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Abstract

Predicting anticancer drug sensitivity can enhance the ability to individualize patient treat-
ment, thus making development of cancer therapies more effective and safe. In this paper,
we present a new network flow-based method, which utilizes the topological structure of
pathways, for predicting anticancer drug sensitivities. Mutations and copy number alter-
ations of cancer-related genes are assumed to change the pathway activity, and pathway
activity difference before and after drug treatment is used as a measure of drug response.
In our model, Contributions from different genetic alterations are considered as free param-
eters, which are optimized by the drug response data from the Cancer Genome Project
(CGP). 10-fold cross validation on CGP data set showed that our model achieved compara-
ble prediction results with existing elastic net model using much less input features.

Introduction

Systematical depiction of the relationships between genetic alterations and cancer vulnerabili-
ties is a major goal for current cancer genome projects. Cancers are induced by the accumula-
tion of genetic alterations within a cell, including inherited genetic mutations, chromosome
translocations, and copy number alterations [1]. Association analysis between genetic alter-
ations and anticancer drug sensitivity could provide new insights for biomarker discovery and
drug sensitivity predictions. However, the huge diversity of different cancer types, even in tu-
mors from the same tissue, makes the above aim very challenging.

Much effort has been made to elucidate biomarkers for anticancer drugs ever since the out-
come of high-throughput genomic technique, and most of which are based on gene expression
data. For example, Staunton et al. [2] proposed a weighted voting classification strategy to pre-
dict a binary response (sensitive or resistant) based on the NCI-60 gene expression data. Based
on the same data set, Riddick et al. built an ensemble regression model using Random Forest
[3]. Lee et al. developed a coexpression extrapolation algorithm to infer drug signature by com-
paring differential gene expression between sensitive and resistant cell lines [4]. Due to the het-
erogeneity of cancers, a biomarker for a drug will be different for different cancer types, so
some researchers tend to a certain specific cancer types [5, 6]. For example, Holleman et al.
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investigated gene expression patterns in drug-resistant acute lymphoblastic leukemia cells and
found that combined drug-resistance gene-expression score is significantly associated with the
risk of relapse [7]. Besides gene expression, other researchers focus on the relationships be-
tween chemotherapy sensitivity and epigenetic modifications, including phosphorylation and
methylation. For example, Shen et al. used CpG island methylation profile to predict drug sen-
sitivities in the NCI-60 cancer cell line panel [8]. They got a list of methylation markers that
predict sensitivity to chemotherapeutic drugs, e.g., hyper-methylation of the p53 homologue
P73 was strongly correlated with sensitivity to alkylating agents. Despite the success in identify-
ing several drug biomarkers, the previously described methods suffer from a limited number of
samples (cell lines) compared with the large number of expression genes and chemical com-
pounds used (>100,000). By chance, the gene signature for some compounds may be over-
estimated.

Recently, researchers from the Broad and Sanger Institutes generated a large scale genomic
data set for more than 1,000 human tumor cell lines, including mutation status, copy number
variance, expression profile, and translocation of a selected set of cancer driver genes, as well as
the pharmacological profiles for a large number of anticancer drugs [9, 10]. To elucidate the
interactions of genomic instabilities with respect to cancer cell drug sensitivity, they applied a
so-called elastic net regression to infer sensitivity for each drug by different types of genomic
instability data. Though achieving good performance for certain drugs and cancer types, the
above method also suffers from the following limitations. First, compared to the huge number
of genomic features, the number of cell lines is still not large enough. This kind of learning
problem is prone to be over fitting and thus has bad generalization ability, i.e., expressions of
some genes may highly correlate with response of a drug only by chance. Second, genes are not
independent with each other in expression, but form a certain hierarchical structure, i.e., path-
way or PPI network. Unfortunately all of the above methods do not take this information into
consideration. Explicitly, most drugs target specifically to genes from some particular pathways
that abrogate a variety of cancer-related stressors including DNA damage replication, proteo-
toxic stress, mitotic stress, and metabolic stress, etc. [11]. Thus, mutation and expression of
these genes and their relationships with other genes, especially cancer driver genes within a
pathway, would offer better hints for drug sensitivity prediction.

