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Classification‑based motion 
analysis of single‑molecule 
trajectories using DiffusionLab
J. J. Erik Maris1, Freddy T. Rabouw1,2, Bert M. Weckhuysen1 & Florian Meirer1*

Single‑particle tracking is a powerful approach to study the motion of individual molecules and 
particles. It can uncover heterogeneities that are invisible to ensemble techniques, which places 
it uniquely among techniques to study mass transport. Analysis of the trajectories obtained with 
single‑particle tracking in inorganic porous hosts is often challenging, because trajectories are 
short and/or motion is heterogeneous. We present the DiffusionLab software package for motion 
analysis of such challenging data sets. Trajectories are first classified into populations with similar 
characteristics to which the motion analysis is tailored in a second step. DiffusionLab provides tools to 
classify trajectories based on the motion type either with machine learning or manually. It also offers 
quantitative mean squared displacement analysis of the trajectories. The software can compute the 
diffusion constant for an individual trajectory if it is sufficiently long, or the average diffusion constant 
for multiple shorter trajectories. We demonstrate the DiffusionLab approach via the analysis of a 
simulated data set with motion types frequently observed in inorganic porous hosts, such as zeolites. 
The software package with graphical user interface and its documentation are freely available.

Mass transport is widely studied across the natural sciences: from the movement of a reactants into a catalyst 
particle to cellular transport driven by motor  proteins1,2. To understand and model transport phenomena and 
predict associated properties, quantitative experimental input is crucial. An excellent way to obtain this is to 
record the location of a single moving object, such as a molecule or nanoparticle, as a function of time, yielding 
a so-called trajectory. Already back in the 1900’s, Perrin studied the movement of single granular and colloidal 
particles by recording their trajectory, and by doing so, was the first to experimentally verify Einstein’s work on 
Brownian  motion3,4. The modern era of trajectory-based analysis started with the development of algorithms 
to localize and track particles from time-lapse microscopy  videos5,6. These methods together with fluorescence 
microscopy techniques, such as single-molecule localization microscopy, enable tracking of single fluorescing 
molecules, quantum dots, and colloids with nanometre  resolution1,2,6,7.

Molecules with the same chemical identity can display very different motion behaviour as a result of the 
complex environment where the diffusion takes place. Driven by the notion that ensemble-averaging obscures 
heterogeneities and thus hides important features for cellular function, single-particle tracking has had a crucial 
role in the discovery of cellular organisation and a variety of cellular  processes8. In the field of materials science, 
different motion behaviours have been observed for fluorescent molecules diffusing through a porous catalyst 
 particle1. Interpretation of a data set with fluorophores displaying different motion behaviours requires sufficient 
statistics on the occurrence of the motion behaviours and a quantitative description of each motion behaviour 
via a diffusion model. This is challenging as the measured trajectories are often short, i.e. ~5–15 frames, as a 
result of fast diffusion, rapid photobleaching, and blinking of the fluorophores, and individually do not contain 
sufficient information for a reliable quantification of the motion.

We present in this work an open access, freely available software package “DiffusionLab” to perform quantita-
tive analysis of datasets of single-molecule trajectories. DiffusionLab is versatile, is user-friendly, and can be read-
ily used to perform complex tasks without the need for programming experience. Most other software packages 
focus on the quantification of multiple normal diffusion states directly from the analysis of the displacements, 
using various methods such as fitting of the cumulative distribution of squared  displacements9–15. In contrast to 
these software packages, DiffusionLab first simplifies the data set by classification of the trajectories into smaller 
populations with similar motion behaviour prior to diffusion quantification. In this way, motion heterogeneity 
can be visualized and quantified in a robust way that is not only dependent on fitting of a single (multistate) 
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diffusion model to the  displacements1,16. Consequently, the DiffusionLab software can handle trajectory data 
sets containing a mixture of motion types such as normal, confined, and directed diffusion by treating them 
separately. DiffusionLab focusses on robustness and ease of use to make the tools for quantitative analysis of 
complex trajectory data sets broadly available to the scientific community.

