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Abstract

Objective: Gene expression alterations, especially in target tissues of insulin, have been associated with
type 2 diabetes (T2D). In this study, we examined if genes involved in oxidative phosphorylation
(OXPHOS) show differential gene expression and DNA methylation in pancreatic islets from patients
with T2D compared with non-diabetic donors.
Design and methods: Gene expression was analyzed in human pancreatic islets from 55 non-diabetic
donors and nine T2D donors using microarray.
Results: While the expected number of OXPHOS genes with reduced gene expression is 7.21, we
identified 21 downregulated OXPHOS genes in pancreatic islets from patients with T2D using
microarray analysis. This gives a ratio of observed over expected OXPHOS genes of 26.37 by a c2-test
with PZ2.81!10K7. The microarray data was validated by qRT-PCR for four selected OXPHOS
genes: NDUFA5, NDUFA10, COX11, and ATP6V1H. All four OXPHOS genes were significantly
downregulated in islets from patients with T2D compared with non-diabetic donors using qRT-PCR
(P%0.01). Furthermore, HbAlc levels correlated negatively with gene expression of NDUFA5, COX11,
and ATP6V1H (P!0.05). Gene expression of NDUFA5, NDUFA10, COX11, and ATP6V1H correlated
positively with glucose-stimulated insulin secretion (P!0.03). Finally, DNA methylation was analyzed
upstream of the transcription start for NDUFA5, COX11, and ATP6V1H. However, none of the
analyzed CpG sites in the three genes showed differences in DNA methylation in islets from donors
with T2D compared with non-diabetic donors.
Conclusion: Pancreatic islets from patients with T2D show decreased expression of a set of OXPHOS
genes, which may lead to impaired insulin secretion.

European Journal of Endocrinology 165 589–595
Introduction

Type 2 diabetes (T2D) is characterized by hyperglycemia
due to insulin resistance in peripheral tissues and
pancreatic b-cell dysfunction. Altered gene expression
in target tissues for T2D might influence cellular
functions and biological pathways and hence promote
the disease. Indeed, previous studies have shown that a
set of genes involved in oxidative phosphorylation
(OXPHOS) genes is downregulated in skeletal muscle
and adipose tissue from patients with T2D compared
with non-diabetic subjects using microarray technology
(1–3). Similar results have been found in pancreatic
islets from a diabetic mouse model, where several
OXPHOS genes show decreased expression using
genome-wide transcriptome and proteome analysis
(4). However, whether OXPHOS genes show differential
gene expression in human pancreatic islets from
patients with T2D compared with non-diabetic control
ndocrinology
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Moreover, although previous studies from our group
have shown that epigenetic factors such as DNA
methylation can regulate OXPHOS genes in human
skeletal muscle (5–8), this has not been studied in
human pancreatic islets. On the other hand, a previous
study from our group have shown that increased DNA
methylation of PPARGC1A (encoding peroxisome
proliferator-activated receptor g, coactivator 1 a
(PGC1a)) is associated with decreased PPARGC1A
mRNA expression in pancreatic islets from patients
with T2D, which subsequently contributed to impaired
insulin secretion (9). PPARGC1A is a transcriptional
coactivator that coordinates expression of genes
involved in mitochondrial oxidative metabolism. The
aim of this study was to examine if the level of
expression and/or DNA methylation of OXPHOS genes
is changed in pancreatic islets from patients with T2D
compared with non-diabetic donors.
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Subjects and methods

