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Objective: Betel quid dependency (BQD) is characterized by functional and structural
brain alterations. Trait impulsivity may influence substance dependence by impacting its
neurobiological underpinnings in the frontostriatal circuit. However, little is known about
the trait impulsivity and its neural correlates in individuals with BQD.

Methods: Forty-eight participants with BQD and 22 normal controls (NCs) were recruited
and scanned on a 3T MRI scanner. Barratt impulsiveness scale (BIS) was used to
measure trait impulsivity: motor, attention, and no plan impulsivity. We used voxel-
based morphometry (VBM) to assess the relationship between trait impulsivity and
gray matter volumes. The relevant clusters identified were served as regions of interest
(ROI) seeds. The whole-volume psycho-physiological interactions (PPI) analysis was
used to investigate the changes of functional connectivity related to ROI seeds in the
cue-reactivity task condition (BQ and control images).

Results: Behaviorally, the BQD group showed significantly higher trait impulsivity
including motor and no plan impulsivity than the NCs group. VBM analyses showed
that motor impulsivity was negatively associated with gray matter volume of right
caudate in the whole sample. No difference in gray matter volume between the two
groups was observed. PPI analyses showed that there was a significantly decreased
functional connectivity between the right caudate and right dorsolateral prefrontal cortex
(DLPFC) when watching BQ related images than control images in individuals with BQD.
Furthermore, functional connectivity between the right caudate and right DLPFC was
negatively correlated with BQ dependency scores.

Conclusions: Our study demonstrated the structural basis of trait impulsivity in the
caudate and provided evidence for abnormal interactions within frontostriatal circuitsin
individuals with BQD, which may provide insight into the selection of potential novel
therapeutic targets for the treatment of BQ dependency.
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INTRODUCTION

Betel quid (BQ, the product of areca nut, which is the
fruit of the areca palm) is among the most widely used
psychoactive substances worldwide along with tobacco, alcohol,
and caffeine (Boucher and Mannan, 2002; Yen et al., 2018).
With a chemical structure analogous to that of nicotine (Lord
et al., 2002), BQ has been recognized as a group 1 carcinogen
by International Agency for Cancer Research (World Health
Organization, 2004), and categorized as ‘‘addiction’’ with heavy
use (Mirza et al., 2011; Papke et al., 2015). There are more
than 600 million people using BQ within the Indo-Asia-Pacific
biogeographic region, and its use is spreading into Asian migrant
communities in western countries in recent years (Gupta and
Warnakulasuriya, 2002; Lee et al., 2018). In mainland China,
BQ is most commonly used in Hunan and Hainan provinces
with different eating styles (Zhang and Reichart, 2007). The
negative consequences of excessive BQ use have been reported
to be correlated with the risk of oral potentially malignant
disorder, oral cancer, and other health consequences (Lee et al.,
2003; Jacob et al., 2004; Tilakaratne et al., 2006; Mehrtash
et al., 2017). Although these clinical phenomena are well-known,
the pathophysiological mechanism of BQ dependency (BQD)
remains unclear.

Like other psychoactive substances, a high quantity of BQ use
is addictive. The research suggested a substantial proportion of
BQ users showed signs of dependence, which were associated
with the number of chews per day, years of chewing, education,
and the inclusion of tobacco in the quid (Benegal et al., 2008;
Mirza et al., 2011). A betel quid dependency scale (BQDS)
was developed to assess the degree of dependency in BQ users
(Herzog et al., 2014), which had been proved with good reliability
and validity in our previous studies (Yuan et al., 2017a,b; Zhu
et al., 2017, 2018). In a recent study of 8,922 participants across
six Asian communities (Taiwan, China, Malaysia, Indonesia,
Nepal, and Sri Lanka), betel-quid use disorder was found
to meet the Diagnostic and Statistical Manual of Mental
Disorders (fifth edition; DSM-V) criteria for a substance
use disorder and had a high prevalence among BQ users
(Lee et al., 2018).

