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Hübener M, Rose T. 2017 Variance and invar-

iance of neuronal long-term representations.

Phil. Trans. R. Soc. B 372: 20160161.

http://dx.doi.org/10.1098/rstb.2016.0161

Accepted: 1 October 2016

One contribution of 16 to a discussion meeting

issue ‘Integrating Hebbian and homeostatic

plasticity’.

Subject Areas:
neuroscience, physiology, theoretical biology

Keywords:
plasticity, stability, chronic electrophysiology,

Ca2þ imaging, two-photon imaging, circuit

model

Author for correspondence:
Tobias Rose

e-mail: trose@neuro.mpg.de
& 2017 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original
author and source are credited.
Variance and invariance of neuronal
long-term representations

Claudia Clopath1, Tobias Bonhoeffer2, Mark Hübener2 and Tobias Rose2
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The brain extracts behaviourally relevant sensory input to produce appropri-

ate motor output. On the one hand, our constantly changing environment

requires this transformation to be plastic. On the other hand, plasticity is

thought to be balanced by mechanisms ensuring constancy of neuronal

representations in order to achieve stable behavioural performance. Yet, pro-

minent changes in synaptic strength and connectivity also occur during

normal sensory experience, indicating a certain degree of constitutive plas-

ticity. This raises the question of how stable neuronal representations are

on the population level and also on the single neuron level. Here, we

review recent data from longitudinal electrophysiological and optical record-

ings of single-cell activity that assess the long-term stability of neuronal

stimulus selectivities under conditions of constant sensory experience,

during learning, and after reversible modification of sensory input. The

emerging picture is that neuronal representations are stabilized by behav-

ioural relevance and that the degree of long-term tuning stability and

perturbation resistance directly relates to the functional role of the respective

neurons, cell types and circuits. Using a ‘toy’ model, we show that stable

baseline representations and precise recovery from perturbations in visual

cortex could arise from a ‘backbone’ of strong recurrent connectivity

between similarly tuned cells together with a small number of ‘anchor’

neurons exempt from plastic changes.

This article is part of the themed issue ‘Integrating Hebbian and

homeostatic plasticity’.
1. Introduction
The building blocks of the brain are in constant flux at the subcellular, cellular

and circuit level. Synaptic and non-synaptic proteins are mobile [1] and rapidly

turn over on the scale of hours to days [2]. Individual synapses continuously

change their size and strength both in vitro and in vivo [3–5]. Most notably,

however, the mature brain appears to continuously rewire itself, even without

experimental intervention [6,7]. This is evident from the perpetual turnover of

dendritic spines, small protrusions from the parent dendrites of most cortical

neurons that are commonly used as proxies for excitatory synapses. Depending

on the cell types and brain regions investigated, dendritic spines are gained and

lost at rates ranging from approximately 1% per day in primary visual cortex [8]

over approximately 5% per day in the CA1 region of hippocampus [9] to up to

approximately 15% per day in primary somatosensory cortex [10] (but see

[6,11,12] for potential pitfalls of these quantifications). How, then, is the brain

able to maintain stable computational capabilities, stable representations of

external and internal features and stable behavioural performance when

facing such variability?

It has long been appreciated that stability in dynamic biological systems,

like the brain, can arise from unstable constituents (as reviewed in [13]).

Higher-order stability is observed, for instance, on the level of synaptic
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population strength [5] and on the level of long-term stable

representations of stimulus features by neuronal populations

[14,15]. Especially in the latter case, however, it is debated

whether stable population coding results from invariant

stimulus selectivities of individual neurons or from noisy

and potentially drifting single-cell responses that are ‘aver-

aged out’ over a large number of neurons, causing overall

robust circuit performance [16] (figure 1).

In order to distinguish between these alternatives, the

activity of the same individual cells and cell populations

has to be followed over multiple time points (figure 1) [16].

The technology necessary to record action potential (AP)

firing longitudinally has improved vastly in recent years.

Chronic electrophysiological recordings have so far suffered

from electrode drift and gliosis, which rendered it difficult

to unambiguously associate the constantly changing electrical

signals with the same neuron. However, by establishing

robust electrode-mounting procedures and stringent criteria

for isolating and following individual units over time, several

groups have acquired longitudinal spiking data from a small

number of neurons in head-fixed or freely moving animals by

intermittent recordings over days and even years [17–21].