Study populations

Human pancreatic islets from 55 non-diabetic and nine
T2D deceased donors were obtained from the Human
Tissue Laboratory at Lund University Diabetes Centre
(Table 1). Islets were prepared by collagenase digestion
and density gradient purification. After isolation, islets
were cultured free floating in CMRL 1066 culture
medium (ICN Biomedicals, Costa Mesa, CA, USA)
supplemented with 10 mmol/l HEPES, 2 mmol/l
L-glutamine, 50 mg/ml gentamicin, 0.25 mg/ml Fungi-
zone (Gibco-BRL), 20 mg/ml Ciprofloxacin (Bayer
Healthcare), and 10 mmol/l Nicotinamide at 37 8C
(5% CO2) before RNA and DNA preparation. The islet
purity was assessed by dithizone staining and the purity
was similar for non-diabetic and T2D donors (PZ0.15).
To further examine the quality of islet isolation, gene
expression of endocrine (somatostatin and glucagon)
and exocrine markers (pancreatic lipase, amylase a 2A,
and chymotrypsin 2) was also used to determine islet
purity. Based on this method there were neither any
differences in islet purity between non-diabetic and T2D
donors (72 vs 68%, PZ0.29). Glucose-stimulated
insulin secretion (GSIS) from the human islets was
measured in vitro in static incubations. Islets were
preincubated for 30 min at 37 8C in Krebs Ringer
bicarbonate (KRB) buffer (pH 7.4) containing (in mm)
120 NaCl, 25 NaHCO3, 4.7 KCl, 1.2 MgSO4, 2.5 CaCl2,
1.2 KH2PO, 10 HEPES supplemented with 1 mg/ml
albumin, N-2 hydroxyethylpiperazine-N 0-2-ethanesul-
fonic acid (10 mM), and 1 mM glucose. Each incubation
vial contained 12 islets in 1.0 ml KRB buffer solution
and was treated with 95% O2–5% CO2 to obtain
constant pH and oxygenation. After preincubation,
the buffer was changed to a KRB buffer containing
either 1 mM (basal secretion) or 16.7 mM glucose
(stimulated secretion; GSIS). The islets were then
incubated for 1 h at 37 8C in a metabolic shaker (30
cycles per minute). Immediately after incubation an
aliquot of the medium was removed for analysis of
Table 1 Characteristics of human pancreatic donors. Data is
presented as median (IQR).

Non-diabetic
donors

Type 2 diabetic
donors P value

n (male/female) 55 (29/26) 9 (5/4)
Age (years) 57.0 (54.0–63.0) 57.0 (43.5–70.0) 0.99
BMI (kg/m2) 26.0 (23.9–27.5) 28.7 (24.0–33.7) 0.13
HbAlc 5.6 (5.3–6.0) 6.9 (6.8–7.6) 0.00010
BIS (ng/islet

per h)
0.21 (0.14–0.50) 0.22 (0.085–0.26) 0.58

GSIS (ng/islet
per h)

1.05 (0.56–1.45) 0.48 (0.29–0.63) 0.029

P values were between P values and calculated with Mann–Whitney U test.
BIS, basal insulin secretion; GSIS, glucose-stimulated insulin secretion.

www.eje-online.org
insulin using an RIA kit (Euro-Diagnostica, Malmo,
Sweden) as described previously (10, 11).

The donor before death or her/his relatives upon
admission to intensive care unit had given their consent
to donate organs for medical research. All procedures
were approved by the ethics committees at Uppsala and
Lund Universities.
Gene expression in human pancreatic islets

Total RNA was isolated with the AllPrep DNA/RNA
Mini Kit (Qiagen GmbH). RNA quality and concen-
tration was measured using an Agilent 2100
bioanalyzer and Nanodrop ND-1000 equipment
respectively.