The combination of trajectory classification and motion analysis has been proven to be a powerful approach 
for the analysis of complex data sets with short trajectories, particularly in the field of materials science as evi-
denced by work from our group using the DiffusionLab  software1,16. The potential of feature-based classification 
has also been reported by Lerner et al. for the classification of confinement in trajectories mixed with normal 
or directed  diffusion17. Lerner et al. classified the trajectories based on three features that described properties 
of individual trajectories and, subsequently, quantified confinement within the classified trajectories with mean 
squared displacement analysis using the “msdanalyzer”  software18. DiffusionLab has a wide range of built-in 
trajectory features (or “properties”) as well as the option to add custom features by the user to provide descrip-
tors for many different motion types. The classification is done using these features, either by setting thresholds 
manually or with feature-based machine learning methods on a user-generated training set. Recently, machine 
learning methods have been developed for the detection and classification of the different diffusion types, which 
are mostly focussed on the recognition of anomalous  diffusion19–25. In contrast to the approach employed in Dif-
fusionLab, these models are trained by simulated trajectories with a known set of diffusion models. The presence 
of anomalous diffusion is some cases not clear from mean squared displacement analysis and can be confused 
with normal  diffusion8,26. Further classification by state-of-the-art machine learning models after classification 
in DiffusionLab could be required to identify the type of anomalous  diffusion27.

Single-molecule localization microscopy allows the localisation of fluorophores with a spatial resolution much 
smaller than the diffraction limit of  light7. When light from a point source passes through a lens, it spreads out 
before it reaches the camera due to diffraction of the relayed light. The “point spread function” (PSF) is a function 
that describes how a point source at position r in the sample makes an image at position r’ on the camera. The 
PSF stretches over all positions r’ on the camera but is virtually zero apart from a small region. If the pixel size is 
sufficiently small, a mathematical description of the PSF can be fit to the camera image r’ and the position of the 
point emitter r is retrieved with nanometre precision. A Gaussian function with a full width at half maximum 
in the order of the emission wavelength is often used to describe the PSF. Since the fluorophores are generally 
very small, the PSF is virtually the same for light emitted anywhere from the fluorophore’s volume and they can 
be regarded as point sources. If the fluorophore density in a single micrograph is sufficiently low that the non-
zero regions of the PSFs do not overlap, the location coordinates of each fluorophore can be determined rapidly 
with available  algorithms28,29. In the next step, the localisation coordinates from a time series that most likely 
belongs to the same molecule are grouped together into a trajectory. Grouping coordinates into trajectories is 
often achieved by an algorithm that minimizes a cost function, which depends on e.g. the displacement between 
consecutive  coordinates7,8,28–31. The DiffusionLab software imports trajectories from third-party localization and 
tracking applications and provides the tools to analyse the trajectories via classification and motion analysis.

Mean-squared displacement (MSD) analysis is one of the most common tools to quantify the motion of a 
fluorophore described by a trajectory, because of its visual  interpretability32,33. The shape of the MSD curve is 
dependent on the motion behaviour of the diffusing particle. While normal (Brownian) diffusion is characterised 
by a linear relation between the MSD and the delay time tn , confined motion results in an MSD that reaches a 
plateau for long delay times and directed motion can be identified by a parabolic MSD curve. Anomalous dif-
fusion can in some cases be mistaken for normal diffusion in the MSD analysis, and careful interpretation is 
required in systems where anomalous diffusion is expected. The MSD is computed from a time series of positions 
x0, x1, . . . , xN for a single trajectory as

with the delay time tn = n�t for n = 1, 2, ...,N and the time between frames �t7,32–35. We will refer to this MSD 
as the time-averaged MSD (T-MSD) to distinguish it from the time–ensemble averaged MSD discussed later 
in the text—the term MSD will be used when this distinction is not required. In practice, the MSD curve will 
be affected by noise on the coordinates xi determined experimentally, because of the localisation error due to 
photon-counting noise and image blur as a result of motion within the exposure time of a microscope frame. 
For free two-dimensional normal diffusion including localisation error and motion blur, the measured mean 
squared displacement MSD(tn) is described  by32,34,

with D the diffusion coefficient, σ the localization error, and R the motion blur coefficient. The first term in 
Eq. (2) describes how the MSD increases as function of delay time due to normal diffusion, while the second 
term adds a constant factor accounting for localization error and motion blur, which are both errors introduced 
by the experimental measurement. R can take values in the interval [0, 1/4] and is dependent on the detection 
scheme. In the case of no motion blur, R = 0 , while R = 1/6 if the exposure time of the camera equals the time 
between frames. Ideally one would fit (a set of) trajectories that can be described by a single diffusion constant; 
however, if the individual fluorophores switch between diffusive states, the MSD analysis will report only an 
average diffusion constant.