To overcome the above problems, we propose a network flow-based method to predict anti-
cancer drug sensitivity using topological structure of pathways. In our model, mutations and
copy number alternations of cancer related genes are assumed to determine its pathway activi-
ty. Treated drugs would reduce a certain amount of pathway activity flowing to its target genes.
Drug sensitivity of a sample is measured by pathway activity change before and after drug
treatment. Based on these assumptions, we come up with an optimization model to fit all pa-
rameters based on training samples. As an example, our model achieved good performance for
drugs targeting the MAPK pathway through a 10-fold cross-validation. Our algorithm is also
applicable to predict combination effects of two or more drugs.

Material and Methods
2.1 Data sources

The cancer genome and drug sensitivity data are available from the Cancer Genome Project
(CGP) [10] (S1 Table). This dataset cataloged mutation statuses of 64 commonly mutated can-
cer genes, genome-wide DNA copy number variance and expression profiles of 14,500 genes in
639 human tumor cell lines, and pharmacological responses for 130 selected anticancer drugs.
This data allows systematical discovery of biomarkers or signatures able to characterize, classi-
ty, and prognosticate clinical behavior of human tumors. Here we considered only nonsense
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Table 1. 12 important cancer pathways from KEGG.

KEGG_ID Pathway name # Gene # Edge # Cancer gene
00970 Aminoacyl-tRNA biosynthesis 7 5 0
04010 MAPK signaling pathway 256 875 13
04064 NF-kappa B signaling pathway 80 168 0
04110 Cell Cycle 124 630 13
04115 p53 signaling pathway 68 84 10
04210 Apoptosis 86 183 4
04350 TGF-beta signaling pathway 83 220 3
04330 NOTCH_SIGNALING_PATHWAY 47 138 2
04310 WNT_SIGNALING_PATHWAY 144 775 9
05200 Cancer pathway 307 1104 32
04630 JAK_STAT_SIGNALING_PATHWAY 99 868 10
04340 HEDGEHOG_SIGNALING_PATHWAY 51 130 3

doi:10.1371/journal.pone.0127380.t001

mutations in coding exon regions and copy number gain and loss of cancer driver genes. Cell
viability was assessed from the changes in total cellular protein after 72 hours of drug treat-
ment. Drug sensitivities are evaluated by the half maximal inhibitory concentration (IC50) rel-
ative to the control.

During oncogenesis, gene mutations or expression changes accumulate in some pathways
regulating specific aspects of cell proliferation. Cancer-related pathways are those pathways
whose dysregulation allows cells to grow and divide unchecked including apoptosis, cell cycle,
DNA damage repair, and growth factor responses. Here 12 cancer-related pathways were cho-
sen from KEGG database [12]. It is found that genes in these pathways either have genetic ab-
erration or are synthetic lethal, and they additionally play important roles in cell response to
chemotherapy drugs [13]. These pathways consist of a total of 909 genes and 5180 interactions
(edges), where 43 of 64 cancer genes in CGP are included. Detailed information of these 12
pathways is shown in Table 1.

2.2 Pathway activity and drug sensitivity prediction

Our algorithm is based on the following three main assumptions: i) Mutations and copy num-
ber alternations of cancer genes could affect (increase or decrease) their corresponding path-
way activity, with the contributions of different genes performing independent of each other;
ii) Cancer drugs with specific target genes reduce a certain percentage of activity passing to
their target genes; iii) Pathway activity is defined as the sum of activities of all 12 cancer-related
pathways, and its difference before and after drug treatment is used as a measure of

drug response.