The microarrays were performed following the
Affymetrix standard protocol. Briefly, total RNA
(200 ng) was processed following the GeneChip
Expression 3 0-Amplification Reagents One-cycle cDNA
synthesis kit instructions (Affymetrix, Inc., Santa Clara,
CA, USA) to produce double-stranded cDNA. This was
used as a template to generate biotin-targeted cRNA
following manufacturer’s specifications; 15 mg of the
biotin-labeled cRNA was fragmented to strands between
35 and 200 bases in length, 10 mg of which was
hybridized onto the GeneChip Human Gene 1.0 ST
whole transcript based assay overnight in the GeneChip
Hybridization oven 6400 using standard procedures.
The arrays were washed and stained in a GeneChip
Fluidics Station 450. Scanning was carried out with the
GeneChip Scanner 3000 and image analysis was
performed by GeneChip Operating Software. The array
data was summarized and normalized with Robust
Multi-array analysis method by the software ‘Expression
Console’ (Affymetrix). The complete array data will
be reported elsewhere (Jalal Taneera, Stefan Lang,
Amitabh Sharma, Emma Ahlqvist, Yuedan Zhou,
Anna Jonsson, Valeriya Lyssenko, Petter Vikman, Ola
Hansson, Albert Salehi, Erik Renström, and Leif Groop,
unpublished results).
Quantitative RT-PCR

Quantitative RT-PCR was performed for selected genes
to technically validate the results obtained in the
microarray study. cDNA was synthesized using Quanti-
Tect RT kit (Qiagen). Quantitative analysis of gene
expression was performed by the TaqMan Real-Time
PCR with an ABI Prism 7900 HT System (Applied
Biosystems, Foster City, CA, USA) using gene-specific
probes and primer pairs (Assays-on-Demand, Applied
Biosystems) for NDUFA5 (Hs01634019_g1), NDUFA10
(Hs00190004_m1), COX11 (Hs01680112_mH), and
ATP6V1H (Hs00210960_m1). The transcript quantity
was normalized to the mRNA level of cyclophilin A
(4326316E, Applied Biosystems) and quantified with the
DDCt method.
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DNA methylation analysis

Genomic DNA was isolated with the AllPrep DNA/RNA
Mini Kit (Qiagen GmbH); 500 ng of genomic DNA was
bisulfite treated using the EZ DNA methylation kit
(Zymo Research, Orange, CA, USA). DNA methylation
analysis was performed with EpiTYPER using Seque-
nom MassARRAY (Sequenom, San Diego, CA, USA)
system as described previously (11). Three EpiTYPER
assays were designed for NDUFA5, COX11, and
ATP6V1H using the online EpiDesigner tool (http://
www.epidesigner.com/). Primer information and infor-
mation about target sequence position is given in
Supplementary Table 1, see section on Supplementary
data given at the end of this article. Owing to high or
low mass of the cleavage product or that the sites did not
generate data successfully; a number of CpG sites were
excluded from this study. In total six CpG sites in
NDUFA5, 12 CpG sites in COX11, and 16 CpG sites in
ATP6V1H generated DNA methylation data that were
included in this study. For COX11 and ATP6V1H,
a number of CpG sites were analyzed as CpG units
including CpG sites K201/197, K168/K160, and
K96/K89 for COX11 and CpG sites K259/K255,
K211/K208, K198/K192, K187/K183/K180,
and K80/K77 for ATP6V1H.
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Figure 1 Box and Whiskers plots showing downregulation of
OXPHOS gene expression in human pancreatic islets from patients
with type 2 diabetes (T2D). (A) 17 nuclear-encoded OXPHOS
genes and (B) four mitochondrial-encodedOXPHOS genes showed
reduced mRNA expression with P%0.05 in human pancreatic islets
from patients with T2D (nZ9; gray boxes) compared with non-
diabetic donors (nZ55; white boxes) using microarray. Since the
expected number of OXPHOS genes with reduced gene expression
is 7.21, the c2 of observed over expected OXPHOS genes is 26.37
with PZ2.81!10K7. (C) Technical validation of the microarray data
for NDUFA5, NDUFA10, COX11, and ATP6V1H in human
pancreatic islets of non-diabetic donors (nZ47; white boxes) and
T2D patients (nZ9; gray boxes) using quantitative RT-PCR.
**P%0.01.
Statistical analysis

Data are shown as median with range. Differences in
OXPHOS gene expression and DNA methylation in
pancreatic islets of non-diabetic and T2D donors were
analyzed by Mann–Whitney U test.