We include (T-)MSD curve analysis in DiffusionLab as primary motion estimator because it is accessible, 
well known across the scientific community, and robust for many different motion behaviours. The caveat of 
T-MSD analysis is that the fitted parameters can be biased when the trajectories are short (Sec. S1.1)8,34. This is 
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1
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particularly a problem for single-molecule trajectories recorded in inorganic porous hosts, which are generally 
short and have heterogeneous underlying motion behaviour. Bias in the T-MSD curve makes the identification 
of the motion behaviour ambiguous and introduces bias in the fitted parameters. Unfortunately, these trajectory 
properties are inherent to the experiment and cannot be changed substantially—even by experiment  design7. 
Therefore, we classify the individual trajectories based on similarity and pool them to get their population aver-
age, which is a well-known concept in processing hyperspectral  images36. With this approach we reduce noise 
and bias in the population-averaged MSD curve, and as a result we obtain the motion type and fitted parameters 
of the pooled trajectories with improved performance. Ultimately, it allows the spatial mapping of motion het-
erogeneity on level of single short trajectories.

In this work, we explain the methodology of DiffusionLab and demonstrate it via the classification of tra-
jectories of a simulated example data set. This example contains trajectories of fluorophores that show transient 
trapping, which is common for fluorophores diffusing in a nanoporous  host1,7,16,37,38. We demonstrate how to 
perform classification via machine learning. Finally, the motion of the classified populations is analysed and 
quantified with MSD analysis.

Methods
We simulated synthetic trajectories of emitters exhibiting transient trapping. The details are given in the Sec. 
S1.2. Briefly, a synthetic dataset was generated in three steps: (1) simulation of the coordinates of 3-dimensional 
xyzt  trajectories39; (2) generation of synthetic xyt time lapse video frames from 3-dimensional trajectories using 
a simulated point spread  function40,41 and homogeneous background signal; and (3) localization and tracking of 
the generated synthetic time lapse video with conventional fitting  routines29. To simulate transient trapping, the 
coordinates of a random walk with two diffusion states was simulated in step (1). The diffusion constant of the 
first diffusion state was set to zero ( D1 = 0 ) while the other was set to D2 = 1.0× 10−12  m2  s−1. The probability 
to change diffusion state was 0.02 per frame (0.4  s−1). A fixed number of trajectories was simulated in a three-
dimensional box with periodic boundary conditions during the full simulation time. Every trajectory coordinate 
in (1) resulted in a PSF “placed” in the time-lapse video (2). To simulate motion blur, the trajectory coordinates 
in step (1) were computed with a five times higher time resolution than the synthetic time lapse video in (2). 
This means that we placed five PSFs along the path the emitter has travelled during one frame. Photon-counting 
noise and camera noise were simulated in step (2) resulting in an imprecision in the localization in (3), which 
altogether introduced a localisation error. In the final step, localisation and tracking were done with the DoM 
plugin (Detection of Molecules, https:// github. com/ ekatr ukha/ DoM_ Utrec ht) for  ImageJ29. A small fraction of 
the simulated emitters was in the microscope frame, i.e., focal volume, at the same time. Importantly, the emitter 
was only tracked by the DoM plugin when it was sufficiently in focus. Out-of-focus emitters were too broad or 
had insufficient counts to be picked up by the tracking algorithm. As a result, the three-dimensional trajectories 
were split into many shorter trajectories due to in- and out-of-focus movement of the simulated emitters.

The hierarchical classification tree was constructed from a manually classified training set of 100 trajectories. 
The training set was used to automatically select the threshold and the trajectory properties, i.e., features. We 
allowed all trajectory properties available in DiffusionLab to be used by the model, which was the “elongation”, 
“elongation angle”, “entropy”, “length”, “minimum bounding circle radius”, “minimum bounding circle minus 
the centre of mass”, “number of points”, and “tortuosity” (see also Documentation Section 3.1.1). The maximum 
number of splits in the tree was limited to five in all examples, because a larger tree did not lead to better clas-
sification and could cause overfitting.

