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Abstract

The laminar composition of the cerebral cortex is tightly connected to the develop-

ment and connectivity of the brain, as well as to function and pathology. Although

most of the research on the cortical layers is done with the aid of ex vivo histology,

there have been recent attempts to use magnetic resonance imaging (MRI) with

potential in vivo applications. However, the high-resolution MRI technology and pro-

tocols required for such studies are neither common nor practical. In this article, we

present a clinically feasible method for assessing the laminar properties of the human

cortex using standard pulse sequence available on any common MRI scanner. Using a

series of low-resolution inversion recovery (IR) MRI scans allows us to calculate mul-

tiple T1 relaxation time constants for each voxel. Based on the whole-brain T1-distri-

bution, we identify six different gray matter T1 populations and their variation across

the cortex. Based on this, we show age-related differences in these population and

demonstrate that this method is able to capture the difference in laminar composi-

tion across varying brain areas. We also provide comparison to ex vivo high-

resolution MRI scans. We show that this method is feasible for the estimation of

layer variability across large population cohorts, which can lead to research into the

links between the cortical layers and function, behavior and pathologies that was

heretofore unexplorable.

K E YWORD S

cortical layers, inversion recovery, microstructure, T1, T1-MRI

1 | INTRODUCTION

In vivo measurement of the cortical layers with magnetic resonance

imaging (MRI) in humans has been a particular challenge in recent

years (Trampel, Bazin, Pine, & Weiskopf, 2017). The different lamina-

tion patterns of the cortex are connected to the function of different

brain areas (Brodmann & Garey, 1999; Von Economo &

Koskinas, 1925). Notably, the granularity of the cortex—that is, the

relative volume of the inner granular layer (Layer IV)—is related to the

type of functionality, as sensory cortices are more heavily granular,

while the motor cortex, for example, is agranular (Beul &

Hilgetag, 2015). Measuring the lamination patterns of the cortex is a

crucial link between microstructure and function (Glasser & Van

Essen, 2011; Lifshits et al., 2018; Trampel et al., 2017). However,

in vivo MRI measurements of the cortical layers present several major

challenges (Edwards, Kirilina, Mohammadi, & Weiskopf, 2018;

Trampel et al., 2017). Currently, most common MRI scanners desig-

nated for human brain imaging have resolution limits that prevent
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accurate lamination measurements in practical acquisition times

(Lifshits et al., 2018; Shamir et al., 2019; Trampel et al., 2017). More-

over, the curvature of the human cortex further exacerbates the par-

tial volume effect (PVE), which limits the isolation of each unique

layer (Leprince et al., 2015; Lifshits et al., 2018; Shamir et al., 2019).

Despite the challenges, there are various attempts to measure

cortical lamination patterns with MRI, both in vivo and ex vivo. These

are usually focus on brain areas where there are certain distinct layers,

such as the heavily myelinated Layer IV in the primary visual cortex

(Barbier et al., 2002; Clark, Courchesne, & Grafe, 1992; Geyer, Weiss,

Reimann, Lohmann, & Turner, 2011). It has been shown that T1-

weighted contrasts can distinguish between different cortical micro-

structures, as T1 is affected by various microstructural properties,

such as myelination, iron content, and morphology (Clark et al., 1992;

Stüber et al., 2014; Barazany and Assaf, 2012). Furthermore, Barazany

and Assaf (2012) showed that it is possible to identify several differ-

ent clusters of gray matter voxels in the brain based on quantitative

T1-mapping. Several other methods, such as T2-weighted and

diffusion-weighted MRI, have also been used to visualize the layers,

with varying degrees of success (Assaf, 2018; Edwards et al., 2018;

Trampel et al., 2017).

Recently, Lifshits et al. (2018) attempted to overcome the resolu-

tion issues by estimating the PVEs of different tissues based on their

T1 by performing multicomponent analysis that infers subvoxel infor-

mation. Acquiring multiple inversion recovery (IR) scans, they have

shown that subvoxel T1 modeling can be used to identify different

populations of cortical tissue (Lifshits et al., 2018; Shamir et al., 2019).

