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Abstract: There is mounting evidence to suggest that environmental factors play a major 

role in the development of neurodegenerative diseases like ALS (Amyotrophic Lateral 

Sclerosis). The non-protein amino acid beta-N-methylamino-L-alanine (BMAA) was first 

associated with the high incidence of Amyotrophic Lateral Sclerosis/Parkinsonism 

Dementia Complex (ALS/PDC) in Guam, and has been implicated as a potential 

environmental factor in ALS, Alzheimer’s disease, and other neurodegenerative diseases. 

BMAA has a number of toxic effects on motor neurons including direct agonist action on 

NMDA and AMPA receptors, induction of oxidative stress, and depletion of glutathione. 

As a non-protein amino acid, there is also the strong possibility that BMAA could cause 

intraneuronal protein misfolding, the hallmark of neurodegeneration. While an animal 

model for BMAA-induced ALS is lacking, there is substantial evidence to support a link 

between this toxin and ALS. The ramifications of discovering an environmental trigger for 

ALS are enormous. In this article, we discuss the history, ecology, pharmacology and 

clinical ramifications of this ubiquitous, cyanobacteria-derived toxin. 
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1. Introduction 

Amyotrophic Lateral Sclerosis (ALS) is a debilitating and fatal neuromuscular disease with an 

average annual incidence worldwide of 2 per 100,000. Approximately 8–10% of all cases are familial, 

about half of which are characterized by superoxide dismutase mutation (SOD-1). The other 90–92% 

of ALS cases occur sporadically, with no known familial history. At present there is no known cause 

for sporadic ALS, though a number of environmental compounds have been implicated as potential 

etiological agents. The most documented and relatively well established toxicological risk factor for 

ALS is smoking [1–7]. Other associations that have been proposed are occupational exposure to 

electromagnetic radiation [8,9], contact with pesticides and heavy metals such as lead and mercury 

[10–16], and possibly exposure to formaldehyde [17]. Possible clusters of ALS have also been 

described amongst soccer players sharing the same environmental risks and occupational activities 

including frequent head trauma [18–24], but recent reports have also refuted specific links of head 

trauma to ALS [25–27]. Other forms of physical activity have been debated and despite many 

incidental reports, specific links with ALS have been refuted [28]. Of the environmental triggers for 

ALS, the cyanobacteria-derived neurotoxin BMAA continues to attract attention because of its ability 

to cause neurodegeneration in vitro and its ubiquitous nature [29,30,31–33], providing support for a 

potential role in the etiology of sporadic ALS [29,34,35].  

2. History of Guam and Initial Theory of BMAA 

When the United States recaptured the Marianas Islands in 1944 from Japan, they found an 

extremely high incidence rate of ALS and ALS-like conditions (ALS/ Parkinsonism dementia 

complex, ALS/PDC), particularly in Guam, where in 1954 it was estimated to be 50–100× higher than 

the worldwide rate [36–38]. Recent investigations suggest that the incidence and prevalence rates have 

declined considerably over the last 4 decades to levels of 7 per 100,000 that approach rates described 

in the rest of the world [39]. The disease also appears to have evolved over time to predominantly 

present clinically as parkinsonism and dementia rather than ALS. The chief factor responsible for the 

declining incidence appears to be ethnographic changes, social and ecological, brought about by the 

rapid westernization of Guam [39]. The change suggests that the cause of the disease is not genetic but 

rather environmental [39]. Early researchers suspected that something in cycad seeds, a dietary staple 

used by the Chamorro indigenous people to make flour, might be responsible for ALS/PDC [40]. The 

discovery of a neurotoxic non-protein amino acid, beta-N-methylamino-L-alanine (BMAA) in cycad 

flour suggested that this might be the particular cause of ALS/PDC [34,41]. BMAA in cycad seeds is 

derived from symbiotic cyanobacteria in coralloid roots of Cycas micronesica or possibly also from 

the cycad plant itself [42,43]. BMAA is mainly concentrated in proteins and was consumed by 

Chamorro through multiple dietary sources, including cycad flour, flying foxes (a type of fruit bat), 

and other animals that fed on cycad seeds [42,44–46].  