The classification and analysis of the simulated trajectories was done with version 1.1.0 of the DiffusionLab 
software package. The MATLAB installer and source code are available online: https:// github. com/ ErikM aris/ 
Diffu sionL ab. The latest version of the documentation can be downloaded via https:// diffu sionl ab. readt hedocs. 
io/_/ downl oads/ en/ latest/ pdf/.

Results and discussion
The workflow and concepts of DiffusionLab. The workflow of the classification-based motion analy-
sis in DiffusionLab is given in Fig. 1. In the first step, the trajectories are imported from a tracking software. 
At the time of writing, DiffusionLab supports the import of trajectories from the software package  Localizer28 
and the ImageJ plug-in  DoM29. Moreover, the import of simulated trajectories from COMSOL Multiphysics® is 
supported to compare experimental and simulated data  sets42. Step-by-step instructions for how to export the 
trajectories from the respective software are given in the Documentation section 2.2. In the second step, a set of 
descriptors of each trajectory is computed, which are scalars that capture a property of the trajectory. Examples 
of these properties are the length and tortuosity of the trajectory. Both two and three-dimensional trajectories 
are supported; however, not all properties are defined in three dimensions. A description and physical interpre-
tation of the properties is given in the Documentation section 3.1.1.

A classification model is constructed to classify the trajectories into populations with similar motion behav-
iour. The populations are identified by the user and classification is done via a hierarchical classification tree. 
The hierarchical classification tree is read from top to bottom for each trajectory, weighing one property at each 
branch, until the trajectory is classified (example in Fig. 2). Hierarchical classification trees have the advantage 
that they are easily interpretable and important properties and their thresholds are readily available from the 
 model43. This aids rational design of the classification model when constructed manually. For machine learn-
ing, the classification tree model has the advantage that it is very well interpretable compared to other machine 
learning models. In DiffusionLab, hierarchical classification trees can be constructed manually or via supervised 
machine learning. For manual construction, DiffusionLab has various tools to find important properties for 
classification and to set the thresholds. The biplot shows the properties with a high dispersion that are therefore 

https://github.com/ekatrukha/DoM_Utrecht
https://github.com/ErikMaris/DiffusionLab
https://github.com/ErikMaris/DiffusionLab
https://diffusionlab.readthedocs.io/_/downloads/en/latest/pdf/
https://diffusionlab.readthedocs.io/_/downloads/en/latest/pdf/
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good candidates to implement in the tree (see Sec. S1.3). Histograms and correlation plots can be generated to 
find thresholds in e.g., bimodal distributions as is shown in Fig. 1, step 3a. These thresholds can be optimized 
by applying the classification and visually assessing the result. In supervised machine learning, the model maps 
an input (trajectory properties) to an output (motion behaviour type) based on example input–output pairs. 
The example pairs are called a “training set”, which are here a set of representative trajectories labelled with 
their motion behaviour. DiffusionLab offers a tool to manually classify a subset of experimental trajectories to 
obtain such a training set. This is then used to compute a hierarchical classification tree model. On top of that, 
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Figure 1.  Workflow of population-based motion analysis in DiffusionLab: (1) the trajectories are imported; (2) 
a set of descriptors (properties) of each trajectory is computed; (3) a classification model is constructed, this can 
either be done manually as a hierarchical classification tree (3a) or via supervised machine learning (3b); (4) the 
classification model is used to classify all trajectories in populations with similar motion behaviour; and (5) the 
mean squared displacement (MSD) of the populations is analysed separately. Finally, the properties and motion 
analysis results can be plotted, saved and/or exported.
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Figure 2.  (a) Example trajectories of the immobile, hybrid, and mobile population. The dashed circle has 
a radius of the minimum bounding circle radius and marks the immobile segments in the trajectories. (b) 
Classification tree obtained with machine learning on a training set of 100 manually classified trajectories for a 
simulated dataset with transient trapping. The classification tree is read from top to bottom for each trajectory, 
weighing one property at each branch, until the trajectory is classified as either mobile, immobile, or hybrid. At 
each split, the histogram of the property is given for all trajectories of the branch, with the background colour 
indicating the threshold value of the split.
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MATLAB’s Classification Learner app can be used to construct a classification model with any classification 
models available in MATLAB, which includes support vector machines and K-nearest neighbours. In the fourth 
step, the classification model is used to classify all trajectories in populations.