In this article, we demonstrate the effectiveness and validity of

such a method and show that it can be used to identify microstruc-

tural properties of the cortex beyond what is possible with standard/

high-resolution imaging techniques, and, as a demonstration of the

method, show how these properties correlate with age. We also dem-

onstrate that how cortical parcellation is possible with this method, as

well as examine how this method compares to high-resolution ex vivo

imaging analysis. We suggest that this method can lead to new ave-

nues of research into cortical parcellation and the link between micro-

structure and function. In addition, this approach can be used in

whole brain, large population studies which allows, for the first time,

to explore the variance of layer composition over wide populations.

We anticipate that despite the low-resolution imaging protocol used,

this method will allow for measuring the different microstructural pat-

terns of the cortex, reveal correlations between cortical microstruc-

ture and age.

2 | METHODS

2.1 | Subjects

Two-hundred subjects were recruited for this study (98 females and

102 males, aged 30.09 ± 11.82 years; see Figure S1 for subject age

and sex distribution). Subjects were neurologically and radiologically

healthy, with no history of neurological diseases, and normal

appearance of clinical MRI protocol. The imaging protocol was

approved by the institutional review boards of Sheba Medical Centers

and Tel Aviv University, where the MRI investigations were per-

formed. All subjects provided signed informed consent before enroll-

ment in the study.

2.2 | MRI acquisition

All subjects were scanned at the Alfredo Federico Strauss Center for

Computational Neuroimaging at Tel Aviv University, with a 3 T Sie-

mens MAGNETOM Prisma MRI scanner (Siemens Medical Solutions,

Erlangen, Germany) with a 64-channel RF head coil. The protocol con-

sisted of a series of 44 IR prepared spin echo echo-planar-images

(IRSE-EPI) with inversion times (TI) between 50 and 2,500 ms. The

scans were acquired at a 3 � 3 � 3 mm3 resolution in the axial plane,

covering the entire brain, with the following parameters: TR/

TE = 12,000/30 ms, GRAPPA factor of 2 with a matrix size of

68 � 68 and 42 slices (no gap). The subjects were also scanned with

an MPRAGE sequence (TR/TE/TI = 2400/2.78/1000 ms) at a

1 � 1 � 1 mm3 resolution, used as an anatomical reference with a

good contrast between gray and white matter. The duration of the

protocol was roughly 15 min. All subjects were scanned as part of the

Tel Aviv University (TAU) Brain Brank Initiative, and the imaging pro-

tocol included additional sequences that were not used in this study.

2.3 | MRI data analysis

The series of IR EPI scans were registered to the first IR scan using

MATLAB's (Mathworks, Natick, MA) Image Processing Toolbox and

SPM 12 (Penny, Friston, Ashburner, Kiebel, & Nichols, 2006). Follow-

ing that, the IR data were fitted using nonlinear least-squares optimi-

zation on a voxel-by-voxel basis to the multicomponent IR function

(Lifshits et al., 2018) using an in house MATLAB code:

M TIið Þ¼ M0

XC
j¼1

fj 1�2e
� TIi

T1 jð Þ þe
� TR

T1 jð Þ

� ������
�����

where TIi and M TIið Þ are the inversion time and the magnetization of

the ith IR image, respectively, M0 is the voxel's magnetization at TI!
∞ and is proportional to proton density, T1j is the longitudinal relaxa-

tion time for each component j with fj being the component's volume

fraction. C is the number of components fitted for a specific voxel.

This method generates a multicomponent T1-map for each subject,

with a matching partial volume map for each subvoxel component.

The number of computed components for each voxel was determined

by fitting a range of possible components and comparing the root

mean squared error (RMSE) of their fit.

In order to identify different tissue types in the brain and specifi-

cally different distributions of gray matter tissue, we fitted a mixture

model to each subject's whole-brain T1-distribution (calculated from
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the subject's multicomponent T1-map). We used a mixture of Stu-

dent's t-distributions model (Peel & McLachlan, 2000) instead of the

more common Gaussian mixture model, as it is more robust to noise

and outliers in the data (McLachlan & Peel, 2004; Peel &

McLachlan, 2000). For each subject, we attempted to fit up to 25 mix-

tures, where the optimal number was determined by Bayesian infor-

mation criteria (BIC; Schwarz, 1978) of each subject's distribution to

the mean model across subjects. We found that on average, the

18-mixture fit had the best fit (Figure S2), and thus it was used for the

following analysis steps.