Functional neuroimaging studies have implicated
BQ addiction involves brain structural and functional
alterations (Kessler, 2012). Based on recent lines of evidence,
individuals with BQ dependency have been documented to
be associated with changes in the prefrontal cortex (PFC),
insula, anterior cingulate cortex, hippocampal/hypothalamus,
cerebellum, frontotemporal and frontoparietal, which are
implicated in reward, impulsivity and cognitive systems
in the brain (Chen et al., 2015; Liu et al., 2015, 2016a,b;
Huang et al., 2017; Yuan et al., 2017a; Zhu et al., 2017;
Weng et al., 2018). For example, our previous study
suggested heavy BQ users with decreased gray matter
volumes in the prefrontal cortex (Zhu et al., 2018), altered
white matter integrity in anterior thalamic radiation,
and disrupted default mode network connectivity (Zhu
et al., 2017). Furthermore, the duration of BQ use
and the severity of BQ dependency were reported to

be associated with the majority of brain alterations in
BQ users. However, the neural mechanism underlying
BQD remains largely unclear, and further investigation
is needed.

Impulsivity, as a kind of personality trait, is characterized by
the propensity to act quickly and without regard for negative
consequences (Dalley et al., 2011). Despite the variability in
samples and the diversity in measures of impulsivity, the
relationship between impulsivity and substance addiction
has been widely investigated (Matt et al., 2001; Baker and
Yardley, 2002; Shillington and Clapp, 2002). Impulsivity
was regarded as one risk factor for the development and
maintenance of substance misuse problems, especially in
alcohol (Lejuez et al., 2010; Ming et al., 2017), nicotine
(Joos et al., 2013), and methamphetamine dependency
(Simons and Carey, 2002).

With the development of neuroimaging techniques, the
neural bases underlying trait impulsivity have gained much
attention in recent literature. Evidence from functional
neuroimaging data implies that trait impulsivity may influence
substance dependency by impacting its neurobiological
underpinnings in the frontostriatal circuit (Knutson et al.,
2001; Moreno-López et al., 2012), such as the striatum (caudate
and putamen), prefrontal regions, orbitofrontal cortex and
anterior cingulate cortex (Horn et al., 2003; Forstmann
et al., 2008; Andrews-Hanna et al., 2011; Diekhof et al.,
2012). Structural neuroimaging studies have reported the
structural manifestation of impulsivity in the prefrontal
regions and striatum not only in healthy individuals (Cho
et al., 2013; Tschernegg et al., 2015) but also in patients
with psychiatric conditions, such as alcoholics (Beck et al.,
2009), pathological gambling (Koehler et al., 2015), major
depressive disorders (Dombrovski et al., 2012) and psychopathy
(Glenn et al., 2010). However, the relationship between
impulsivity and the frontostriatal circuit remains unknown in
BQ addiction.

To the best of our knowledge, no research has
investigated the trait impulsivity deficits and its neural
correlates in individuals with BQD. In the current study,
our first aim was to measure the characteristics of trait
impulsivity by using the Barratt impulsiveness scale (BIS)
in the BQD group (Patton et al., 1995). The second
goal was to examine the structural manifestation of
trait impulsivity by investigating the association of trait
impulsivity and gray matter volumes. Then, the relevant
areas identified were served as regions of interest (ROI)
seeds. A whole-volume psycho-physiological interactions
(PPI) analysis was conducted to investigate the changes
of functional connectivity related to ROI seeds in the
cue-reactivity task condition (BQ and control images).
We hypothesized that compared with healthy controls,
individuals with BQD showed abnormal impulsivity, which
would correlate with the frontostriatal circuit. The results
of this study could help to understand the underlying
psychological and neural bases of BQ use, and further
have potential implications for treating and preventing
BQ dependency.
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MATERIALS AND METHODS

Participants
Participants (N = 70, all males) were recruited from Changsha,
Hunan province. We recruited two groups of participants: BQD
group (N = 48) and normal controls (NCs) group (N = 22).
Individuals with BQD were recruited from the outpatient
department in Xiangya Hospital of Central South University.
Structured Clinical Interview was used to determine if the BQD
group met the DSM-V criteria for substance use disorders
(average scored on 7.63 ± 1.70). The NCs group were recruited
through a combination of targeted site sampling, advertisement,
and snowball sampling referrals.

All participants were screened with the Structured Clinical
Interview for DSM-IV Axis I disorders and were excluded for
any of the following: past or current Axis I disorder, including
but not limited to major depressive disorder and/or any anxiety
disorders; current or past other substance use; pregnancy or
current breastfeeding; unstable medical or neurological illness;
the history of severe head trauma; and the presence of metal
implants precluding a magnetic resonance imaging (MRI) scan.
Additionally, none of the participants was diagnosed as alcohol
or smoking dependency asmeasured by the AUDIT (Alcohol Use
Disorders Identification Test) and the FTND (Fagerstrom Test
for Nicotine Dependence) respectively. Diagnosis and exclusion
criteria were corroborated by two licensed psychiatrists.