3. BMAA in Brain Tissue 

In the last ten years, Cox and colleagues have demonstrated that BMAA in cycad seeds is derived 

from symbiotic cyanobacteria in coralloid roots of Cycas micronesica and that BMAA in cycad flour 



Toxins 2010, 2              

 
2839 

is mainly concentrated in proteins. They were able to demonstrate that consumption of cycad flour, 

flying foxes, and other animals that fed on cycad seeds by the indigenous Chamorro people led to bio-

concentration of protein-bound BMAA up the food chain, leading to the accumulation of BMAA in the 

brains of Chamorro patients with ALS/PDC (mean concentration of BMAA 627 µg/g) [34,42,44–47]. 

BMAA has also been detected in the brains of Canadian patients with Alzheimer’s disease (mean 

concentration of BMAA 107 µg/g) but not in control patients without neurological disease [46]. This 

latter finding has recently been confirmed by a second group (mean concentration of BMAA in 

Alzheimer’s brains 214 µg/g) and extended to show that BMAA is accumulated in the brains of US 

ALS patients (mean concentration of BMAA 268 µg/g), but not in those of patients with Huntington’s 

disease, a genetic neurodegenerative disease (mean concentration of BMAA 11 µg/g) or non-

neurological controls (mean concentration of BMAA 41 µg/g) [35]. Huntington’s disease is purely a 

genetic neurodegenerative disease, so the inability to detect BMAA in these specimens is important as 

it suggests that BMAA does not occur as a byproduct of neurodegeneration. 

4. Molecular Mechanisms of BMAA 

Motor neurons are indisputably the largest and longest cells in the body making them vulnerable to 

any metabolic or external perturbation. Even fast retrograde and anterograde transport is a slow 

process in these very long axons moving at 100 mm/day. Because of the length of these cells, under 

the best of circumstances, it takes as much as two weeks for the fastest moving particles to go from the 

endplate to the cell body. Any small perturbation to transport or cellular hemostasis by an 

environmental toxin could have catastrophic effects. BMAA binds directly to NMDA and 

AMPA/kainate receptors and binding is enhanced when the BMAA is carbamated, producing a 

molecule that closely resembles glutamate [48,49]. BMAA has been found to induce selective motor 

neuron (MN) loss in dissociated mixed spinal cord cultures at concentrations of approximately 30 µM 

[49], significantly lower than those previously found to induce widespread neuronal degeneration and 

supporting the hypothesis that BMAA may contribute to the selective MN loss in ALS/PDC [49,50]. 

Lobner et al. have shown that the mechanism of neurotoxicity is actually three-fold; it involves not 

only direct action on the NMDA receptor, but also activation of glutamate receptor 5 (mGluR5) and 

induction of oxidative stress [51]. More recently Liu et al. [52] found that BMAA inhibits the 

cystine/glutamate antiporter system Xc
-
 mediated cystine uptake, which in turn leads to glutathione 

depletion and increased oxidative stress [52]. In cyclical-like pattern, BMAA appears to drive 

glutamate release via system Xc
-
 which induces toxicity through activation of the mGluR5 receptor. 

These multiple mechanisms of BMAA toxicity may account for its ability to induce complex 

neurodegenerative diseases. As pointed out by Bradley and Mash [34], although a single toxin 

triggering three different neurodegenerative diseases seems unusual, we know that mutations in the 

progranulin gene can result in ALS, AD, PD and PSP phenotypes in North American patients [53–55]. 

Conceivably, BMAA could be incorporated into proteins and subsequently lead to protein 

misfolding. The mechanism of BMAA incorporation into protein is not yet known, but a large fraction 

of BMAA is protein bound (60 to 130 fold greater quantity) compared to what has been recovered 

from the free amino acid pool [46]. It is also known that amino acid analogues can be incorporated into 

proteins and can alter cell function [56]. It is not known if BMAA causes misfolding, but there is 

literature showing the misincorporation of even the regular 20 amino acids, as with disruption of 
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translational fidelity through the use of low levels of mischarged transfer RNAs (tRNAs) [57]. This 

misincorporation is associated with protein misfolding in terminally differentiated neurons [57]. The 

incorporation of BMAA into protein serves as a potential reservoir for future release of the toxin into 

cells [46]. 