More recently, further refined techniques have emerged that

take advantage of state-of-the-art data processing methods

to solve the problem of longitudinal unit identification by

gap-free long-term recordings that were analysed by auto-

mated spike sorting algorithms [22,23]. Dhawale et al. were

able to automatically follow a large number of individual

neurons for an average of approximately 4 days with a

small fraction of cells that could be followed over extended

time periods (e.g. approx. 5 out of 1000 for up to a month

[22]). Current efforts to increase the density of electrode

recording sites [24] are likely to yield higher numbers of

chronically recorded cells in the future. To further overcome

electrode drift, injectable mesh electrodes have been devel-

oped that minimize shear forces relative to the surrounding

tissue [25]. Using this approach, exceptionally stable long-

term single-cell recordings (longer than eight months) have

been demonstrated recently [26]. This promising technique

should further minimize variability of technical origin in

the assessment of representational stability in the brain.

Functional imaging provides an increasingly popular

alternative to chronic electrophysiology in cases where high

temporal recording fidelity is not needed. Imaging allows

the unambiguous identification of hundreds [14,15,27,28] or

even thousands [29] of the same neurons over essentially

arbitrary time-intervals. First and foremost, two-photon

microscopy [30] of genetically encoded Ca2þ indicators

(GeCIs) now permits the recording of activity-evoked

neuronal Ca2þ influx, in some cases approaching single AP

resolution [31–34]. After the first proof-of-principle demon-

stration of chronic functional two-photon imaging in mouse

visual cortex [35], the technique has now been used widely

in various movement-restricted animal models over repeated

sessions during normal experience and after experimental

intervention [14,15,18,27,29,31,36–49]. Importantly, cell-type

specific labelling made it possible to follow cells with specific

genetic makeup (e.g. excitatory or inhibitory neurons

[37,41,42]) or specific projection patterns (e.g. neurons pro-

jecting to or from specific cortical areas [38,39]). However,

two-photon imaging of freely moving animals, a standard

electrophysiological approach, has not been widely adopted

owing to the technically challenging miniaturization
necessary to achieve head-mounting on small laboratory

animals [50,51]. More recently, small and simple wide-field

fluorescence microscopes have been developed that allow

longitudinal fluorescence imaging of a large number of ident-

ified neurons in freely moving animals [28,52–55], albeit

sacrificing the optical sectioning and deep tissue penetration

capabilities of two-photon microscopy [56].

Electrophysiological and imaging techniques have their

own unique advantages and disadvantages for long-term

recordings with regard to the reliability of cell-matching

across sessions, signal-to-noise ratio, temporal fidelity,

cell selection biases, response linearity, signal extraction

complications, long-term cell health, tissue damage, etc.

[16,22,34,57]. All these factors are likely to directly affect the

assessment of neuronal variability. Furthermore, longitudinal

recordings of cellular activity have been performed using a

plethora of different experimental paradigms in multiple

preparations—from in vitro recordings in dissociated cultures

[58,59] to in vivo recordings in primary and higher sensory

areas [14,15,18,19,29,35,36,38,39,41–44,46,47,49,60], motor

areas [22,27,37,48,55,61–65], striatum [22] and hippocampus

[28,40,45,52,66–69]. Comparing the variability of neuronal

feature selectively therefore is challenging—nevertheless, we

would first like to provide an update on long-term neuronal

variability assessments (for a previous in-depth review see

[16]; for a review on short-term trial-to-trial variabiliy see [70]).
2. Stability versus variability in motor cortex
The question of whether stable behavioural performance

results from stable single-cell representations or from stability

only on the population level is of particular relevance in pri-

mary motor cortex (M1). Here, it has direct implications for

the design and prospective long-term performance of

brain–machine interfaces (BMIs) for the control of motor

prosthetics [61,65,71]. The stability of movement represen-

tations by individual M1 neurons has therefore been

addressed comparatively well, yielding, however, conflicting

results. Neuronal selectivity for directional reaching move-

ments has been studied under baseline conditions and in a

task requiring reversible sensorimotor adaptation in macaque

monkeys [61,62,72]. Although motor performance continu-

ously increased during task execution and became highly

stereotypic, directional movement tuning of individual neur-

ons was found to be variable during baseline but also after

learning [61,62]. This led to the conclusion that even stereoty-

pical movements are controlled using a population code with

redundant and drifting neuronal constituents, rendering the

specific tuning of individual neurons largely irrelevant [62].