A detailed history of BQ use was identified for everyone
with BQD: age of first BQ use, duration (years) of BQ use,
and estimated BQ use per day (g). This study only included
males because there was significantly less problem with BQ use
in females (Lee et al., 2018). The study was approved by the
Institutional Review Board at Xiangya Hospital of Central South
University. All participants provided written informed consent
after the study procedures were explained to them thoroughly.

Procedures
All participants were asked to come to Xiangya Hospital
and finish the behavior measures and MRI scans. They got
compensation for their time devoting to this study (on average
about 1-h interview and 30 min MRI scan). All of them were
required to be abstinent (4 h) from tobacco, alcohol, and
caffeine drinking before the interview. The MRI scans included
a high-resolution structural scan and a session of fMRI scan with
the cue-reactivity task. The cue reactivity task was a frequently
used task to investigate the brain functional mechanism of
individuals with addiction (Kühn and Gallinat, 2011).

Behavior Measures
Barratt Impulsiveness Scale (BIS)
The BIS is a self-report questionnaire designed to assess the
personality/behavioral construct of impulsiveness, which has
been widely used in impulsivity research for the last 50 years
(Patton et al., 1995). As a 30-item rated on a five-point scale,
it includes three subscales: motor, attention, and no plan
subscales. The motor scale comprises items that reflect acting
without thinking. The attention scale includes items measuring
poor concentration/attentiveness with those reflecting cognitive

instability. The no plan scale measures an orientation focused
on the immediate present that fails to consider future effects.
The BIS exhibited high degrees of reliability and validity in both
English and Chinese version (Yao et al., 2007; Huang et al.,
2013). The Chinese version of the BIS used in this current study
exhibited high internal consistency, with a Cronbach’s alpha
value of 0.81, 0.78, and 0.83 for three subscales.

Betel Quid Dependence Scale (BQDS)
The BQDS is a widely used scale for diagnosing the dependency
of BQ (Lee et al., 2012). As a 16-item self-report instrument, the
BQDS comprises of three factors: ‘‘physical and psychological
urgent need,’’ ‘‘increasing dose,’’ and ‘‘maladaptive use.’’ The
BQDSwas found to have good internal consistency (alpha = 0.92)
and construct validity, which exhibited high degrees of reliability
and validity in both the English-speaking and Chinese-speaking
chewers (Herzog et al., 2014; Zhu et al., 2017).

MRI Scans
All MRI images were acquired by using a Siemens 3.0T Prisma
scanner at Xiangya Hospital. Standard settings were used to
perform the scan. For example, foam pads were used to minimize
headmotion. Participants were instructed to keep their head very
still during the structural scan and respond to the instructions
when doing functional scans. Stimulus presentation, the timing
of all stimuli, and response events were achieved by using
Matlab (Mathworks) and Psychtoolbox1 on an IBM-compatible
PC. Participants’ responses were collected online using an
MRI-compatible button box.

The structural scan was performed using T1 MPRAGE
sequence, covering the whole brain with the following scanning
parameters: TR/TE = 2,110 ms/3.18 ms, matrix = 256 × 256,
number of slices = 256, and voxel size = 0.7 × 0.7 × 0.7 mm3,
sagittal slice position. The functional scan was performed
using EPI sequence with the following parameters:
TR/TE = 2,000 ms/30 ms, matrix = 64 × 64, number of
slices = 75, voxel size = 2.34 × 2.34 × 2.00 mm3.

Cue Reactivity Task
Participants performed one session of the cue reactivity task
inside the scanner. During this task, two types of cues were
presented: the BQ and control images. There were 20 images for
each category, and each image was presented three times. To keep
all participants awake during the passive view task, 10 animal
images were presented twice (see Figure 1). These images were
presented with a random order with each image for 3 s with a 1-s
intertrial interval. Participants were instructed to press a button
whenever they saw an animal. The correct ratio and reaction in
the cueing task were served as the behavior data of the task.