A c2-test was used to analyze if a set of OXPHOS
genes show significantly reduced gene expression in
pancreatic islets from patients with T2D. The test
examined if the observed number of OXPHOS genes
with differential gene expression in human pancreatic
islets due to T2D (nZ21) is significantly more than the
expected number of OXPHOS genes (nZ7.20). The
expected number of OXPHOS genes is calculated based
on the total number of probe IDs annotated to OXPHOS
genes analyzed using the microarray (nZ147), the
total number of probe IDs analyzed using the micro-
array (nZ28869), and the total number of probe IDs
that show reduced gene expression in the T2D human
islets with P!0.05 (nZ1416). The KEGG database
(http://www.genome.jp/kegg) was used as reference set
for identification of genes in the OXPHOS pathway.

A gene set enrichment analysis performed in DAVID
(12, 13) was used to identify key biological pathways of
all downregulated probe IDs in human T2D islets.
Downregulated probe IDs in the microarray analysis of
T2D and non-diabetic islets with P!0.05 were assigned
to KEGG pathway analysis to rank the enrichment of the
pathways in the gene set. Affymetrix HuGene-1_0-st-v1
was used as background reference to the uploaded
gene set. The P value indicating the significance of
enrichment was corrected with the Benjamini–
Hochberg method.

Correlations were calculated using Spearman corre-
lation coefficient. All P values were two-tailed and
P values !0.05 were considered significant. The
presented P values have not been corrected for multiple
testing. Statistical calculations were performed by PASW
Statistics 18 for Windows (SPSS, Chicago, IL, USA).
Results

To examine if OXPHOS gene expression is down-
regulated in human islets from patients with T2D, we
analyzed microarray data of human pancreatic islets
www.eje-online.org
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Figure 2 Expression levels of OXPHOS genes correlated with
HbAlc and GSIS. (A–D) Correlations between HbAlc levels and
OXPHOS gene expression analyzed with qRT-PCR in human
pancreatic islets, including both type 2 diabetic (T2D) patients and
non-diabetic donors. (E–H) Correlations between OXPHOS gene
expression analyzed with qRT-PCR and GSIS in human pancreatic
islets of non-diabetic donors.
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from 55 non-diabetic and nine T2D donors (Table 1).
We identified 21 OXPHOS genes (17 nuclear-encoded
OXPHOS genes and four mitochondrial-encoded
OXPHOS genes) with nominally reduced expression
and an individual range in fold change of 6–22% and
range in P values of 0.0041–0.045 (Fig. 1A and B and
Supplementary Table 2, see section on Supplementary
data given at the end of this article). Since the expected
number of OXPHOS genes with reduced gene expression
is 7.20, the c2 of observed over expected OXPHOS genes
is 26.37 with PZ2.81!10K7.

When performing a gene set enrichment analysis by
DAVID (12, 13) and with KEGG biochemical pathway
as annotation, we observed that the key pathway of all
downregulated genes in T2D islets was OXPHOS
(number of genesZ21; fold enrichmentZ3.0; and
P valueZ3.0!10K3). No other pathway falls out as
significantly enriched. We next performed a technical
validation of the microarray data using qRT-PCR. Based
on ranking of P values from the microarray analysis and
the fold change of the 17 nuclear-encoded OXPHOS
genes (Supplementary Table 2, see section on Supple-
mentary data given at the end of this article), we
selected two genes from complex I (NDUFA5 and
NDUFA10), one gene from complex IV (COX11), and
one gene involved in ATPase activity (ATP6V1H) for the
validation analysis. In concordance with our micro-
array analysis results, NDUFA5, NDUFA10, COX11, and
ATP6V1H were downregulated in T2D compared with
non-diabetic donors using qRT-PCR (Fig. 1B and
Supplementary Table 3, see section on Supplementary
data given at the end of this article).