The overall workflow of our algorithm is summarized in Fig 1. The left panel lists the muta-
tion status and activity flow of a normal pathway, where width of an edge represents activity
flowing from the start to the end nodes. If gene A in the pathway is mutant (marked as red,

Fig 1B), which is assumed to increase the downstream pathway activity by 100. Then, the in-
creased activity will flow to B, C, D, and eventually the terminal nodes. If there are multiple
paths from B, each path will share a certain proportion of the increased activity flowing to B. If
a gene C inhibitor is used to treat this sample, the increased pathway activity flowing through
C will be partially inhibited. An example is shown in Fig 1C, i.e., only +20 activity is left after
drug treatment. So the final output activities before and after drug treatment will have differ-
ence, which measures effect of the treated drug. However, in real cases, mutation and copy
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Fig 1. The overall workflow of our algorithm. Left panel lists the mutation status and activity flow of a normal pathway, where width of an edge represents
activity flowing from the starting to the ending nodes. If gene A in the pathway mutated (marked as red), we suppose that this will increase the downstream
pathway activity by 100, then the increased activity will flow to B, C, D and the terminal nodes eventually. If there are multiple paths from B, each path will
share a certain proportion of the increased activity flowing to B. If an inhibitor for gene C is introduced to treat this sample, a certain proportion of increased
pathway activity flowing through C will be inhibited. For example, only +20 activity is left after drug treatment.

doi:10.1371/journal.pone.0127380.g001

number statuses of a sample is rather complicated, e.g., there may be more than one mutant
gene in a sample, and activity contribution of different cancer genes may be different. Thus, a
systematic and quantitative model is needed for better interpreting the real biological
phenomenon.

We denote P; to represent a pathway, and A; to be activity of this pathway i = 1,2,. . .,12. For
each gene g;; in P;, its mutation and copy number statuses are denoted by and v;;, respectively.
Suppose that if this gene is mutant or has abnormal copy number, the pathway activity will in-
crease by AZ" and Aivj, respectively. Mutation of a gene is prone to increase its pathway activity,

but only part of the increased activity could “flow” to the target genes of a drug. We termed the
fraction of increased activity that can be affected by this drug as “drug influence coefficient”,
and denoted as pj;. In the ideal case, p;; will close to 1 if drug target gene is in the downstream of
gijand lies on the only way from gj; to the terminals, while less than 1 if there are multiple
downstream paths from g;;, and only part of (or none of) them pass through the drug target. A
drug d will inhibit the activity passing through its target genes to a certain percent off, which is
referred to be “drug effect” and denoted by o

So for a given sample s, the increased pathway activity due to the genetic alteration before
drug treatment is

12 12
AI:ZAi:ZZmijA:‘—i—vijAZ. (1)
i=1 =1
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After drug treatment, the increased pathway activity is formulated as
12 12
AT =3 A= > (mA7 +v,A7 )00 (2)
i=1 i=1 j

Under the assumption that pathway activity difference before and after drug treatment mea-
sures the response of a drug, as the simplest case, we assume the relationship is linear, that is

AA = Al — AT =k - sens + b, (3)

So
12
Z Z(mijA;" + v,.jA;)(l — pyo) = k- sens +b. (4)
=1

Denote pathway activity difference of the sample s treated with drug d as AA“? and the corre-
sponding drug sensitivity as sens*?. The optimal parameters could be obtained by minimizing
the sum of prediction errors for all sample-drug combinations,

0 = minoz (AASY) — k- sens™9) — b(d))Q. (5)

s,d

This is a quartic function with bound constraints, and thus can be solved by the typical nonlin-
ear optimization algorithm such as gradient descent or branch and bound techniques [14].
Compared to the elastic net model, this model integrates different drugs into a unified frame-
work, so similarities between different drugs, e.g., some BRAF or MEK inhibitors, could possi-
bly be detected. Moreover, one sample treated with different drugs could be served as different
samples according to our model, so the total number of samples is significantly increased,
which helps alleviate the possibility of over fitting due to the limited existing data.