The motion of the classified populations is analysed in the last step (Fig. 1, step 5), and this is where the power 
of the classification-based approach becomes truly visible. With DiffusionLab, the user can quantify both the 
motion of individual trajectories and the ensemble behaviour of each population. Analysis of the individual tra-
jectories reveals the heterogeneity in molecular motion on the single-molecule level. However, in data sets with 
short trajectories, the statistical relevance of a single trajectory is limited. Because the trajectories have been clas-
sified into populations with similar motion behaviour, we can overcome this by analysing the ensemble-averaged 
behaviour and diffusion parameters. T-MSD analysis is known to suffer from bias in the estimated diffusion 
parameters due to correlation in the  displacements8,34. Since the detected motion behaviour is dependent on the 
relation between the MSD and the delay time, the bias makes it particularly challenging to determine the diffu-
sion model that best characterizes the motion of the  emitters8. The time–ensemble averaged MSD (TE-MSD) 
averages the T-MSD over a subset of trajectories, thereby averaging over any correlations within the trajectories

with the time series of positions xj,0, xj,1, ..., xj,Nj for trajectory j . For each delay time tn , we include an ensemble 
of Jn trajectories with Nj ≥ n . The bias in the TE-MSD is strongly reduced with respect to the T-MSD, which 
results in a interpretable relation between the MSD and the delay time over a longer time domain, facilitating 
the determination of the motion behaviour  type8. Moreover, the diffusion constant can be readily extracted from 
the TE-MSD, which allows direct comparison within and between different experiments. We use the T-MSD for 
the analysis of individual trajectories, while TE-MSD is used to analyse a population of trajectories. Altogether, 
using these two complementary approaches we obtain both insight in the motion heterogeneity on the single-
molecule level as well as the mean diffusion parameters.

A simulated example of trajectory classification and motion analysis. We demonstrate the work-
flow of DiffusionLab on a dataset of simulated trajectories (see Methods). The trajectories were simulated from 
random walkers in three dimensions that could switch between an immobile ( D1 = 0  m2  s−1) and mobile state 
( D2 = 1.0× 10−12  m2  s−1), mimicking transient trapping often observed in porous  solids1,7,16,37,38. We imported 
the data set into DiffusionLab and find 10,600 individual trajectories (Fig. 1, step 1). Before computing the prop-
erties in step 2, we removed trajectories with fewer than five  localizations17. In this way, we reject trajectories and 
unconnected localisations whose properties, such as a minimum bounding circle radius, are not or ill-defined. 
Moreover, the localisation and tracking algorithm sometimes finds localisations due to fluctuations in the cam-
era noise. Since these erroneous localisations are random, the probability that they form a trajectory becomes 
smaller for longer trajectories. Thus, we can eliminate most of these from the analysis by removing trajectories 
with fewer than five localizations. Finally, for a trajectory of five localisations, the minimum number of points in 
the MSD curve is four, which we consider the minimum for MSD analysis. Removing the trajectories with less 
than five localizations reduces the number of trajectories to 2433. DiffusionLab then computes and stores the 
trajectory properties, as explained in the Documentation Section 3.1.1.

Next, the hierarchical classification tree was created (Fig. 1, step 3), and we first identified the motion types 
present in the data set. Although the movement of all emitters was simulated using the same underlying diffu-
sion constants, we observed three qualitatively different types of trajectories, in agreement with the experimental 
results of Hendriks and Meirer et al.1 (Fig. 2a and Sec. S1.4). For some trajectories, the coordinates are separated 
from each other by no more than the localisation error. These do likely not reflect actual movement, but the 
apparent motion is due to the localisation error. We call these trajectories ‘immobile’. Other trajectories show 
continuous movement without interruptions, which we label ‘mobile’ trajectories. A third group of ‘hybrid’ 
trajectories has both mobile and immobile periods. Next, we manually classified a hundred trajectories, assign-
ing each to one of the three motion types, and used this as a training set for machine learning. A training set of 
just a hundred trajectories is typically considered to be very small for machine learning; nevertheless, we show 
that this can be sufficient to construct a classification tree with reasonable accuracy. The classification tree has a 
resubstitution loss of 2%, which means that two of the hundred trajectories in our training set were incorrectly 
classified by the tree. With a small training set as is discussed here, we highly recommend to assess the tree’s 
performance via the resubstitution loss as well as by visual inspection of the complete data set after classifica-
tion. The classification tree obtained is shown in Fig. 2b. A discussion of the performance of other estimators 
can be found in Section S1.5. Reproduction of the motion analysis with segmentation using a different training 
set yields a very similar tree and classification results (Sec. S1.6). Interestingly, the same track properties, that is, 
the minimum bounding circle radius (MBCR), the minimum bounding circle centre minus the centre of mass 
(MBCC–CoM), and the number of points, were again found to be most important as previously reported in the 
classification tree of Hendriks and Meirer et al.1. The tree in their work was constructed with machine learning 
from a training set with mobile, hybrid, and immobile trajectories obtained from an experimental dataset of 
molecules diffusing in a porous catalyst particle. At every split of our classification tree, the histogram of the 
respective trajectory property is given in Fig. 2b. A bimodal distribution is clearly visible in the histogram of 
the MBCR and MBCC–CoM. The machine learning algorithm had found good threshold values to split the 
bimodal distribution without having access to the complete data set (shown in Fig. 2b). The stochastic nature of 
the random walk results in some overlap between the properties of the various motion types, as can been seen 
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in the histogram, and the classification is successful if a vast majority of the trajectories in a population have 
been correctly classified.