Data Analysis Procedure
Behavioral measures were first compared between two groups to
find the differences of demographic as well as the impulsivity
measure. Then significant trait impulsivity characteristics were
correlated with structural MRI data in the whole sample to find
their anatomical bounds. The structural MRI data were analyzed

1www.psychtoolbox.org
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FIGURE 1 | The illustration of stimulus presentation. Different types of images [Betel quid (BQ), control, and animal] were randomly presented for 3 s with 1 s
interstimulus interval. Participants were instructed to press a button when seeing an animal image.

by the voxel-based morphometry (VBM) method, which has
been widely used in neuroimaging studies (Ashburner and
Friston, 2000; Good et al., 2001; He et al., 2013). Significant
clusters in the VBM analysis were served as ROI seeds to do the
PPI analysis. The PPI maps were then compared between the two
groups. All tests were corrected for multiple comparisons with
Bonferroni correction.

VBM Analysis
VBM analysis was implemented in FSL_VBM (Smith et al.,
2004), which has been widely used to analyze the structural
MRI data. The processing steps were standardized: brains were
extracted by using BET (Smith, 2002) and segmented into gray
matter, white matter, and CSF by using FAST4 (Zhang et al.,
2001). Two steps of registration (linear and non-linear) were
performed to register the gray-matter partial volume images to
the standard space (MNI152). A study-specific template was
created by averaging all normalized images. Lastly, the resulting
images of gray matter volume were smoothed with an isotropic
Gaussian kernel (3 mm). Statistics were performed with FSL
non-parametric permutation methods (Randomise v2.1; Nichols
and Holmes, 2002). Statistical analysis using the general linear
model was used to identify the correlation between gray matter
volumes and trait impulsivity. The null distribution at each voxel
was constructed using 10,000 random permutations. Multiple
comparisons were corrected across the whole brain using the
threshold-free cluster enhancement (TFCE). Additionally, we
also performed the analysis to compare the difference of gray
matter volume between the BQD and NCs group.

fMRI Data Analysis
fMRI data preprocessing and statistical analyses were carried out
by FSL2. Images were realigned to compensate for small residual
head movements (Jenkinson and Smith, 2001). Translational
movement parameters never exceeded one voxel in any direction
for any participant. Data were spatially smoothed using a
five-mm full-width-half-maximum (FWHM) Gaussian kernel
and were filtered using a nonlinear high pass filter with a 100-s

2www.fmrib.ox.ac.uk/fsl

cutoff. A two-step registration procedure was used whereby EPI
images were first registered to the MPRAGE structural image,
and then into standard MNI space, using affine transformations
(Jenkinson and Smith, 2001). Registration from MPRAGE
structural image to standard space was further refined using
FNIRT nonlinear registration (Andersson et al., 2007a,b).

Statistical analyses were performed in the native image space,
with the statistical maps normalized to the standard space before
higher-level analyses. The data was modeled at the first-level
using a general linear model within FSL’s FILM module. As
illustrated before Andersson et al. (2007a,b), brain activations
were modeled for BQ, control, and animal images separately.
The event onsets were convolved with canonical hemodynamic
response function (HRF, double-gamma) to generate regressors.
Temporal derivatives were included as covariates of no interest
to improve statistical sensitivity. The six-movement parameters
were also included as covariates in the model.

PPI Analysis
PPI analysis was performed by FSL3. Two interaction terms
of BQ and control images with the ROIs were entered into
the model. Group analyses were performed to examine group
differences between interactions and to specifically find the
difference in brain connectivity in BQD and NCs groups. Group
images were evaluated with a height threshold of Z > 3.1 and
a cluster probability of p < 0.05, corrected for whole-brain
multiple comparisons based on Gaussian random field theory.
The education was included as a covariate for all fMRI analyses.

RESULTS

Demographic Results
Table 1 showed the demographic and impulsivity characteristics
for all participants. According to Table 1, the BQD and NCs
group were matched on age (BQD: 34.85 ± 8.10 years; NCs:
32.05 ± 6.25 years; t(68) = 1.44, p = 0.15), and BMI (BQD:
25.07 ± 3.74 kg/m2; NCs: 23.32 ± 3.84 kg/m2; t(68) = 1.81,

3https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/PPI
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TABLE 1 | Demographic and impulsivity characteristics of participants (M ± SD).