In this paper, the optimx package in R is used to implement the optimization. Optimx is an
extension of the optim function, and quite suitable for the optimization of functions that are
mostly smooth with parameters, and several or many of them are box constrained. The method
"L-BFGS-B" is adopted, which is a limited-memory modification of the BFGS quasi-Newton
method proposed by Byrd et al. [15]. The parameters Al and Al are constrained to [-5,5],

,0]@ € [0,1], and b € [-20,20]. 10-fold cross validation is used to validate our method, where
samples with respect to each drug are roughly divided into 10 equal parts. In each fold, one
part is singled out as the test set, and the other nine parts serve as training data to get the best
parameter set. After the iteration, Pearson correlation coefficient between predicted and ob-
served sensitivities for each drug is used as the prediction performance of our model. We used
the Wilcoxon rank-sum test to examine the relationships between drug sensitivities and drive
gene mutations. In statistic theory, the Wilcoxon rank-sum test is a nonparametric two-sample
test based solely on the order of observations from two samples.

2.3 Potential application to prediction of drug combination

Most human diseases are caused by complex biological processes and have more than one
causing gene, so an individual drug is sometimes not enough to ensure a good clinical effect
[16]. Experimentally, one can use a high-throughput screening technique to identify possible
effective drug combinations [17], but the number of possible drug combinations increases ex-
ponentially with the increase of drugs. So a systematic computational scheme is expected. In
drug combination model, we assume the inhibitor effects of different drugs are independent
with each other. While the synergistic effect between two drugs is a common phenomenon.
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Considering that our model is based on the high-throughput data with several hundreds of cell
lines and drugs, we believe that the independent assumption between different drugs will not
seriously affected by the limited number of the possible synergistic effects.

In our model, effects of different drugs are integrated into a uniform framework giving it
the possibility to predict the combination effect of different drugs. Suppose a sample is treated
in turn by two drugs d; and d,, and the effects by the different drugs are assumed to be inde-
pendent. According to (2), the increased pathway activity after treatment by drug d; is

12
m v dy)
=2 (mA7 + A pif el (©)
=1 j
After treatment of drug d,, the increased pathway activity is decreased to
12
m v dy)
£) = 30 S lm AT 1,08l %), o)
=1 j
So the final activity reduction after combination treatment of d; and d, will be

AA(d,,d,)) = Al — AT(d,, d,) ZZ AT 4 v, AT (1= pl e e ). (8)

For each sample, we can calculate the AA(d;,d,) for all possible drug combinations according
to mutation and copy number statuses of cancer driver genes. Then top drug combinations can
be served as potential therapies for treatment. Along this line, combination effects of more
drugs can be modeled similarly.

Result and Discussion

3.1 Mutation of cancer genes in MAPK pathway and their relations with
drug sensitivity

We first examined the mutations of cancer genes in MAPK pathway and their relations with
anticancer drug sensitivities. In Fig 2A, we showed sensitivity differences of three BRAF inhibi-
tors, i.e., AZ628, PLX4720 and SB590885, at BRAF wild type and BRAF mutant samples. As is
shown, all three BRAF inhibitors show significantly higher sensitivity against BRAF mutant
samples, with p-values 3.84e-6, 9.98e-10 and 1.33e-11 by Wilcoxon Rank Sum test, respectively
(Fig 2A). Next, we examined the above phenomenon for four MEK inhibitors. As is shown in
Fig 2, MEK inhibitors, especially CI.1040, did not show much sensitivity difference between
MEK mutant and wild type samples (p-values are 0.05, 0.16, 0.07 and 0.24, Fig 2B), but have
significantly high sensitivity for BRAF mutant samples (p-values are 5.18e-10, 1.02e-5, 2.70e-
10, and 5.01e-8, Fig 2C). This phenomenon reconfirms that BRAF mutation is a strong predic-
tor of sensitivity to MEK inhibitors [9, 18-20]. From a network flow viewpoint, one possible
explanation for this phenomenon is the specific topological structure of the MAPK signal path-
way. In the MAPK pathway, BRAF lies upstream of MEK, and every signaling path from BRAF
will flow to MEK. So if there were a flow increase due to BRAF mutation, the increased activity
would finally flow to its downstream nodes. MEK inhibitors should have a good performance
because MEK is served as the “hub” node in the sub-network induced by BRAF and its con-
nected nodes. The above explanation reminds us a flow-based scheme to predict drug sensitivi-
ty by making a full use of pathway topological structure.