We can rationalize why the MBCR, MBCC–CoM, and number of points are good properties to classify a data 
set with transient trapping. It is no surprise that the MBCR is a good property to classify immobile trajectories, 
because the emitter does not move, and localisations are scattered around the emitter’s true position. In Sec-
tion S1.7, we calculate the probability that an immobile trajectory falls entirely within a minimum bounding 
circle with some threshold radius. A threshold value of the MBCR of 118 nm is reasonable compared to the 
localization errors of 12 and 28 nm of an in-focus and 400 nm out-of-focus  fluorophore44,45. The probability that 
a trajectory with 17 localisations, which is the mean length for the immobile population, fits within the minimum 
bounding circle is > 99.99% for an in-focus immobile emitter, while it drops to 99.95% for an out-of-focus one. 
Thus, the value of the MBCR allows for out-of-focus emitters to be classified as immobile, while keeping it as low 
as possible to not include many hybrid trajectories. The MBCC–CoM is a good property to distinguish hybrid 
trajectories from mobile ones. Because it describes how far the centre of the minimum bounding circle and the 
centre of mass are apart, its value will be higher when the trajectory has a spatially asymmetric distribution of 
localisations. This is a characteristic of a trajectory with an immobile segment followed by a mobile segment, in 
other words: a hybrid trajectory. The number of points is a good indicator for whether the trajectory is either 
hybrid or mobile. Mobile trajectories are a result of emitters rapidly moving in- and out-of-focus resulting in 
short trajectories, while the immobile segments in hybrid trajectories make the trajectory longer. Because these 
properties are good descriptors for this type of motion behaviour, we demonstrated that the presented classifica-
tion tree can be manually adapted to classify a data set with transient confinement (Sec. S1.8). Next, we used the 
obtained classification tree to classify all trajectories in the transient trapping data set (Fig. 1, step 4).

The motion of the different populations is quantified with MSD analysis of individual trajectories and in 
ensemble (Fig. 1, step 5). The diffusion constant was measured from a linear least-squares fit of the T-MSD curve 
including 25% of the shortest delay times and at least three points in the fit. A histogram of the measured diffu-
sion constants of individual trajectories is given in Fig. 3a,b. Prior to classification, we find a continuous range 
of diffusion constants over six orders of magnitude (Fig. 3a). The distribution contains all information about 
the heterogeneity of mobility and motion behaviour, but it is hard to interpret. By pooling the data into motion 
behaviour classes, we learn how the mobility and motion behaviour are related and how they change per experi-
ment. To understand the origin of this wide range in diffusion constants, we consider the same histogram after 
classification (Fig. 3b). Remarkably, the immobile trajectories make up for most of the spread, while we would 
expect the diffusion constant of immobile emitters to be D = D1 = 0 . Localisation noise dominates the measured 
diffusion constants of these immobile emitters, and the spread does not reflect a true distribution of diffusion 
constants. As expected, the immobile trajectories have a diffusion constant close to zero. The distribution of the 
diffusion constant of mobile trajectories is narrower and centred around D = D2 = 10−12  m2  s−1, i.e., the true 
mobility of the mobile diffusion state in the simulation. The hybrid trajectories have a wider range of diffusion 
constants in between those of the immobile and mobile diffusion states, because of the varying length of mobile 
and immobile periods in the trajectories.