Although there are many examples where BMAA displays neurotoxicity, no good animal model 

exists as of yet [58]. BMAA has been shown to cause motor neuron damage in vivo in brine shrimp 

(Artemia salina [59]), protozoa (Nassula sorex [59]), fruit flies (Drosophila melanogaster [60]), and 

fish (Danio rerio [59,61]). For a meta-analysis of BMAA neurotoxicity in other vertebrates, including 

primates, see Karamyan and Speth [58]. 

The hypothesis that BMAA may be a cause of ALS has its detractors. Snyder et al. reported being 

unable to detect BMAA in the brains of patients with Alzheimer’s disease and Guam ALS/PDC [62] 

and it has been pointed out that BMAA did not cause neurodegeneration in mice within their model 

system [62,63]. These observations have been criticized as being based on their own new assay 

methods rather than on the established AQC-derivatization assay and for not hydrolyzing the assayed 

material, thereby failing to release and measure the major portion of BMAA that is protein-bound 

[32,34,58]. Later papers from this same research team were able to find BMAA in the brain tissues of 

mice fed BMAA after they developed more sensitive analytical methods [64]. For whatever reason, the 

mouse model may be a poor model to demonstrate the neurotoxicity of BMAA and species-specific 

and allometric considerations are essential in these types of studies [58]. Despite these negative 

findings, the review by Karamyan and Speth [58] concluded that the neurotoxicity of BMAA was 

supported by almost all in vivo studies and is strongly associated with motor function. 

5. Potential Exposures to and Bioaccumulation of BMAA 

The production of BMAA is not confined to cycad seeds, and cyanobacteria species capable of 

producing BMAA are ubiquitously found throughout the world. In some locations, cyanobacteria are 

directly consumed by people and samples of these cyanobacteria have been shown to harbor BMAA. 

People from the Peruvian highlands collect cyanobacterial colonies of Nostoc commune (with a mean 

BMAA concentration of 10 µg/g) and eat them directly, sell them in markets, and add them to salads, 

soups, meat dishes and picante [65]. Likewise, in China, fa cai soup made with Nostoc flageliforme 

(with variable concentrations of BMAA ranging from not detectable to 0.66 µg/g) is eaten as a soup 

during New Year’s celebrations [66]. Unfortunately, epidemiological and human tissue analyses in 

these areas are lacking and higher incidence rates of ALS and ALS-like diseases are unknown.  

Cyanobacterial blooms can occur in both fresh water and marine water bodies, giving the potential 

for human exposure through direct consumption of water, recreational activities, and contaminated 

foodstuffs. In the United Kingdom, BMAA was prevalent in twelve water bodies used for either 

drinking water, recreation, or both [67]. BMAA was found within freeze-dried cyanobacteria 

collections obtained from these British water bodies as both a free amino acid (ranging from not 

detected to 276 µg/g) and as a protein associated amino acid (ranging from 6 to 48 µg/g). Likewise, 

BMAA has been indentified in scum material collected from urban waters in the Netherlands where 

cyanobacterial blooms are prevalent [68]. Recreational activities, such as swimming and water-skiing, 

are a potential source of exposure to BMAA in areas with cyanobacteria blooms; aerosol-borne 

exposure to another cyanobacteria toxin, microcystin, has already been documented [69,70]. In a 
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recent article, Esterhuizen et al. [71] showed that free BMAA can be released during the collapse of 

cyanobacterial blooms. This process combined with cellular turnover creates a latent source of the 

non-protein amino acid for bioaccumulation and biomagnification in aquatic ecosystems. Rapid uptake 

of significant amounts of BMAA was observed in the macrophyte Ceratophyllum demersum [71]. 