To have an overall picture of the relationships between drug sensitivities and driver gene
mutations, in Fig 2D, we show the difference in drug sensitivities between wild type and mutant
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Fig 2. Mutation and drug sensitivity distributions of the CGP dataset. (A) Sensitivities of BRAF wild type and mutant samples to three BRAF inhibitors,
i.e., AZ628, PLX4720 and SB590885. P-values by Wilcoxon Rank Sum test are 3.84e-6, 9.98e-10 and 1.33e-11, respectively. (B) Sensitivities of MEK wild
type and mutant samples to four MEK inhibitors. (C) Sensitivities of BRAF wild type and mutant samples to four MEK inhibitors. (D) Drug sensitivity
differences between wild type and mutant samples for cancer-related genes in MAPK pathway. Color key indicates log p-value between wild type and gene
mutation samples by two-sample Wilcoxon Rank Sum test. (E) Mutation and CPV rates of 13 cancer-related genes in MAPK pathway.

doi:10.1371/journal.pone.0127380.9002
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samples for all MAPK driver genes and drugs. The color of key indicates log p-value of wild
type and gene mutation samples by two-sample Wilcoxon Rank Sum test. Only 9 cancer genes
are displayed because the other4 genes, i.e., AKT2, MYC, FGFR2 and PDGFRA, have no mu-
tant samples in the selected dataset (Fig 2E). Missing values indicate that there is no mutant
sample for the corresponding drug treatment. As is shown in Fig 2D, ten MAPK target drugs
form two distinct clusters. The first cluster consists of 3 drugs, one is an RSK inhibitor, and the
other two are Farnesyl-transferase inhibitors. Drugs in this cluster show no significant differ-
ence in sensitivity between mutant and wild type samples for all cancer driver genes. The re-
maining 7 drugs, i.e., 3 BRAF inhibitors and 4 MEK inhibitors, form the second cluster. These
7 drugs also constitute two fairly separate subclusters, with an exception of REDA119, which is
a MEK inhibitor but much closer to BRAF inhibitors in the heat map. As to each gene, we find
that BRAF mutant and wild type samples show the most significant sensitivity difference for
most drugs compared to other driver genes, which reconfirms the observation that mutation of
BRAF is the strongest predictor of drug sensitivity for MEK and BRAF inhibitors. TP53 mutant
cell lines are also prone to be more sensitivity to MEK and BRAF inhibitors, but the
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phenomenon is not so strong as BRAF according to the heat map. Mutations of KRAS and
NRAS also have strong effect for some BRAF and MEK inhibitors, but influence patterns are
quite different, e.g., samples with KRAS mutation are more sensitive to MEK inhibitor. There
are also some genes, such as HRAS, EGFR and FGFR3, whose mutation samples are not sensi-
tive to any drug, which means that mutations of these genes have less contribution to the path-
way activity or the increased activities cannot be reduced by these 10 MAPK drugs.