BQD NCs Statistics

N 48 22 -
Age (years) 34.85 ± 8.10 32.05 ± 6.25 t(68) = 1.44, p = 0.150
Education (years) 11.62 ± 2.83 17.82 ± 2.82 t(68) = −6.19, p < 0.001∗

BMI (kg/m2) 25.07 ± 3.74 23.32 ± 3.84 t(68) = 1.81, p = 0.080
BQDS 59.63 ± 14.55 - -
Duration of BQ use (years) 15.23 ± 7.10 - -
Age of first BQ use 17.13 ± 6.67 - -
Estimated BQ use per day (g) 40.19 ± 33.11 - -
BIS_Motor 25.52 ± 5.86 20.59 ± 4.29 t(68) = 3.53, p = 0.001∗

BIS_Attention 36.83 ± 4.13 37.73 ± 4.31 t(68) = −0.83, p = 0.410
BIS_No Plan 39.27 ± 4.72 36.73 ± 3.55 t(68) = 3.06, p = 0.003∗

Cue_CR 0.99 ± 0.03 0.97 ± 0.05 t(68) = 1.77, p = 0.160
Cue_RT (ms) 609.5 ± 138.1 618.8 ± 144.3 t(68) = −0.25, p = 0.800

∗Significant at p < 0.05.

p = 0.08). However, they did show significant difference on years
of education (BQD: 11.62 ± 2.83 years; NCs: 17.82 ± 2.82 years;
t(68) = −6.19, p < 0.001). Years of education was entered as
a covariate for the following analysis. Table 1 illustrated the
difference of trait impulsivity between the two groups. Results
suggested that the BQD group showed higher motor and no plan
impulsivity than the NCs group. Both groups performed very
well in the cue-reactivity task (over 97% of the correct ratio of
detecting animals). There was no significant difference in terms
of either the correct ratio or reaction time between groups.

VBM Results
VBM correlation analysis aimed to investigate the structural
bonding of the trait impulsivity characteristics. The result of
correlation analysis suggested that scores of motor impulsivity
were negatively correlated with the volume of right caudate
in the whole group (both BQD and NCs group; Figure 2A,
right caudate, blue area, MNI coordinates: 8, 14, −2; 81 voxels,
Z = 4.74). Moreover, the right caudate volume was negatively
correlated with BQDS scores in the BQD group (r(48) = −0.441,
p = 0.002). Also, no significant difference was found between
cognitive impulsivity, no plan impulsivity, and gray matter
volumes between BQD and NCs group.

PPI Results
The right caudate which showed a significant correlation
with motor impulsivity was used as the ROI to do the PPI
analysis. PPI results suggested that in contrast to viewing
control images, viewing BQ related images would decrease
functional connectivity between the right caudate and right
dorsolateral prefrontal cortex (DLPFC) in the BQD group
(Figure 2B, DLPFC, red area, MNI coordinates: 54, 28, −2;
57 voxels, Z = 4.38). Furthermore, correlation analysis showed
that functional connectivity between right caudate and right
DLPFC was negatively correlated with BQDS scores in the BQD
group (Figure 2C, r(48) = −0.417, p = 0.003).

DISCUSSION

To our knowledge, the current study provided the first empirical
evidence to demonstrate the behavioral and neural differences of
trait impulsivity between the BQD and NCs group. Consistent

FIGURE 2 | (A) Voxel-Based Morphometry (VBM) analysis showed that the
right caudate (blue area, MNI coordinates: 8, 14, −2; 81 voxels, Z = 4.74) was
negatively correlated with scores of motor impulsivity, and no other results
were found. (B) Psycho-Physiological Interactions (PPI) analysis suggested
that in contrast to view control images, viewing BQ related images would
decrease functional connectivity between right caudate and right DLPFC (red
area, MNI coordinates: 54, 28, −2, 57 voxels, Z = 4.38). Both results were
mapped onto a standard brain and displayed with coronal, axial, and sagittal
views respectively. The numbers below represented the slice numbers. (C)
The scatter plot of correlation analysis between functional connectivity (right
caudate and right DLPFC) and BQDS scores in the BQD group.

with our hypothesis, the BQD group showed significantly higher
motor impulsivity and no plan impulsivity than the NCs group.
Motor impulsivity was negatively associated with gray matter
volume in right caudate in the whole group. Compared with the
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NCs group, the BQD group showed less functional connectivity
between right caudate and right DLPFC when viewing BQ
related images than control images, which was more profound
in participants with higher BQDS score.