Other groups obtained lower estimates of variability

across individual trials and across recording sessions using

a similar experimental paradigm [63–65]. Especially, the

strong dependence of directional tuning curves on measure-

ment noise makes it difficult to judge the actual variability

of representations in M1 [63]. Very recent electrophysiological

evidence appears to rather support highly stable single-cell

tuning features in M1 and dorsolateral striatum for trained

movements [22]. Continuous recordings over weeks and

months showed that neuronal activity and motor represen-

tations of a learned lever-pull task were highly reproducible

and essentially drift-free [22].
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Figure 1. Variability and drift of neuronal representations. (a) Example of single-cell drift. Cartoon showing a hypothetical population of nine cells at three different
time points (t0, t1, t2). Cells are ‘tuned’ to three different features (blue, red and white). The average population output remains stable over time (3� blue, 1� red,
5� white), but the tuning of individual cells becomes progressively dissimilar (right panel) to the first time point (illustrated as random walk in the middle panel).
(b) Example of variability without drift. As in (a), population output remains stable and cells are variable. However, single-cell tuning remains stable in the long
term and does not become progressively dissimilar (right panel) with respect to the first time point (illustrated as random walk with mean reversion in the middle
panel). Note that the differences between time points t0 and t1 are indistinguishable in (a) and (b), showing that recordings at only two time points are insufficient
to distinguish between drifting and non-drifting representations.
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By contrast, a chronic two-photon Ca2þ imaging studyasses-

sing sensorimotor representations in mouse M1 during a

whisker-based object detection task [27] rather supports

unstable single-cell tuning. Most neurons, again, did not consist-

ently represent a single behavioural feature (licking, whisking

and touch) during repeated imaging. Furthermore, a decoding

algorithm trained on AP responses from an early session per-

formed progressively worse when applied to later time points,

indicating single-cell drift (cf. figure 1a). Similar results were

obtained in later imaging studies, where most excitatory neurons

did not consistently represent movement-related activity across

sessions [37,48]. Interestingly, the activity of inhibitory neurons

was significantly less variable [37]. Recent Ca2þ imaging data

obtained with miniature wide-field microscopes provide further

support for a stable population motor code with unstable single-

cell participation [55]. In HVC, a pre-motor area that drives

stable learned song in zebra finches, the firing patterns of indi-

vidual neurons were highly variable whereas average

population activity was stable. Again, inhibitory neurons

showed less variability than excitatory neurons [55].

Similar to previous electrophysiological studies [64,73,74],

neuronal activity in many Ca2þ imaging studies became

more invariantly task-related with training [27,37,48], with

deep layer 5a (L5a) neurons showing more improvement

than supragranular L2/3 [48]. Furthermore, the ensemble

behaviour–response association during learning of a task

stabilized, which led to higher across-session correlations in

movement-related single-cell activity with increasing task

performance [27,37]. Some of the discrepancies in reported

single-cell stability may therefore be owing to different levels

of task proficiency (also see [71]) or owing to cell-type biases

as a result of different cortical recording depths [16].
3. Stability versus variability in hippocampus
The hippocampal representation of space over time provides

further evidence that stability and variability of neurons and
of neuronal populations are actively regulated and of poten-

tially high functional and behavioural relevance. Also in this

structure, longitudinal studies have first provided seemingly

contradictory evidence.

Early chronic electrophysiological recordings from a small

number of neurons in the hippocampal CA1 region in freely

moving rats showed that the spatial firing fields of individual

place-cells are highly stable over weeks [75]. By contrast, later

recordings in mouse CA1 showed less stable place preference

[69,76], suggesting potential species-dependent differences.

However, similar to the task-dependent stabilization in motor

cortex, chronically recorded rate maps from individual CA1

place-cells were far better correlated across sessions when ani-

mals were actively engaged in a visuospatial place-preference

task than when animals had no reason to pay attention to

spatial cues [69,76]. Importantly, place field stability in rats

has been shown to be differentially regulated across hippo-

campal regions. Although CA2 population activity exhibited

prominent drift over multiple recording sessions, spatial pre-

ference of cells in CA3 was largely maintained, while CA1

showed intermediate stability [66,67] (figure 2a–c). These and

similar data [77] led to the proposal that the gradual decorrela-

tion (i.e. drift, cf. figure 1a) of hippocampal ensemble activity

over hours and days provides a ‘timestamp’ for spatial infor-

mation, allowing, for instance, the encoding of the temporal

order of event sequences [66,67,77].