We next examined whether expression levels of
NDUFA5, NDUFA10, COX11, and ATP6V1H correlated
with HbAlc levels. When including both non-diabetic and
T2D islets, HbAlc levels correlated negatively with the
mRNA expression of NDUFA5, COX11, and ATP6V1H,
but not with NDUFA10 (Fig. 2A–D). On the other hand,
we could not detect any significant correlation between
OXPHOS expression and HbAlc levels when including
only non-diabetic donors (data not shown).

We further tested if the expression levels of NDUFA5,
NDUFA10, COX11, and ATP6V1H correlated with
glucose-stimulated insulin secretion in the human
islets. The expression levels of all four OXPHOS genes
correlated positively with GSIS (Fig. 2E–H). The same
patterns were observed when both non-diabetic and
T2D donors were included (data not shown).

We obtained DNA methylation levels for six CpG sites
for NDUFA5, 12 CpG sites for COX11, and 16 CpG sites
for ATP6V1H, all located upstream of respective
transcription start site, in the human pancreatic islets
(Fig. 3A–C). The three analyzed regions were hypo-
methylated and DNA methylation was below 10% for
the majority of the analyzed CpG sites. Moreover, none
of the analyzed CpG sites in any of the three promoter
regions showed differences in DNA methylation in islets
from donors with T2D compared with non-diabetic
www.eje-online.org
donors (Fig. 3A–C). We next examined whether the
degree of methylation of the CpG sites in the analyzed
promoter regions correlated with mRNA expression of
its respective gene, age, body mass index (BMI), and/or
HbAlc. DNA methylation of CpG unit K96/K89,
upstream of the transcription start site for COX11,
correlated negatively with COX11 mRNA expression
(rZK0.33, PZ0.030) and positively with age
(rZ0.35, PZ0.012) in non-diabetic donors. However,
none of the other analyzed CpG sites in any of the three
gene regions showed any significant correlation to gene
expression, age, BMI, or HbAlc. To study if the general
methylation pattern correlates with gene expression,
the average methylation of each promoter was calcu-
lated using all of the analyzed CpG sites. Neither here
were any differences in DNA methylation found between
T2D and non-diabetic donors nor any significant
correlation with gene expression (data not shown).

http://www.eje-online.org/cgi/content/full/EJE-11-0282/DC1
http://www.eje-online.org/cgi/content/full/EJE-11-0282/DC1
http://www.eje-online.org/cgi/content/full/EJE-11-0282/DC1
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Figure 3 No differences in DNA methylation in islets from patients
with type 2 diabetes (T2D) compared with non-diabetic donors.
(Upper panel A–C) is a schematic representation of the gene
regions analyzed for DNA methylation for (A) NDUFA5, (B) COX11,
and (C) ATP6V1H. Positions of analyzed CpG sites in relation to the
transcription start sites are indicated in black circles. CpG sites
within a bracket were analyzed as a CpG unit. (Lower panel A–C)
are Box and Whiskers plots showing DNA methylation levels in
percentage for the analyzed CpG sites of (A) NDUFA5, (B) COX11,
and (C) ATP6V1H in human pancreatic islets from non-diabetic
donors (nZ55; white boxes) and T2D patients (nZ9; gray boxes)
using EpiTYPER.
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Discussion