The TE-MSD curve provides insight in the mean motion behavior of the emitters via the shape of the curve 
and fit of an appropriate diffusion model. We compare the TE-MSD before and after classification (Fig. 3c,d). 
The shape of the TE-MSD curve prior to classification in Fig. 3c resembles confined motion, marked by the 
plateau at long delay  times39. However, we do not expect confined motion in this data set, since the transient 
trapping diffusion model does not impose confinement on the emitters. Interestingly, we find the same plateau 
after classification in the hybrid trajectories’ TE-MSD curve, while the mobile and immobile TE-MSD curves 
are a straight line (Fig. 3d). To explain the plateau at long delay times, we first consider the TE-MSD curve of the 
hybrid trajectories. The correlation plot of the diffusion constant and the number of localizations of the hybrid 
trajectories shows that trajectories with few localizations have a high diffusion constant and vice versa (Fig. 3e). 
The number of localisations in the trajectory is highly dependent on the number of immobile segments, because 
the emitter cannot move out of focus during these immobile periods. At long delay times in the TE-MSD curve, 
only the trajectories with many localizations (thus a longer time in the immobile state) contribute, which results 
in a decrease in the slope of the curve. Now that we understand the origin of the plateau at long delay times in the 
TE-MSD of the hybrid trajectories (Fig. 3e), we can explain the TE-MSD prior to classification (Fig. 3d). Here, the 
curve also flattens to a plateau value—even more rapidly than for the hybrid trajectories—because short mobile 
trajectories and long immobile trajectories contribute to the TE-MSD curve as well. In contrast to the hybrid 
trajectories, the TE-MSD curves of the mobile and immobile trajectories are a straight line. This confirms that 
the mobile trajectories are due to normal diffusion. The slope of the TE-MSD of the immobile trajectories is zero, 
i.e., the apparent diffusion constant is zero, which is in line with their immobile motion behaviour.

The diffusion constant of the mobile trajectories is extracted from the TE-MSD curves using the model for 
normal Brownian diffusion. For our data set, we found D = 9.23 ± 0.14 ×  10–13  m2  s−1. This value is slightly but 
statistically significantly lower than the true diffusion constant of the mobile state of D = 1.0 ×  10–12  m2  s−1 that 
we had put in our simulations. This is attributed to a small number of immobile steps in the mobile trajectories, 
which reduces the measured diffusion constant of the population. We can estimate the fraction of immobile steps 
in the mobile population with the cumulative distribution function (CDF) of squared displacements for a delay 
time of one frame (Fig. 3f). Normal diffusion in two dimensions should  yield46,

with r2 the squared displacement at a delay time tn . This produces a straight line in a semi-log plot of 1—CDF 
against r2 . Multiple decays in the 1—CDF curve indicate that multiple populations of emitters with a different 

(4)1− CDF
(

r2, tn
)

= exp

(

−r2

MSD(tn)

)
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diffusion constant are present, each with a different MSD resulting in a different slope of the curve. For the 
mobile trajectories, we find a transition from a fast decay (immobile displacements) to a slower decay (mobile 
displacements) (see black guides to the eye in Fig. 3f). This confirms that ~4% of the displacements in mobile 
trajectories are immobile, which mainly explains a slight underestimation of the true simulated diffusion constant 
in the TE-MSD analysis. It also shows that the classification is not perfect, and that motion analysis could be 
further improved by fitting the 1—CDF curve directly. The remainder of the discrepancy between the measured 
and true diffusion constant originates from imperfect linking of the localisations into tracks. For the immobile 
trajectories, we find D = 0 ± 4 ×  10–18  m2  s−1 confirming that the diffusion constant of the immobile trajectories 
is zero—as expected.