We then identified tissue distributions whose mean T1-value was

in the expected gray matter T1 regime (Figure S2), which is roughly

between 800 ms and 1800 ms (Clare & Jezzard, 2001; Deoni, 2007;

Ethofer et al., 2003; Gelman, Ewing, Gorell, Spickler, &

Solomon, 2001; Lu et al., 2005; Stanisz et al., 2005; Wansapura, Hol-

land, Dunn, & Ball, 1999; Weiskopf et al., 2013; Wright et al., 2008).

For each of these gray matter mixtures (T1 classes), we calculated the

probability of the mixture in each voxel using Bayes' formula:

Pk ¼
XC
j¼1

fj
p T1 jð Þjk
� � �p kð Þ

p T1 jð Þ
� �

where k represents a mixture, p T1ð Þ is the general whole-brain proba-

bility of a T1-value, p kð Þ is the mixture probability, and p T1 jð Þjk
� �

is the

probability of the T1-value in the mixture k.

These tissue probability maps, which are calculated in the IR scan

space, were then registered and normalized to the MNI152 space

(Evans et al., 1993; Fonov, et al., 2011; Fonov, Evans, McKinstry,

Almli, & Collins, 2009) using SPM 12 (Penny et al., 2006) as following:

first registering the shortest TI IR scan to the subject's MPRAGE, then

registering the MPRAGE to the MNI152 space, and finally applying

the transformation to the probability maps. We then calculated the

relative laminar proportions for each parcel in three different brain

atlases: the 100 and 1,000 parcels version of the 17-network atlas

from Schaefer et al.'s (2018) local–global parcellation; and the 214 cor-

tical areas from Julich-Brain's maximum probability map (Amunts,

Mohlberg, Bludau, & Zilles, 2020). These resulted in a p-by-k matrix

for each subject (where p is the number of parcels in the atlas and k is

the number of gray matter mixtures), in which each row is the T1-class

probability vector and calculated the mean probability vectors across

the subjects. Furthermore, we calculated the cortical thickness estima-

tion for the 100 parcels version of Schaefer et al.'s (2018) atlas using

CAT12 (Gaser & Dahnke, 2016; Luders et al., 2006). Then, for each

subject, we multiplied each area's T1-class probability vector by the

area's cortical thickness, resulting in T1-class thickness vectors, which

were also averaged across all subjects.

Based on these mean probabilities, we used the fuzzy C-means

(FCM) method (Bezdek, 1981; Dunn, 1973) to cluster the 1,000 par-

cels of the local–global parcellation into six fuzzy clusters, mimicking

the six cortical types identified by Beul and Hilgetag (2015). As this

version of Schaefer's atlas is composed of 1,000 small areas, it serves

as a practical basis for further clustering, and as it is a function-based

atlas, it inserts less structural bias in our analysis than an anatomy-

based atlas would.

Using the T1-class thickness vectors of the 100-parcels Schaefer

et al. (2018) atlas, we calculated the correlations between age and the

thickness of each T1-class of each area and tested for significance fol-

lowing false discovery rate (FDR) correction (Benjamini &

Hochberg, 1995). We used the 100-parcel atlas as it is composed of

larger areas that are consistent across subjects.

Finally, we calculated the class covariance matrices within and

between T1-classes, as well as cortical volume covariance matrices,

based on the T1-class probabilities of the areas in the Julich-Brain

atlas. The latter was done using CAT12 (Gaser & Dahnke, 2016). This

process was done in order to assess whole-brain interclass and

intraclass correlations, whether there is interhemispheric correlation

within and between classes. The Julich-Brain atlas was used as it is a

symmetrical cytoarchitectonic atlas with homologous areas in each

hemisphere, allowing for analysis of interhemispheric correlations.

2.4 | Ex vivo acquisition and analysis

From a fixed human brain (age: 40 years), auditory (A1), motor (M1),

somatosensory (S1) and visual (V1) cortices were dissected. The dis-

sected sections were preserved in 4% paraformaldehyde in poly-

butylene succinate (PBS). Twenty-four hours prior to MRI, the

sections were soaked in PBS at room temperature and then placed in

Fluorinert (FC-770; 3M, St. Paul, MN, USA) tube for scanning. MRI

was performed on a 7 T/30 Bruker Biospec (Bruker, Germany) at the

Alfredo Federico Strauss Center for Computational Neuroimaging at

Tel Aviv University. The protocol consisted of seven 3D IR rapid

acquisition scans with relaxation enhancement (IR-RARE) with the fol-

lowing TIs: 250, 350, 380, 420, 450, 480, and 650 ms at a resolution

of 150 � 150 � 225 μm3 (TR/TE = 5000/8 ms, RARE factor = 8).