Following accumulation of free BMAA, protein association was observed which suggests potential 

bioaccumulation by aquatic macrophytes and offers a possibility of phytoremediation for BMAA 

removal [71]. This also suggests a potential route for human exposure to BMAA if it is shown to apply 

more broadly to plants intended for human consumption. There is evidence to show that human 

exposure to other toxins of cyanobacterial origin occurs in this manner [72]. Bioaccumulation of 

BMAA is undoubtedly occurring within other organisms outside of the Guam ecosystem.  

Recently, Brand et al. [73,74] found that BMAA is bio-concentrated in crustaceans, mollusks, and 

certain fish, particularly those that feed on the benthos. This study provides one plausible 

environmental source of the BMAA identified in the South Florida ALS and Alzheimer’s disease 

patients described by Pablo et al. [35]; however, the very important correlative demographics and 

behaviors of individual patients are lacking at this time. The study by Brand et al. [74] has recently 

been confirmed in a second marine ecosystem in the Baltic Sea where the same pattern of high 

concentrations of BMAA was observed in bottom dwelling fish species and in filter-feeding mollusks 

[31]. Since massive blooms of cyanobacteria (e.g., Nodularia) are a common occurrence in the Baltic 

Sea because of its brackish waters and many organisms from the Baltic Sea are consumed by the 

surrounding human populations, this represents a concern for human health. Bioaccumulation of 

BMAA in marine environments is thus entirely feasible [75], but not demonstrated unequivocally as of 

yet. Caller et al. originally identified 9 ALS patients (now 11 ALS patients) who lived near Lake 

Mascoma in Enfield, NH, an incidence of sporadic ALS that is as much as 25 times the expected 

incidence for New Hampshire [76]. They suggested that the high incidence of ALS in this potential 

cluster might be related to a cyanobacteria toxin exposure from frequent cyanobacterial blooms in the 

lake. Blooms of cyanobacteria are found in many New Hampshire lakes each year and are capable of 

producing any number of toxins including BMAA [76]. Postulated mechanisms of BMAA acquisition 

include consuming contaminated fish, ingestion of lake water or possibly infiltration of lake water 

containing BMAA into artesian wells. Another postulated route of cyanotoxin exposure is inhalation of 

aerosolized toxins through wave action, as can occur with brevetoxins [77–80]. Besides wind and 

environmental factors, recreational activities in water bodies containing cyanobacterial blooms could 

potentially generate aerosolized cyanotoxins [70]. On an interesting note, cyanobacteria are major 

components of desert cryptobiotic soil crusts and BMAA was found in the desert crust of the Arabian 

Peninsula, where high winds constantly aerosolize the sand. Military activities in the Arabian 

Peninsula also created significant dust and more cases of ALS have been recorded in military 

personnel serving in this area during Gulf War I (Persian Gulf War) than in military personnel who 

were trained but not deployed [81].  

6. Multiple Exposures to Cyanobacterial Toxins 

Cyanobacteria are ubiquitous and produce a number of neurotoxins besides BMAA, including 

saxitoxin and anatoxin-a. Some species also produce the liver toxin microcystin which has been linked 

through careful epidemiological studies to liver disease and hepatocellular carcinoma [82–85]. BMAA 
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has been shown to be co-produced with microcystin and other potent cyanobacterial toxins [67,86]. In 

addition, BMAA co-occurs with the neurotoxic isomer 2,4-diaminobutyric acid (2,4-DAB) in cycads 

and cyanobacteria [68,81,87,88]. It is established that not all cyanobacterial taxa are capable of 

producing some of the better characterized hepatic and neurologic toxins like microcystin, anatoxin-a, 

anatoxin-a(s), saxitoxin, and cylindrospermopsin. But, it is unclear at present whether all cyanobacteria 

are capable of producing BMAA under favorable conditions, and whether co-exposure to BMAA and 

other cyanobacterial toxins might potentiate the development of neurodegenerative disease. It is 

entirely possible that a synergistic effect could be created by exposure to more than one neurotoxin at a 

time. Lobner et al. demonstrated that in vitro, BMAA at concentrations as low as 10μM potentiate 

neuronal damage caused by other insults [51]. 