In summary, we have demonstrated how the DiffusionLab software can be used to analyse a set of trajectories 
originating from complex heterogeneous motion. The software is a powerful tool for a wide range of materials 
scientists studying the motion of molecules and nanoparticles in porous materials, including but not limited 
to zeolite-based  materials1,16. Adsorption and confinement play a big role in such porous materials, and clas-
sification prior to motion analysis can greatly increase interpretability, avoid bias, and allows for more reliable 
spatial mapping of diffusion heterogeneity. In previous experimental work using the DiffusionLab software, we 
have demonstrated this approach in a study of molecular diffusion through a porous catalyst particle, which is 
industrially used to “crack” long organic molecules into smaller—more useful—chemical building  blocks1. The 
pore space of the catalyst particle is heterogeneous in material composition and porosity, with pore sizes ranging 
from the macropore to the micropore regime. The complex structure was reflected in the measured heterogene-
ous molecular motion behaviour. By classification in mobile, hybrid, and immobile trajectories, diffusivity of 
only the mobile trajectories could be compared with the bulk diffusion coefficient of feedstock molecules, which 
turned out to be very similar in magnitude, thereby validating the approach. In other work using DiffusionLab, 
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Figure 3.  (a,b) Histogram of the measured diffusion constant as obtained by time-averaged mean squared 
displacement (T-MSD) analysis per trajectory (a) before and (b) after classification. Negative measured diffusion 
constants are not displayed in the logarithmic scale. (c,d) Zoom of the time–ensemble averaged mean squared 
displacement (TE-MSD) (c) before and (d) after classification. A zoom-out is shown in the inset in (d). (e) 
Correlation plot of the diffusion constant and number of points of the hybrid population. Each dot represents 
a single trajectory. (f) One minus the cumulative distribution function (CDF) of squared displacements for a 
delay time of one frame of all trajectories plotted with a logarithmic y-axis. The colours indicate the populations 
after classification. The solid black lines are a guide to the eye to indicate two regimes in the cumulative density 
probability of the mobile trajectories. A zoom-out is shown in the inset.
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we have tracked the motion of single oligomers in the pores of ZSM-5  zeolites16. By performing classification 
and motion analysis, we could not only compare the average diffusion constant between experiments, but also 
explain whether differences were the result of a change in diffusivity during and/or frequency of the mobile 
periods. This had led to a detailed insight in pore geometry–mass transport relationships on the microscopic 
scale. These successful applications from materials science recommend the DiffusionLab approach for the field 
of life sciences as well. The motion types supported by DiffusionLab have been frequently observed in cellular 
environments. For example, directed motion has been reported when vesicles are transported along microtubules 
by molecular motors, transient trapping when molecules interact with actin proteins, or confined diffusion when 
molecules are confined by cell membrane  components2,8.

Conclusions and outlook
The DiffusionLab software package, which is open access and freely available to the scientific community, was 
developed for the analysis and quantification of motion from single-particle trajectories with (1) heterogeneous 
motion and/or (2) trajectories with only a few localizations. The trajectories are first classified into populations 
with similar characteristics to which the motion analysis is tailored in a second step. DiffusionLab provides the 
tools to classify trajectories based on their motion type either with machine learning or manually. MSD analysis 
is available to perform quantitative motion analysis of the trajectories. The software can compute the diffusion 
constant for an individual trajectory if it is sufficiently long, or the average diffusion constant for multiple shorter 
trajectories. We demonstrated DiffusionLab’s workflow with a set of simulated trajectories with a transient trap-
ping model. The data set showed heterogeneous motion behaviour and contained many trajectories with only a 
few localizations. Using DiffusionLab, we were able to interpret and quantify the motion in this complex data set. 
Moreover, DiffusionLab has been successfully used to analyse experimental single-molecule trajectories recorded 
in porous materials as reported previously by our  group1,16. Future developments of the software will focus on 
the extension of the motion analysis methods, including a fit of the 1—CDF curves, as well as the addition of 
new properties for trajectories with many localizations.

Data availability
The newest version of the DiffusionLab software is available from the GitHub repository (https:// github. com/ 
ErikM aris/ Diffu sionL ab) along with documentation hosted on Read the Docs (https:// diffu sionl ab. readt hedocs. 
io/ en/ latest/). Both the MATLAB app installer and the source code are available here. The trajectories, train-
ing sets, and classification trees used in this work are available from the DiffusionLab repository. The synthetic 
microscopy movies used to generate the trajectories used in this work as well as the code simulate them will be 
shared by the lead contact upon reasonable request. The movies were analysed with the DoM plugin (Detection 
of Molecules, https:// github. com/ ekatr ukha/ DoM_ Utrec ht) for  ImageJ29.
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