The TIs were selected based on Barazany and Assaf's (2012) protocol,

with the higher TIs discarded as there is no cerebrospinal fluid with

higher T1-value to account for. Only seven TIs were used as due to

the high resolution of the scans, modeling the PVE was less relevant.

For each region, the series of IR images were coregistered and

resliced using SPM8 (UCL, London), and the gray matter was manually

segmented. We then calculated quantitative T1-maps according to the

inversion recovery spin echo (IR-SE) equation (Barral et al., 2010):

M TIið Þ¼ M0 1�2e�
TIi
T1 þe�

TR
T1

� �����
����

Following that, we fitted a mixture of Student's t-distributions with

six components to the T1-maps, to account for six cortical layers. We

then calculated the relative ratio of each to assess the relative volume

of the T1-layer it represents, and performed hard clustering on the

gray matter voxels based on the mixture model. These results were

compared qualitatively compared to the in vivo T1-layers extracted in

these specific areas, as described in the previous section, by calculat-

ing the mean laminar differences between the two measurements.
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3 | RESULTS

In this article, we explore the microstructural properties of the human

cortex as measured by T1-relaxation time. We used multicomponent

T1 analysis to identify different T1 populations of gray matter and

found six populations in the T1 gray matter regime (ranging 800–

1800 ms). It should be noted that we did not predetermine the num-

ber of populations in this range, and that they are by no means a

direct measures of the histological layers (see Section 4). We then cal-

culated the correlations between these populations and age and

examined the relationship between the different populations across

the brain. We also performed ex vivo analysis using our method on

four different excised cortical sections.

3.1 | T1-layers analysis

The mean probabilities for each of these gray matter T1-class across

200 subjects can be seen in Figure 1 (for SDs, see Figure S2). It can be

seen, for example, that Class 5 has a higher probability in tempo-

occipital areas, while Class 6 has a higher probability in visual areas in

the occipital cortex. Class 3 has a higher probability in inferior parts of

the cortex in the general area of the hippocampal formation. Class

4 has a higher probability in parietal and temporal areas. Classes 1 and

2 have a higher probability in frontal and parietal regions, compared

to the rest of the cortex. It should be noted while the gray matter clas-

ses were identified based solely on their T1, they do not necessarily

correspond to the cytoarchitectonic cortical layers, and that there was

no predetermined specific number of such mixtures that we were

looking for.

Six fuzzy clusters were identified using the FCM algorithm

(Figure 2). It can be seen that Cluster 1 includes mostly temporal and

parietal regions, while Cluster 2 includes areas in all lobes. Cluster 3 is

located almost exclusively in the visual cortex, and Cluster 4 similarly

is located in the inferior parts of the cortex around the uncus and the

orbital gyri. Cluster 5 is dispersed heavily in upper frontal and parietal

areas, and Cluster 6 appears to include mostly primary and supple-

mentary motor areas.

3.2 | Correlation with age

Correlations between age and T1-class thickness measurements, as

well as between age and cortical thickness, were calculated and

corrected for multiple comparisons (Figure 3). The results show major

negative correlations between age and T1-classes 4 and 5 in most of

the cortex, as well as positive correlations between age and T1-class

1. Some minor correlations can be seen between the other T1-classes

and age. Cortical thickness is shown to be negatively correlated with

age across most of the cortex.