Mitochondrial dysfunction has been suggested to
contribute to both impaired insulin secretion and action
(5–7, 9, 14–20). This study demonstrates that a set of
genes involved in OXPHOS is downregulated in
pancreatic islets from patients with T2D. Although
alterations in gene expression of individual OXPHOS
genes were of relatively small magnitude, the number of
genes enriched was significant based on a c2-test and
included 21 OXPHOS genes. Also when performing a
gene enrichment analysis, OXPHOS was the most
significant enriched pathway within all downregulated
genes in T2D islets. Our result is in agreement with
previous studies reporting reduced expression of a set of
OXPHOS genes in human skeletal muscle from patients
with T2D (1, 2). It is possible that a coordinated
downregulation of multiple OXPHOS genes affects the
overall ATP production. Since mitochondrial ATP
production by OXPHOS in the respiratory chain is a
key requirement for glucose-stimulated insulin release
by pancreatic b-cells, a reduced OXPHOS gene
expression in T2D islets may result in reduced insulin
secretion (21). Indeed, in this study, islet expression
of multiple OXPHOS genes correlated positively with
GSIS, supporting the hypothesis that appropriate
OXPHOS gene expression is required for sufficient
insulin secretion. Based on the data from this study,
we cannot rule out that the changes we find in insulin
secretion and OXPHOS gene expression in T2D islets are
due to altered cell composition in islets from T2D
donors. However, although some researchers have
found reductions in b-cell number in human type 2
diabetic islets (22), others have not observed any
changes (23). Moreover, our previous animal and cell
data support the finding that reduced OXPHOS levels in
both pancreatic islets and clonal b-cells leads to reduced
OXPHOS enzyme activity and hence impaired glucose-
stimulated ATP production and insulin secretion (19). It
has been shown that mitochondrially encoded subunits
play a crucial function during modular assembly of
complex I (24, 25). In our previous study, we also
suggested that activity of complex I is most profoundly
impaired by reduced mitochondrially encoded OXPHOS
expression (19). This suggests that the downregulation
of mitochondrially encoded ND1 and ND5 found in
islets from patients with T2D may play an important
role in the contribution to impaired insulin secretion.
On the other hand, OXPHOS was the most predominant
upregulated gene set in islets of a prediabetic mouse
model in response to diabetogenic high fat (26). It is
known that insulin resistance in peripheral tissues in
the prediabetic state, force the pancreatic b-cells to
compensate by secreting more insulin. In the paper by
Dreja et al. (26), the b-cells may be in a state where they
compensate for insulin resistance by enhancing b-cell
function through upregulating OXPHOS expression.
In addition, we have previously shown that mice fed a
www.eje-online.org
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high-fat diet, which are in a prediabetic state and do not
develop frank diabetes, have increased mitochondrial
volume and enhanced insulin secretion when stimu-
lated with fuels that require mitochondrial metabolism
(27). In contrast, the present study suggests that once
diabetes has developed, islet OXPHOS function and
insulin secretion are impaired.

Environmental risk factors for T2D, such as BMI and
age, may contribute to the decreased expression
observed in OXPHOS genes. By multivariate regression
analysis correcting for age, sex, and BMI, we confirmed
that the differences in expression of OXPHOS genes are
mainly due to diabetic status (data not shown).
Moreover, HbAlc levels correlated negatively with gene
expression of NDUFA5, COX11, and ATP6V1H in the
human islets. These data suggest that hyperglycemia
may be involved in the downregulation of OXPHOS
genes.

Recent studies propose that epigenetic factors includ-
ing DNA methylation can regulate mRNA expression of
genes involved in OXPHOS and contribute to impaired
insulin secretion and action observed in patients with
T2D (5, 6, 9). In this study, we were unable to detect any
differences in the level of DNA methylation between T2D
and non-diabetic donors for the analyzed CpG sites
upstream of NDUFA5, COX11, and ATP6V1H. However,
DNA methylation levels of a CpG unit upstream of
COX11 correlated negatively with COX11 mRNA
expression and positively with age. This result is in
line with previous findings that ageing is associated
with increased DNA methylation and reduced
expression of OXPHOS genes in human skeletal muscle
(5, 6). One limitation with our study is the small
number of CpG sites analyzed since the assays only
cover w400–500 bp of the respective gene. We can
therefore not exclude the fact that some of the OXPHOS
genes and CpG sites not analyzed will show differential
DNA methylation in pancreatic islets from T2D donors.
Future genome-wide methylation studies may further
dissect the role of DNA methylation in pancreatic islets
of patients with T2D.

In conclusion, islets from patients with T2D showed
decreased expression of OXPHOS genes compared with
non-diabetic individuals. Although decreased OXPHOS
expression in pancreatic islets may contribute to T2D
by impaired GSIS additional studies are needed
dissecting this relationship further.
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