3.2 Drug sensitivity prediction for the MAPK pathway

Due to the large sample and variable size, the optimization of Eq (5) for the entire CGP dataset
is difficult to solve. To alleviate the problem, in this section, we restricted our analysis to cancer
related genes and drugs targeting only in the MAPK pathway. The MAPKs are a group of pro-
tein serine/threonine kinases that are activated in response to a variety of extracellular stimuli
and mediate signal transduction from the cell surface to the nucleus [21]. In combination with
several other signaling pathways, they can differentially alter phosphorylation status of numer-
ous proteins, including transcription factors, cytoskeletal proteins, kinases and other enzymes,
and greatly influence gene expression, metabolism, cell division, cell morphology and cell sur-
vival [22-24]. Epigenetic aberrations of these enzymes or of the signaling cascades that regulate
them have been implicated in a variety of human diseases including cancer, inflammation, and
cardiovascular disease [25]. According to Table 1, the MAPK pathway consists of 256 genes
and 875 interactions. Of the 63 cancer driver genes, 13 are included in this pathway. As is
shown in Table 2, there are 10 anticancer drugs that target specifically to genes from the
MAPK pathway. Among these 10 drugs, 3 of them (AZ628, PLX4720 and SB590885) target
BRAF, 4 of them (RDEA119, CI-1040, PD-0325901 and AZD6244) target MEK, CMK targets
RSK, and the remaining two (FTI-277 and Tipifarnib) inhibit Farnesyl-transferases.

When looking at cancer genes and drugs in only MAPK pathway, mutation and copy num-
ber alteration of cancer genes from other pathways will eliminate from the formula since their
activity contributions to these pathways are equal before and after drug treatment. So the Eq
(5) can be simplified as

0 = minHZ(Z(mJ@A}“ + V;S)A].V)(l - p;d)a(d))—sens("’d) — by’ 9)

s,d=1 j=1

In this formula, mutation and CPV status of each gene and sensitivities of 10 drugs to each
sample are known, and all other variables are to be determined. Since there are 13 driver genes
and 10 drugs, the total number of free variables is (13+13) + 13 * 10 + 10 = 166. According to
our model, one cell line treated by different drugs is considered to be different. Taking all drugs
and cell lines into consideration, the total number of samples increases to 3,957, which is much
more than the variables. So the optimization is expected to be much reliable.

By running Optimx, the sum of squared errors is minimized to 12,471.64, with an averaged
error 1.7753 for each sample. Increased pathway activities induced by mutations of different
driver genes are shown in Fig 3A. As is shown, mutation and copy number alternation of
BRAF have the largest negative coefficient in regression of drug response (IC50). Known that
small IC50 values indicate high sensitivity of the drug, the above phenomenon showed that
BRAF is the greatest contributor to MAPK pathway activity and drug sensitivity, which is con-
sistent with the observation from Fig 2D. Other important contributors to MAPK pathway ac-
tivity include KRAS, NRAS and MAP2K4, and all of them have positive contribution to drug
sensitivity. Two other genes, NF1 and FGFR3, show negative contribution to drug sensitivity.
This phenomenon for NF1 is reasonable knowing that NF1 is an inhibitor of RAS proteins in-
cluding KRAS, NRAS, and HRAS et al. Meanwhile, mutation of FGFR3 also has a high negative
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Table 2. 10 drugs which target genes in MAPK pathway.

Drug ID Drug name Drug Target(s) No. Cell lines screened
29 AZ628 BRAF 293
64 CMK RSK 289
166 FTI-277 Farnesyl-transferase (FNTA) 319
204 Tipifarnib Farnesyl-transferase (FNTA) 338
1014 RDEA119 MEK1/2 469
1015 CIl-1040 MEK1/2 431
1036 PLX4720 BRAF 448
1060 PD-0325901 MEK1/2 469
1061 SB590885 BRAF 455
1062 AZD6244 MEK1/2 445

doi:10.1371/journal.pone.0127380.t002
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Pearson correlations around 0.4, which is comparable to the results by elastic net [9]. But in
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expression data are merged together as the input feature for each drug, so the total number of
features is too high compared to the limited number of samples. Therefore, the final selected
features may have the possibility of over fitting by including some false positive features just by
chance. But our model is based only on a small fraction of gene mutation and copy number al-
teration features, so the result is quite promising even slightly lower than the elastic net regres-
sion. Besides BRAF and MEK inhibitors, our model gets very low accuracy for two farnesyl-
transferase inhibitors (FTIs), FTI-277 and Tipifarnib. FTIs were initially developed to target
RAS proteins because farnesyl is necessary to attach RAS to the cell membrane. Without at-
tachment to the cell membrane, RAS is not able to transfer signals from membrane receptors
[26]. But it has been reported recently that geranylgeranyl-transferase (GGTase) modification
is an alternative route to creation of biologically active RAS other than farnesyl-transferase [26,
27]. Meanwhile, some other proteins other than RAS may be also modified by farnesyl-trans-
ferase, and thus can be inhibited by farnesyl-transferase inhibitors [26]. In a word, these two
drugs are neither quite sensitive nor specific to RAS proteins, thus cannot be predicted well by
our model.