The recent development of miniaturized fluorescence

microscopes [54] allowed long-term recordings from hun-

dreds of hippocampal CA1 neurons in freely moving mice

over months [28,52]. Using different GeCI iterations of the

GCaMP family, these studies strongly supported the notion

of a temporally evolving representation of space in hippo-

campal CA1. Of all cells, approximately 20% had significant

place fields. Of these, only approximately 25% still expressed

place preference after 5 days, which further declined to

approximately 15% thirty days later [28]. The fraction of

cells that maintained spatial tuning, however, also main-

tained their original place preference [28,52], indicating a
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Figure 2. Variance and invariance of neuronal representations in hippocampus and visual cortex. (a) Chronic electrophysiology in rat hippocampus in vivo [67].
Example brain section showing the CA1, CA2 and CA3 regions and the positions (coloured dots) of extracellular recording electrodes from Mankin et al. [67].
(b) Correlation of the activity of all longitudinally recorded cells (population vector, PV) over different time-intervals for CA1 (red), CA2 (cyan) and CA3 (blue).
Activity was recorded while rats were foraging for food in a familiar environment. Although the CA3 PV correlation does not drift, CA2 shows a progressively
dissimilar PV with increasing time-intervals and therefore shows prominent drift. (c) Pairwise PV correlation matrices over all measurement time points in the
same environment. The shift towards ‘colder’ colours indicates the gradual PV decorrelation over time in CA1 and, more pronounced, CA2. (d ) Chronic two-
photon Ca2þ imaging in mouse binocular V1 [15]. Shown are eye-specific fluorescence ratio changes in response to moving grating stimulation (eight directions)
in 231 excitatory L2/3 neurons (one animal) over three baseline sessions (8 days). All responses are sorted for preferred direction (horizontally) and contralateral eye
(blue) response magnitude (vertically) in the first session. Although overall amplitude and preferred orientation ranks are maintained over sessions and are matched
between eyes, some degree of tuning variability across sessions and eyes is visible. (e) Scatter plots showing the correlation of eye-specific tuning (ocular dominance
index, ODI) of the same individual neurons between sessions spaced either 4 days or 12 – 14 days apart. ( f ) Quantification of data in (e). Although variability
between sessions is larger than expected from within-session variability (black line), the ODI correlation does not progressively decline. Eye-specific tuning therefore
does not show drift over two weeks during normal sensory experience. (g) Neurons in monocular V1 of juvenile rats maintain a cell-specific homeostatic set point
after monocular deprivation (MD) [23]. Continuous electrophysiological recordings show that the firing rate of the same individual neurons drops early after MD
relative to the pre-MD baseline rate (left scatter plot, purple symbols). The firing rate of the same cells recovers to baseline during late MD (right scatter plot). Inset:
quantification of the data. (h) Individual neurons in adult mice recover their initial eye-specific tuning after MD [15]. Correlation of neurons that underwent a
significant ODI shift after MD during baseline (sessions 4 days apart), baseline and MD, and baseline and recovery. Adapted, with permission, from [67]
(a – c), [15] (d, e, f and h), and [23] (g).
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certain degree of stability in otherwise drifting ensembles. A

recent two-photon imaging study of head-fixed mice running

on a conveyor belt with spatial multisensory cues provided

an even more fine-grained picture of region-dependent varia-

bility in the hippocampus [40]. Superficial CA1 neurons

showed significantly less variability of spatial tuning over

time than deeper CA1 neurons [40]. Furthermore, granule

cells of the dentate gyrus were also shown to express drifting
behavioural state preference (i.e. running versus not running)

[45] over days.
4. Stability versus variability in sensory cortex
It can be argued that variability in the motor cortex may be

important for motor learning [62], and drift in the
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hippocampus may provide timestamps of spatially relevant

events [66,67,77]. However, it stands to reason that primary

sensory areas should faithfully encode lower-order statistics

of the external world to provide downstream areas with

stable access to sensory information. Until recently, however,

very few studies attempted chronic recordings in primary

sensory areas (e.g. [17,18]). Only recent years have seen a pro-

minent increase in the number of mostly imaging studies

addressing the stability and plasticity of neuronal represen-

tations in the visual system [15,19,35,36,38,41,43,44,46],

barrel cortex [14,29,39,47,60] and auditory cortex [42].