3.3 | Cross-population analysis

T1-classes covariance matrices (n = 200) show positive correlations

and high interhemispheric correlation between homologous areas

F IGURE 1 Mean probabilities of the T1-classes for the 1,000
areas in Schaefer et al.'s (2018) 17-network parcellation of the human
cortex, across the 200 subjects. All the data are presented on the
MNI152 brain (Evans et al., 1993; Fonov et al., 2009; Fonov,
et al., 2011). For SDs, see Figure S3. The same data with dynamic
color range for each T1-classes are presented in Figure S4. For these
results presented on the FsAverage surface, see Figure S8

F IGURE 2 Maximum fuzzy clusters using the T1-class
probabilities for the areas in Schaefer et al.'s (2018) 17-network,
1,000-areas parcellation of the human cortex. All the data are
presented on the MNI152 brain (Evans et al., 1993; Fonov
et al., 2009; Fonov, et al., 2011). For these results presented on the
FsAverage surface, see Figure S10
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(Figure 4a), which can also be seen in the top right and bottom left of

the matrices. It can also be seen that there are positive interclass cor-

relations between T1-classes 1, 2, and 3 (Figure 4a), as well as

between T1-classes 4 and 5 (Figure 4b), suggesting that the variability

in T1-class composition across the cortex has a certain pattern, as

opposed to simply being random. The interhemispheric patterns are

consistent in these interclass matrices as well.

3.4 | Ex vivo comparison

Ex-vivo analysis found T1-layer patterns similar to those found in our

in vivo method (Figure 5) in the four cortical sections examined— the

auditory (A1), motor (M1), somatosensory (S1), and visual (V1) primary

cortices. These similarities mean layer ratios difference between

in vivo and ex vivo measurements were similar across all four sections

(A1: 0.04 ± 0.04; M1: 0.04 ± 0.03; S1: 0.06 ± 0.05; V1: 0.04 ± 0.03).

In areas A1 and V1, it can be seen that the sixth T1-layer is notably

the thickest in both in vivo and ex vivo measurements. It can also be

seen that T1-layers 1, 2, and 3 are relatively smaller both in the in vivo

and ex vivo analysis in all four areas. These similarities are qualitative

only as no statistical analysis could be performed on single samples,

yet they provide some high-resolution validation for our methods.

4 | DISCUSSION

In this article, we present a method for in vivo measurement of

whole-brain cortical lamination. This method is based on mul-

ticomponent T1 analysis of inversion recovery imaging and identifica-

tion of multiple gray matter clusters in the human cortex, which

allows us to overcome the common resolution and PVE limitations of

conventional MRI protocols, which hinder measurements of cortical

microstructure. We show that T1-MRI properties provide a unique

measure of the cortex, and that these measures of cortical microstruc-

ture can be used to distinguish between different cortical areas. We

also show how it can be used to perform research on various groups

and populations. As the cortical layers are the fingerprint of human

function (Barazany and Assaf, 2012), there is a critical need for tools

that enable exploration and understanding of this phenomenon in

F IGURE 3 Significant correlations between T1-class thickness
and age across the six T1-classes, as well as correlations between age
and overall cortical thickness (top row). All the data is presented on
the FreeSurfer FsAverage brain surface. For these results presented
on the MNI152 brain, see Figure S11

F IGURE 4 Correlation matrices.
(a) Correlation and covariance matrices
between the T1-classes,, where
correlations between homologous areas
can be seen; positive intra-class
correlations can be seen, especially
between homologous areas in both
hemispheres, as well as similar interclass
correlations between T1-classes 1, 2 and
3, between T1-classes 3 and 4, and
between T1-classes 4 and 5; negative
interclass correlations between T1-class
6 and all other classes, and weaker
negative correlation between T1-classes
1 and 5; (b) Cortical gray matter volume
covariance matrix. In all matrices, the
upper half of the y-axis and left half of
the x-axis represent left hemisphere
areas, and the lower half of the y-axis and
right half of the x-axis represent the right
hemisphere
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large populations. Such studies may also help unravel the laminar pat-

terns' role in neurodegenerative diseases and other pathologies.

Much of the research into in vivo imaging of cortical layers has

focused on high-resolution imaging of small parts of the brain, usually

requiring a high magnetic field or long scanning times (Barbier

et al., 2002; Clark et al., 1992; Geyer et al., 2011; Lifshits et al., 2018).

These methods' applicability to large population studies and whole-

brain analysis is therefore limited. The approach proposed in this arti-

cle, however, is to use fast, low-resolution T1 imaging to model the

PVE rather than to resolve it with a high enough resolution.