Predicted drug effects of 10 MAPK drugs to 13 cancer driver genes are shown as Fig 3D.
This heat map seems quite similar with Fig 2 in terms of the overall structure, i.e., BRAF, MEK
and farnesyl-transferase inhibitors are clustered together. Interestingly, we found that influence
effects of different driver genes to different BRAF or MEK inhibitors are significantly different
(p-values are 0.022 between CI.1040 and PD.0325901, 0.028 between CI.1040 and AZD6244,
by paired t-test). For example, four MEK inhibitors all have strong positive drug effect to
NRAS mutation, but have no effect on NF1 and PDGFRA. Different MEK inhibitors also have
specific drug effect genes. For example, PD.0325901 and RDEA119 have strong positive effects
on FGFR3, but other two MAK inhibitors, i.e., AZD6244 and CI.1040 do not show high effects
to it, especially CI.1040. This may be attributed to their different inhibition mechanisms. Al-
though sharing the same target gene, they may target different active regions. Two farnesyl-
transferase inhibitors show very similar drug effect patterns. They only have high positive drug
affect on mutation of HRAS, one of their potential target genes. Additionally, there are also
some drugs that could affect the downstream genes of their target genes, such as AZ628, a
BRAF inhibitor, which has strong positive effect on TP53 and RAS proteins (KRAS, HRAS and
NRAS). This may be due to the bias of the data, e.g., numbers of mutant samples treated by this
drug are very limited, there could be some unknown interactions among these genes such as
cofactors, or recruited by the same proteins.

3.3. Effects by different drug combinations

Since our model integrated all drug effects into a unified model, it can possibly predict combi-
nation effects of different drugs. The underlying assumption is that effects by different drugs
are independent with each other, so activity contributions by different drugs can be calculated
separately and then merged together. For each sample in the CGP dataset, we computed com-
bination effects of all possible pairs of MAPK targeting drugs (results are shown in S1 File),
and a case study for 647-V cell line is shown in Table 3. This cell line has 2 somatic mutations
(MAP2K4 and TP53), and a gene copy number alteration (MAP2K4). The top-20 and bottom-
20 drug combinations by effectiveness are shown in Table 3. Results from the two farnesyl-
transferase inhibitors and CMK are discarded due to their poor cross-validation accuracy, so
the top potentially effective drug combinations are RDEA119 and PLX4720, the inhibitors of
MEK and BRAF, respectively. But combination of two BRAF inhibitors, i.e., AZ628 and
PLX4720, has a very poor final effect. This shows that a combination of drugs targeting differ-
ent genes could be potentially more effective than single-target drugs. However, we cannot
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Table 3. Drug combination effects for 647-V cell line.