7. Nutritional Status of Persons Exposed to BMAA 

Lathyrism or neurolathyrism is a neurological disease of humans and domestic animals,  

caused by consuming the legume Lathyrus sativus. The consumption of large quantities of  

Lathyrus sativus (400g/day) containing high concentrations of the glutamate analogue neurotoxin  

β-N-oxalyl-amino-L-alanine (BOAA) causes a spastic paraparesis [89]. Lathyrism occurs during 

periods of malnutrition and is often triggered by physical exhaustion. Adverse environmental 

conditions brought on by drought, flood, pestilence and war have forced populations to rely almost 

exclusively on food resistant to these adverse conditions such as the Lathyrus sativus legume; a 

situation that leads to the development of Lathyrism [90]. Supplemental food-aid appears to reduce the 

incidence of neurolathyrism in areas of drought and malnutrition [91]. Jahan and Ahmad discovered 

that experimental neurolathyrism could be produced in guinea pigs and primates that needed an 

external supply of ascorbic acid by making them subclinically deficient in ascorbic acid and feeding 

them the seeds of Lathyrus sativus or extracts thereof [92]. Autoclaving the seeds of the  

Lathyrus sativus with lime removed the toxin [92]. As with BOAA, it is postulated that BMAA could 

be more harmful to malnourished individuals [93]. ALS/PDC was first discovered in Guam and 

peaked following World War II at a time when the indigenous Chamorro people were malnutritioned. 

By the time it was documented, dietary intake was probably back to near normal but years of 

malnutrition may have contributed to the overall peak of disease that occurred later.  

8. Latency Effects of BMAA 

The lag time between BMAA exposure and onset of neurodegeneration is not known, however, 

considerable insight can be found from the analysis of migrants to and from Guam. Twenty-eight 

Chamorro migrants from Guam developed ALS/PDC after periods of absence ranging from 1 to 34 

years [94]. These data suggest that if environmental factors are responsible the latency period for 

disease development may be over three decades. Estimates of crude mortality rates from ALS for these 

migrants are at least three times as high as rates noted for the United States population, yet more than 

four times lower than the ALS crude mortality rates for non-migrant Chamorros living in Guam during 

the twenty years prior to the epidemiological study [94] suggesting that the exposure the migrants were 

subjected to occurred in Guam. When considering cases of progressive neurologicial disease among 

Filipino migrants to Guam, ten Filipino migrants to Guam were reported with ALS 1 to 32 years after 

http://en.wikipedia.org/wiki/Legumes
http://en.wikipedia.org/wiki/Lathyrus
http://en.wikipedia.org/wiki/Glutamate
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their arrival; two migrants developed parkinsonism-dementia 13 and 26 years after arrival, and seven 

additional patients developed what was considered more classic PD 5 to 24 years after their migration 

to Guam [95]. Ten children born on Guam of Filipino and Chamorro parents also developed ALS and 

six developed PD [95]. The average annual crude mortality rate for ALS among Filipino migrants was 

estimated to be six times higher than those living in the continental United States but half the rate 

observed among Chamorros living on Guam during the same period [95]. Combined, these data 

suggest that environmental exposure precedes neurological symptoms by possibly decades and that 

some people are more susceptible to disease than others due to interactions between genes and 

environmental exposure.  

9. Conclusions 

Cyanobacteria are ubiquitous and many of the species examined so far have been shown to produce 

the neurotoxic non-protein amino acid BMAA. Since human exposure to BMAA appears to be 

widespread, it has the potential to be a major environmental factor capable of causing ALS and other 

neurodegenerative diseases throughout the world [34]. The literature is full of convincing spatial 

clusters of ALS and reports of conjugal ALS [24,76,96–103]. A careful evaluation of these clusters in 

relation to potential environmental sources of ALS would be very important as would evaluation of 

brain and spinal cord tissues for the presence of BMAA. Although the link between BMAA and 

sporadic ALS awaits a primate model of BMAA-induced progressive neurodegeneration for better 

confirmation [58], multi-disciplinary studies by investigators at a variety of institutions indicate that 

BMAA should be more carefully investigated as a trigger for ALS acting through gene-environment 

interactions.  
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