By performing subvoxel analysis on multiple IR datasets with

varying contrasts, we are able to characterize the microstructure of

the cortex voxel without using the high-resolution techniques

required to actually image it. The main advantages of this approach

are its simple protocol, which is applicable on any MRI scanner, its

short acquisition time (roughly 15 min), and its ability to perform this

analysis on a whole-brain basis. We show here that this combination

makes our method suitable to general population studies and compar-

isons with large sample sizes.

As we demonstrated, our T1-layers measurements can capture

some of the known microstructural differences between various corti-

cal regions. An example of this is the unique features of the visual cor-

tex or the paleocortex (see Figures 1 and 2). While these are not exact

measurements of the cortical layers as they are defined by histology,

comparing them to high-resolution imaging of ex vivo sections shows

a relatively good correspondence. It should be stressed that though

we found six distinct populations of gray matter T1 tissues, they do

not necessarily correspond fully to the cytoarchitectonic layers. How-

ever, it is not unreasonable to assume that differences in cell arrange-

ment density, and hence in tissue density, will be reflected in the T1

properties of the tissue (Fatterpekar et al., 2002; Lifshits et al., 2018).

Some of the results of our clustering are also in line with histological

lamination measurements (Beul & Hilgetag, 2015). Less distinct, yet

still valid comparisons can also be seen in the frontal and temporal

cortices, which provides some validity for our method.

Assessing the covariance matrices provides support for the reli-

ability of our measurements, as well as additional validation. The high

interhemispheric correlations between homologous areas show the

robustness of our method. Meanwhile, interlayer correlations may be

related to the intrinsic connections between the layers, though further

research is needed for conclusive statements on the matter. In addi-

tion, we have shown that the negative correlation between cortical

thickness and age is expressed mostly in some of the T1-classes and

not in others. We also show that some of the classes actually show

somewhat of an increase in thickness. While the underlying cause for

this is difficult to identify, similar phenomena in lamination patters

F IGURE 5 T1-lamination patterns in four ex vivo cortical sections: the primary (a) auditory, (b) motor, (c) somatosensory and (d) visual
cortices, showing comparison between in vivo and ex vivo measurements (left), a quantitative T1 image of a slice of the ex vivo section (center),
and the same slice overlaid by the six different gray matter T1-clusters

2866 TOMER ET AL.



had been previously observed with histological methods (Zhang, Hua,

Zhu, & Luo, 2006). Another possible explanation for this is myelination

of some cortices that occurs with age and is related to the thinning of

the cortex (Natu et al., 2019). Finally, high-resolution ex vivo compari-

sons show similarity to our method in areas that are considered both

granular, such as the primary visual and somatosensory cortices, as

well as to agranular cortices such as the primary motor cortex (Beul &

Hilgetag, 2015).

It should be noted that our approach is not without its limitations.

First and most obviously, we do not directly visualize the cortical

layers themselves, but only measure microstructural features indi-

rectly in low resolution. For this reason, we use the terms “T1-layers”
or “T1-classes” instead, to differentiate from histological terms. The

other major limitation of this method is that the low-resolution imag-

ing technique used prevents us from capturing the variation in laminar

thickness where cortical curvature affects it. The cortical layers vary

not only between cortical areas, but also within areas according to the

folding of the cortex (Waehnert et al., 2014), variations that require a

significant increase in image resolution. This would require not only a

much longer scanning protocol but also more advanced MRI technol-

ogy than is commonly available for in vivo acquisitions. Therefore, our

method effectively only measure the average microstructural compo-

sition within small areas. Our method is also sensitive to noise and

outliers in the data, which may be mitigated by increasing time resolu-

tion of our protocol (i.e., the number of different IR scans), which will,

again, come at the expense of the short, convenient nature of the cur-

rent protocol used. With regards to the study cohort, it can be seen

that it trends toward younger subjects, mostly due to the recruiting

logistics of the TAU Brain Bank Initiatives, from which this study

draws its participants.

This method and its relative simplicity may enable population-

wide, whole-brain research into cortical lamination patterns that here-

tofore was only studied on a much smaller scale and prespecified

regions. It has already been shown that similar lamination measure-

ments identify unique characteristics in stroke (Lotan et al., 2019) and

cortical dysplasia (Lotan et al., 2021) patients. Further use of our

method could allow for further investigation of the link between corti-

cal microstructure and various functions and pathologies more exten-

sively than has yet been done with brain imaging.
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