The tuning curves of neurons in primary somatosensory

cortex (S1) were found to be surprisingly variable in an initial

two-photon Ca2þ imaging study in anesthetized mice [14].

Although the average spike-rate of the population was con-

stant, and the overall activity level of individual L2/3 cells

was similar over days, the preferred responsiveness to stimu-

lation of either one of two neighbouring whiskers was only

weakly correlated over sessions spaced days apart [14].

Later studies, however, showed less variable evoked activity

in slightly different paradigms. Using single-cell electro-

physiological recordings, preference for ipsi- or contralateral

whisker stimulation was shown to be stable over 14 days in

the small number of cells tested [60]. While confirming a

certain degree of session-to-session variability, later Ca2þ

imaging data also showed that some representations in S1

are largely drift-free because the performance of a population

decoder of whisker deflection frequency did not progress-

ively decline when trained on an early session and applied

to later sessions [47].

A recent imaging study recorded chronically from

approximately 75% of all supragranular neurons of a single

barrel in mouse S1 (approx. 12 000 cells per mouse) during

learning of a whisker-based object localization task [29]. Simi-

lar to motor cortex [27], the correlation between sensorimotor

variables (whisking and touch) and neural activity was

weaker and more variable during initial training sessions

than during later sessions when animals reached task profi-

ciency [29]. Similar results were obtained in a comparable

study by Chen et al. [39], but they found additionally that

neurons show differential variability based on their projec-

tion pattern. Retrogradely labelled L2/3 neurons projecting

from S1 to M1 showed a significantly higher reduction of

variability with increasing task proficiency than neurons

projecting to secondary somatosensory cortex (S2) [39].

Variability of visual tuning in primary visual cortex (V1)

has rarely been addressed. Chronic extracellular recordings

in macaque monkeys showed that the similarity of preferred

orientation (and direction) of moving grating stimulation

across days was significantly higher for isolated units puta-

tively belonging to the same cell in comparison with units

that were most likely representing different neurons [18].

Very recently, we showed in a chronic two-photon imaging

study that the session-to-session variability of visual tuning

properties (ocular dominance (OD), preferred orientation,

and orientation selectivity) of excitatory L2/3 neurons in

anesthetized and awake mice was larger than expected from

within-session trial-to-trial variability [15] (figure 2d–f ).
Importantly, however, the correlation of tuning properties

did not progressively decline over time. The same cells were

equally well correlated over a shorter intersession-interval

(4 days) as over a far longer interval (12–14 days) [15]

(figure 2e,f). In contrast with motor cortex (but see [27]) and
hippocampus [28,52,66,67], but comparable to barrel cortex

[47], excitatory L2/3 neurons in visual cortex therefore did

not show overt drift during normal sensory experience

(cf. figure 1).

Chronic imaging of activity in L2/3 of V1 during a visual

discrimination task [36] yielded results comparable to learning

in M1 [27,37] and S1 [29,39]. Although the fluctuations in ses-

sion-to-session selectivity to two task-relevant visual stimuli

were large during initial training sessions (only approx.

20–50% of cells maintained selectivity across sessions), signifi-

cantly more cells became invariantly discriminative with

increasing task proficiency [36].

Further evidence supporting the stabilization of behav-

iourally salient sensory representations comes from long-

term electrophysiological recordings in the temporal lobe of

macaque monkeys [19]. Here, individual cells preferably

respond to the visual feature combinations of individual

faces, which are of high behavioural relevance for social

animals as macaques [78]. The data of McMahon et al. [19]

suggest that even though selectivity for individual faces is

learned [78], face representation of individual neurons

appears to be surprisingly stable over months.
5. Perturbation resistance of visual cortex
The drift-free representation of sensory features in mature V1

[15] and S1 [47] either suggests a high degree of resistance

to constitutive plasticity during normal sensory experience,

or that plasticity is effectively suppressed [79–81]. What if

the system is taxed with a strong but reversible perturbation

that is known to induce prominent experience-dependent

rewiring even in mature circuits [81,82]? Two recent

studies addressed this question in rodent V1 using monocu-

lar deprivation (MD), a well-established paradigm of

experience-dependent plasticity [15,23,79–81].

