen CI (r = 2.96 Å, θ1 = 65.53�, and θ2 = 118.33�) and CII

(r = 2.90 Å, θ1 = 122.61�, and θ2 = 66.23�) with Cy (r = 2.90 Å,

TABLE 1 Differences in hydrogen
bond length, electron density, and free
energy for the three types of water dimer
configurations

HB configuration r (Å) θ1
�� 	

θ2
�� 	

ϕ
�� 	

RH(D) O(A) (Å) ρ (au) ΔG (kcal/mol)

C 2.96 65.5 118.3 183.1 1.94 0.022 �3.46

Cy 2.90 81.9 84.5 180.6 2.28 0.010 �3.24

B 2.70 172.4 7.9 – 2.27 0.006 10.04

F IGURE 8 (A) Examples of 3 water dimer MD trajectories that either remain associated or become disassociated, (B) averaged dipole–dipole
autocorrelation plots of 16 similar trajectories for each case, and (C) time series for the θ and r reaction coordinate values. The correlation and
dissociation events are highlighted and the associated dimer configurations are illustrated
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θ1 = 81.87�, and θ2 = 84.50�) midway between the two. While the

r minima value agrees with the classical value, the θ1 and θ2 minima

values do not. This is due to the decreased rigidity of the ab initio

model allowing for the water molecule to deform when strongly

hydrogen bonded and there is electron density sharing between the

hydrogen donor and the oxygen acceptor atoms. Overlayed in

Figure 7A are electron density contour plots of CI, CII, Cy, BI, and BII.

The closest contours are at a density of 0.03 au where it is apparent

that there is a sharing of electrons in the chain case (CI and CII) that

does not occur for Cy BI, or BII. This implies that the hydrogen bonds

formed at CI and CII are not purely electrostatic in nature but also

involve deformation of the electron clouds of the hydrogen bond

donor and acceptor (Figure 7B and Table 1). While the C and Cy con-

figurations are located in the kT minima well the B configurations are

just outside of the 6 kT broad envelope of hydrogen bonded configu-

rations. The geometric and electronic values for the hydrogen bonding

configurations derived from the FEV and subsequent electronic analy-

sis are summarized in Table 1.

The 3D free energy hypersurfaces (Figure 7) provide clues to

hydrogen bonding configurations of the water dimer as well as the

shape of the ensemble of configurations. Now we attempt to uncover

the mechanisms of the dimer association within the hydrogen bond

minima well and the pathway from hydrogen bonding to dimer disso-

ciation through a projection of trajectories onto the FEV (Figure 8A).

In the case of association a trajectory that traverses within the 3 kT

minima FE surface well appears to librate about a chain type configu-

ration. It does this by passing through a cyclic configuration in-

between the two low energy chain configurations. The local minima

labeled CI (Figure 7) is defined by a hydrogen bond between W1(H2)

and W2(O), with an overlap of the electron density highlighting the

covalent nature of hydrogen bonds. Another local minima labeled CII

where W2(H2) is the hydrogen bond donor and W1(O) the acceptor, is

the symmetric equivalent of CI. In between these two states is a

pseudo transition state labeled as Cy where the two molecules are

straddled alongside each other and no longer share electron clouds

but where both molecules are hydrogen bond donors and acceptors.

It is a mid-point between CI and CII.

The nature and extent of the water association is measured through

the dipole–dipole correlation function given by Q tð Þ¼ <D 0ð Þ �D tð Þ>
where D(t) is the total dipole moment of both water molecules at time

t (left panel Figure 8B). To fit the Q tð Þ decay 2 exponentials of the

form e� tþx1ð Þ=τ1 þe� tþx2ð Þ=τ2 were used. From this the relaxation times

and fitting parameters (τ1 ¼75:7�1:2, τ2 ¼798:2�6:4, x1

¼36:93�0:87, x2 ¼729�11) were found. The two exponential

terms needed for the fit implies that within the association well there

are two processes at play. The relaxation time is a measure of how

fast a particular quantity is becoming uncorrelated. Trajectories from

the association well were analyzed to unpack the two events (left

panel Figure 8C). The faster relaxation time τ1 is due to the librational

motion of both dipoles within the minima well about the angles of CI

(θ1 =65.53� and θ2 =118.33�) and CII (θ1 =122.61� and θ2 =66.23�).

This observation for an isolated water dimer is consistent with the

well-known phenomenon of water molecules libration in bulk

liquid41,42 indicating that water libration in hydrogen bonding configu-

rations is an innate molecular property rather than a condensed phase

induced phenomenon. The slower relaxation time τ2 is due to the

periodic migration from one minima well CI/CII area to another CII/CI

via the transition region Cy (Table 1).

Turning our attention to the process of hydrogen bond dissocia-

tion (right panel Figure 8A) we investigate trajectories to understand

if there is a systematic molecular process of the hydrogen bond

between the waters breaking while drifting apart. After passing the

energy barrier of 6 kT = 3.55 kcal/mol, the water molecules remain

more than 5 Å apart, are no longer hydrogen bonded and do not have

an enthalpic means to re-establish the hydrogen bond. The time cor-

relation function can be fitted to single exponential function (right

panel Figure 8B) of the form e
� tþxð Þ

τ where τ is the relaxation time. Upon

fitting, the values are found to be τ¼127:0�1, x¼5:63�0:77 . Ana-

lyzing the dissociation trajectories, two of which are projected onto

the free energy surface (right panel in Figure 8A), shows that the exit

out of the 6 kT hydrogen bond zone is made via a bifurcated hydrogen

bonding configuration. A closer look at this through an examination of

the time series of the θ and r RCs (right panel Figure 8C) confirms that

the gateway out of the hydrogen bond zone of r >4Å is through the

BI and BII configurations (red and black trajectories on right panel

Figure 8A).

4 | CONCLUSIONS

The implementation of graph theory to define complex reaction

coordinates and draw detailed paths to atoms affected by the per-

turbations due to biasing forces has been detailed here. We showed

that the convergence of a multidimensional free energy simulation

as a flat histogram having a small sampling ratio between high

energy to low energy events can be achieved. This free energy

method has been reported previously as a set of algorithms linked

to CHARMM. Here, we present a formalized library format for

hyperdimensional free energy computations (FEARCF) that can be

interfaced with several packages. The seamless link to NWChem

presents the opportunity to produce advanced ab initio QMD multi-

dimensional free energy hypersurfaces. We illustrate the value of

this by investigating the hydrogen bonding nature of a water dimer

by constructing the hyperdimensional DFT (aug-cc-pVDZ basis set

and X3LYP exchange correlation functionals) free energy space of a

water dimer. Through this we are able to understand that the asso-

ciation mechanisms of a water pair is grounded in two processes

that govern the interplay between the chain and cyclic hydrogen

bonding configurations. First, the correlated librational motion of

both water dipoles that describes the dynamic CI/CII configurations

appears to be an innate molecular phenomenon that carries through

to bulk water in the condensed phase. Second, there is a periodic

interchange between the CI and CII configurations that is via the Cy

configuration. In the case of hydrogen bond dissociation there

appears to be an organized process that passes from the enthalpi-

cally stable dimer 6 kT configurational well into the random
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independent water dynamics via bifurcated hydrogen bonding. It is

now possible to undertake ab initio hyperdimensional free energy

investigations of molecular mechanisms through the interfacing of

FEARCF with packages such as NWChem and so reduce the reli-

ance on subjective parameterised QM models.
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