Top-20 drug combinations Bottom-20 drug combinations
Drug 1 Drug 2 Comb_Effect Drug 1 Drug 2 Comb_Effect
CMK RDEA119 -1.474633024 CMK AZD6244 -0.436698712
Tipifarnib RDEA119 -1.474633024 Tipifarnib AZD6244 -0.436698712
RDEA119 PLX4720 -1.474633024 PLX4720 AZD6244 -0.436698712
FTI.277 RDEA119 -1.43616255 FTI.277 AZD6244 -0.428415918
RDEA119 Cl.1040 -1.41783194 Cl.1040 AZD6244 -0.42446929
RDEA119 SB590885 -1.381601018 AZ628 AZD6244 -0.389438855
RDEA119 PD.0325901 -1.323177439 CMK Tipifarnib 0
RDEA119 AZD6244 -1.271828928 CMK PLX4720 0
AZ628 RDEA119 -1.255128688 Tipifarnib PLX4720 0
PD.0325901 SB590885 -0.965212144 CMK FT1.277 0.073743397
SB590885 AZD6244 -0.874509433 FT1.277 Tipifarnib 0.073743397
PD.0325901 AZD6244 -0.861293939 FTI.277 PLX4720 0.073743397
CMK SB590885 -0.718299199 CMK Cl1.1040 0.108881031
Tipifarnib SB590885 -0.718299199 Tipifarnib Cl1.1040 0.108881031
PLX4720 SB590885 -0.718299199 Cl.1040 PLX4720 0.108881031
FT1.277 SB590885 -0.674811232 FT1.277 Cl.1040 0.16439154
Cl.1040 SB590885 -0.654089861 AZ628 CMK 0.420764127
CMK PD.0325901 -0.605061038 AZ628 Tipifarnib 0.420764127
Tipifarnib PD.0325901 -0.605061038 AZ628 PLX4720 0.420764127
PLX4720 PD.0325901 -0.605061038 AZ628 FT1.277 0.424047635

doi:10.1371/journal.pone.0127380.t003

declare that every possible combination of MEK and BRAF inhibitors could work. An example
is AZD6244 and PLX4720, which is also a combination of MEK and BRAF inhibitors, but
shows very poor combination effect

Conclusion

Pathway activity system is in a stable state for normal cells, but if a cancer driver gene is mutant
or has copy number alteration in chromosome, the whole system will be disturbed. In this
paper, a network-flow based model is proposed to capture this phenomenon. In our model,
mutation and copy number variance of a cancer related gene are assumed to have a perturba-
tion to the system, and anticancer drugs could affect the stability of the system by reducing its
pathway activity flowing through their target genes. Based on above hypotheses, we come up
with a systematic framework to predict drug sensitivity based on network-flow theory and a
nonlinear optimization algorithm. Through training our model on drugs and cancer driver
genes of the MAPK signaling pathway, we obtained sensitivity contributions of different driver
genes to different anti-cancer drugs, and different drug effects to different cancer related genes.
The obtained results are consistent with previous analyses and literature reports. We found
that although many drugs inhibiting the same target genes, they may demonstrate apparently
different drug effects. By a 10-fold cross-validation, we obtained Pearson correlation coeffi-
cients of predicted and observed IC50 around 0.4 for all BRAF and MEK inhibitors, which is
comparable with the elastic net regression. However, instead of using a huge number of geno-
mic features including transcription profiling, mutation, and copy number statuses, our model
is only based on the mutation and copy number statuses of cancer driver genes in MAPK path-
way. So our result is fairly promising and has better generalization ability. In addition, since
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effects of different drugs are integrated into a unified model, our model could predict drug
combination effects based on the optimized parameters.

However, our model has some limitations. First, due to the limited number of samples, pre-
diction accuracies for some drugs are still not very satisfactory. Second, different mutation
types of one cancer gene may have different contributions to the pathway activity, but they are
treated equally in our model. For example, it is reported that different KRAS mutations may
lead to a different signal transduction cascade in NSCLC and to a different carcinogenesis and
drug sensitivity to EGFR inhibitors [27]. Third, besides mutation and copy number alterations,
gene expression profiles may also have predictive power in determination of drug effects, and
thus need to be incorporated to our model. Fourth, our research mainly focuses on exonic mu-
tations provided by CGP. However, intronic and intergenetic mutations may also play a role in
aberrations of gene regulation. So some important biomarkers will probably be lost without
these kinds of data. Fifth, when predicting the affects by different drug combinations we as-
sume that the effects by different drugs are independent with each other, which is not the case
in cancer treatments. So a better prediction result would be achieved if synergistic effects of
drugs were incorporated into the model.
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