Hengen et al. [23] performed continuous electrophysio-

logical recordings from L2/3 cells in monocular V1 (mV1)

of juvenile rats before and after closing the eye providing

input to this region. MD is known to lead to an immediate

drop in visual drive from the deprived eye, which results in

a pronounced initial decrease in the average firing rate in

mV1 [23,83]. Shortly after this drop in activity, however, the

average population activity returns to its pre-MD level [83].

This is commonly interpreted as a result of both cell-

autonomous and network level homeostatic processes that

work together to keep cellular firing within a specific work-

ing regime ([23,83]; also see review of [84,85]). Hengen et al.
[23] show now that individual neurons did not only maintain

stable average firing rates before MD, but that these cells also

faithfully returned to their initial firing rate after the transient

drop in activity (figure 2g). The homeostatic set point is there-

fore both cell specific and highly perturbation resistant (see

[85]). Interestingly, a precise cellular homeostatic set point

seems to be a feature of intact, mature circuits, because this

finding is in contrast with recent data from dissociated cell

cultures. Here, individual neurons did not return precisely

to their initial activity level after homeostatic recovery from

depressed activity, even though the population average

firing rate recovered [58,59].

MD induces a prominent shift towards the non-deprived

eye in binocular V1 (bV1) of adult mice. This shift is

accompanied by functional and structural circuit
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rearrangements [8,80,81]. On the population level, this shift is

known to be fully reversible after a period of binocular

vision following MD [8,80,81,86]. However, MD-induced cir-

cuit plasticity is a strong perturbation that may be expected

to lead to an irreversible restructuring of circuits in V1 and a

dynamic rearrangement of individual cellular tuning features

after recovery. This would probably render the post-recovery

tuning of individual cells very different from their pre-MD

state. However, using long-term two-photon Ca2þ imaging,

we showed that the opposite is the case [15]. Even though neur-

ons showed a prominent shift towards the deprived eye after

MD, their individual OD precisely returned to the pre-MD

state within the fluctuations expected from baseline variability

[15] (figure 2h).
.R.Soc.B
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6. Perturbation resistance of visual cortex—a
circuit model

The latter three findings—(i) drift-free sensory representation

during normal experience [15], (ii) long-term maintenance of

a cell-specific homeostatic set point [23] and (iii) precise

recovery of initial tuning features after prominent experi-

ence-dependent plasticity [15]—show that the mature visual

cortex achieves a high degree of robustness to both constitu-

tive and experience-dependent plasticity. How could such

robustness arise?

It has long been known that specific network structures

can lead to stable cellular activity patterns that are robust to

noise (as reviewed in [13]). We therefore explored whether

the functional connectivity of V1 itself may convey stability

and perturbation resistance to neuronal representations. Elec-

trophysiological assessments of connectivity have shown that

the overall probability of excitatory cell-to-cell connectivity is

low, with a few strong and often reciprocal connections

between subsets of neurons [87–90]. Cellular interconnectiv-

ity is strongly correlated with functional similarity, and

cells with similar stimulus preferences form interconnected

subnetworks [88–90].

To test if such a network structure could convey resistance

to drift and perturbations, we used a previously described

spiking network model implementing a biologically plausible

voltage-dependent spike-timing-dependent plasticity rule

[91]. In contrast with other models using different plasticity

mechanisms, this model closely reproduces the signature

structure of sparse connectivity with few strong reciprocal con-

nections between co-tuned neurons [91]. As described in

Clopath et al. [91] and figure 3, the excitatory neurons in the

model network develop selective stimulus preferences and

cells with similar feature selectivity form subnetworks by

developing reciprocal connections (figure 3b).

To assess the long-term stability of single-cell feature

selectivity in this artificial network, we allowed the model

to continue to run for a further 10 000 iterations. Even

though synapses fluctuated between strong and weak

weights [91], the overall connectivity remained stable on

average and, importantly, receptive fields showed only

minimal drift (figure 3c, cf. figure 1b).