This current study highlighted the trait impulsivity deficit in
the BQD group. Substance misusers have been widely reported to
score higher on measures of trait impulsivity despite a variety of
measures of impulsivity (Dawe et al., 2004; Crews and Boettiger,
2009). So far, evidence has been accumulated for the relationship
between impulsive behaviors and substance use and abuse (Baker
and Yardley, 2002; de Wit, 2009). One study found that high
trait impulsivity predicted the switch to compulsive cocaine-
taking (Belin et al., 2008). Another study detected a positive
relationship between the frequency of marijuana use and the
number of marijuana-related problems that were greatest in
those with high trait impulsivity scores (Simons and Carey,
2002). Similar evidence also came from internet addiction (Cao
et al., 2007), sexual addiction (Bancroft and Vukadinovic, 2004),
as well as other substance addiction (Kreek et al., 2005). Our
study extends these prior findings by providing new evidence
for increased motor and no plan impulsivity in individuals with
BQ dependency.

The present study provided evidence for a negative
correlation between gray matter volume in right caudate
and motor impulsivity, which supported previous reports on
the structural manifestation of trait impulsivity in the striatum
(including caudate and putamen). In healthy individuals, a
negative relationship was revealed between impulsivity scores
assessed by BIS and gray matter volumes of the putamen
bilaterally (Cho et al., 2013). In psychiatric disorders, Babbs et al.
(2013) reported a negative correlation between trait impulsivity
and caudate activity in response to a milkshake in the overweight
group. Other studies suggested that structural and functional
asymmetry of the caudate was associated with impulsivity
deficits in participants with attention-deficit/hyperactivity
disorder (Schrimsher et al., 2002; Dang et al., 2016). Although
reports on gray matter changes reflecting high impulsivity in
the striatum were inconsistent (Glenn et al., 2010), our results
provide new evidence for a negative relationship between trait
impulsivity and right caudate by the results that higher motor
impulsivity was associated with less right caudate volume and
further support the notion that the right caudate is involved in
the pathophysiology of trait impulsivity in substance addiction.

Finally, this current study revealed decreased functional
connectivity between right caudate and DLPFC in individuals
with BQD (viewing BQ related images vs. control images).
Anatomically, the dorsal striatum (caudate and putamen)
receives projections primarily from the association cortex
(mainly DLPFC), sensory, and motor areas (Alexander et al.,
1986). Neuroimaging studies in addiction reveal the critical
roles of the frontostriatal circuit, which are mainly associated
with reward (striatum) and cognitive control (prefrontal cortex;
Noël et al., 2013; He et al., 2017, 2019; Wei et al., 2017; Chen
et al., 2018). It is worth noting that the striatum and prefrontal
cortex are intermodulations by frontostriatal circuits (Volkow
et al., 2011, 2012; Saad et al., 2019). The interactions between
the striatum and prefrontal cortex are especially important to

investigate the underlying neural mechanism of addiction, such
as smoking (Kober et al., 2010) and internet gaming disorder
(Yuan K. et al., 2017; Kim and Kang, 2018). Previous studies
revealed structural and functional alterations in the prefrontal
cortex and caudate in individuals with BQD relative to healthy
controls (Liu et al., 2016b; Sariah et al., 2019). However,
the interaction between the prefrontal cortex and caudate in
BQ users with dependency has never been investigated. Our
findings contribute to filling this gap by showing that reduced
functional connectivity between right caudate and right DLPFC
in individuals with BQD. Furthermore, it should be noted that
functional connectivity between right caudate and DLPFC was
revealed to be negatively associated severity of BQ dependency,
which implies the effect of BQ use on the frontostriatal circuits.

It was important to note some of the limitations of this study.
Firstly, the study used an imbalanced sample. Future research
involving a balanced sample and larger sample sizes may help
address some of these additional questions. Secondly, this study
only recruited male participants, so it should be cautious in
generalizing the findings of this study to the females. Then, the
cross-sectional nature of this study can’t make causal association
conclusions about BQ use and impulsivity. Longitudinal studies
should be employed in the future to assess the longer-term
effect of BQ use on impulsivity in individuals with BQD.
Lastly, we also screened some participants with symptoms of
depression and/or anxiety. BQ use may be associated with
higher depression or anxiety. We will carry out future studies to
investigate this topic.

In conclusion, we revealed increased motor and no plan
impulsivity in individuals with BQD relative to healthy controls.
Motor impulsivity was negatively associated with gray matter
volume of right caudate in the whole group. Compared with the
NCs group, the BQD group showed less functional connectivity
between right caudate and right DLPFC when viewing BQ
related images than control images, which was more profound
in participants with higher BQDS scores. Our study sheds light
on the pathology of trait impulsivity in individuals with BQD,
whichmay provide insight into the selection of key targeted brain
regions for interventions aiming to decrease motor impulsivity
levels in betel-quid chewers.
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