To test the perturbation resistance of the model network,

we identified individual interconnected subnetworks (i.e.

ensembles) of two or more cells that were selective for the

same input feature. We then simulated perturbations of indi-

vidual ensembles by reinitializing the feed-forward input
weights of a variable fraction of the respective ensemble neur-

ons with random values (figure 3d ). We left the recurrent

weights unchanged—but still plastic—and then let the net-

work re-converge to a new stable state (figure 3e). We

found that we could scramble the feed-forward inputs of as

many as 75% of all cells in an ensemble and still largely

recover the initial feature selectivity and recurrent connec-

tivity matrix of the subnetwork (figure 3f ). We therefore

conclude that in this model a ‘backbone’ of strong recurrent

connectivity is able to guide the recovery of initial feature

selectivity even when a large fraction of the feed-forward

weights have been randomly changed. Robust recovery, how-

ever, only occurs if a small fraction of cells in an ensemble

maintains its original selectivity (figure 3f ). Such non-plastic

‘anchor’ cells effectively propagate the initial ensemble selec-

tivity to the remaining interconnected neurons. Indeed, we

recently found that only two-thirds of excitatory L2/3 neur-

ons underwent robust plasticity whereas the others did not

change their eye-specific tuning [15]. It is tempting to hypoth-

esize that some of these cells would act as ‘anchors’ for their

respective ensembles to guide precise recovery from pertur-

bations [15]. Without further experimental evidence, of

course, such an interpretation remains speculative. From

the perspective of computational modelling, it is also concei-

vable that perturbation resistance could be achieved by

initially stable feed-forward weights together with scrambled

recurrent connectivity. At least in the case of OD plasticity,

however, especially the feed-forward weights in the shape

of thalamocortical input to L4 of visual cortex have been

shown to be sites of prominent plasticity after MD [92],

rendering this alternative biologically less plausible.
7. Summary and outlook
In recent years, several studies chronically followed the

activity of individual neurons employing a variety of exper-

imental paradigms in different brain regions. Most of these

studies agree that neuronal representations are stabilized

with increasing behavioural relevance of the respective

stimuli during learning. Recent data also provide an ever

more fine-grained picture of neuronal long-term stability,

showing that representational stability is differentially

regulated even in nearby circuits [67], in excitatory and

inhibitory neurons [37,55], in different projection neuron

types [39] and in cortical sublayers [40,48].

There is less agreement, however, regarding the degree of

absolute variability of neuronal representations and the mag-

nitude of long-term drift, i.e. the degree to which population

activity becomes progressively more dissimilar over time

(figure 1). In general, chronic Ca2þ imaging studies report a

larger level of variability and drift than longitudinal electro-

physiology (cf. [22,27]). Potential reasons for this are

different biases towards highly active and less active neurons,

linear and nonlinear activity readouts, and ambiguous and

non-ambiguous long-term identification of cells for electro-

physiology and imaging, respectively (for further discussion

see [16,22,34]). However, these explanations will remain

largely speculative for as long as these indispensable contem-

porary techniques are not compared directly and ideally

simultaneously. It would be highly desirable to chronically

record from the same neuronal population using implanted

electrodes together with different chronic Ca2þ imaging
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Figure 3. Model of a plastic microcircuit. (a) A densely interconnected network of 10 excitatory (light blue) and three inhibitory neurons (red) receives feed-forward
(ffwd) inputs from 500 Poisson spike trains with a Gaussian profile of firing rates. The centre of the Gaussian was shifted randomly to one out of 10 possible
locations in stimulus space every model iteration (schematic network before (right) and after 10 000 model iterations (bottom left); see detailed methods and
parameters in Clopath et al. [91]). (b) Network structure after 10 000 iterations of the model. Mean feed-forward weights (left) and recurrent excitatory weights
(right) averaged over 1000 steps. The clustering of feed-forward weights (left) indicates that the neurons developed individual stimulus preferences. These ‘receptive
fields’ were expressed as strong synaptic weights of the feed-forward inputs corresponding to one of the 10 stimulus positions (synaptic weights from weak, blue, to
strong, yellow). The recurrent weights (right) were classified as weak (less than two-thirds of the maximal weight, light blue) or strong (more than two-thirds of the
maximal weight, yellow). The diagonal is dark blue, as autaptic connections are not allowed in the model. Red asterisks indicate a recurrently connected example
ensemble with similar receptive fields (cells 1, 3, 4, 5 and 8). (c) Baseline stability of the model. After the first 10 000 iterations of the model, it was allowed to
continuously evolve over 10 000 further time steps. The similarity to the state after the first 10 000 steps decreased initially, but then plateaued. The model therefore
did not show overt drift (cf. figure 1b). (d ) As a perturbation, the feed-forward connections to three (cells 3, 4, 5) out of the five cells in the co-tuned example
ensemble in (b)(red asterisks) were set to random values (see (a), bottom right). (e) The network converged back from the perturbation (10 000 further time steps).
The initial receptive fields were recovered. ( f ) Fraction of cells selective to the same feature before and after perturbation for different degrees of perturbation. In all
ensembles with at least two co-tuned cells, feed-forward inputs were scrambled for a variable fraction of the ensemble neurons: blue bars: randomized feed-forward
inputs of a certain percentage of ensemble cells; white bar: all feed-forward and all recurrent weights were set to their random initial values. (Mean: average over
100 trials; error bars: standard deviation of the mean.)
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techniques. While certainly challenging, a recent study

demonstrated that this should be technically feasible [93].

Without further quantification of the measurement idiosyncra-

sies of different recording techniques, relative measures of

variability (e.g. of drift) remain preferable to measures of

absolute variability.

A further unexplored question is to which degree represen-

tational variability is different across species, as, for instance,

has already been suggested for the hippocampus [69,75,76].

Especially in the sensory cortex of animals that show a more

defined ‘critical period’ for plasticity early in life, e.g. cats or

monkeys [79,80], variability in mature circuits may be lower
than in mice. Clearly, it would be very important to perform

comparative chronic recording experiments in various

animal models.

A further unanswered question concerns the role of struc-

tural and functional plasticity for neuronal stability. Is

plasticity during normal sensory experience rather stabilizing

or destabilizing? Is, for instance, baseline spine turnover a

sign of circuits constantly integrating error signals to readjust

to the sensory statistics of the outside world, thereby main-

taining stability owing to constant feedback [62]? Or is

plasticity rather destabilizing, with a certain level of unavoid-

able constitutive plasticity ‘noise’ that may lead to drift if
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not compensated for by, e.g. specific network structures

(figure 3)? These questions could be partially addressed by

correlating structural changes with functional changes on a

single neuron level or by boosting or suppressing plasticity

on the population level while chronically recording the stab-

ility of single-cell representations. Recent data suggest that,

indeed, the level of synaptic turnover correlates with the

level of representational drift [9]. In accordance with a large

degree of long-term drift [28,52,66], most dendritic spines

in hippocampal CA1 have a lifetime of only a few days [9]

whereas a large fraction of spines in the neocortex are

long-term stable [8,10,94,95].

At least in visual cortex, the overall level of activity and

the tuning of individual neurons are surprisingly invariant,

with both features resisting even strong circuit plasticity

after reversible chronic modification of sensory input

[15,23]. We provide a speculative circuit model that shows

that stable baseline representations and precise recovery

from perturbations could be achieved with a ‘backbone’ of

strong recurrent connectivity between similarly tuned cells

together with a small number of non-plastic ‘anchor’ neurons

(figure 3). Although measures of similarity of neuronal corre-

lation structures provide indirect evidence for maintenance of

the initial network structure after recovery from plasticity

[15], more refined techniques would be necessary to probe
the degree of recovery of individual interconnected ensem-

bles, as we could do in the model (figure 3f ). Recently

emerging all-optical techniques may provide this opportunity

in the future. Patterned two-photon photostimulation of

light-gated cation channels together with simultaneous

Ca2þ imaging of activity could potentially be used to both

chronically map the stimulus selectivity of individual neur-

ons and also their effective functional connectivity during

baseline and experience-dependent plasticity [96,97].

Together with the large-scale efforts to map cellular

activity chronically with regional and cell-type specificity

[98] and constant improvements of our toolset to label and

record from cell types defined by their genetic makeup [99]

and their specific set of synaptic input and output patterns

[100], we are confident that the coming years will dramati-

cally enhance our knowledge of the role of variable and

stable neuronal representations for cortical function.
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T, Hübener M. 2013 Synaptic scaling and
homeostatic plasticity in the mouse visual cortex in
vivo. Neuron 80, 327 – 334. (doi:10.1016/j.neuron.
2013.08.018)

44. Andermann ML, Kerlin AM, Reid RC. 2010 Chronic
cellular imaging of mouse visual cortex during
operant behavior and passive viewing. Front. Cell.
Neurosci. 4, 3. (doi:10.3389/fncel.2010.00003)
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