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Abstract.

Background: Accessible datasets are of fundamental importance to the advancement of Alzheimer’s disease (AD) research.
The AddNeuroMed consortium conducted a longitudinal observational cohort study with the aim to discover AD biomarkers.
During this study, a broad selection of data modalities was measured including clinical assessments, magnetic resonance
imaging, genotyping, transcriptomic profiling, and blood plasma proteomics. Some of the collected data were shared with
third-party researchers. However, this data was incomplete, erroneous, and lacking in interoperability.

Objective: To provide the research community with an accessible, multimodal, patient-level AD cohort dataset.

Methods: We systematically addressed several limitations of the originally shared resources and provided additional unre-
leased data to enhance the dataset.

Results: In this work, we publish and describe ANMerge, a new version of the AddNeuroMed dataset. ANMerge includes
multimodal data from 1,702 study participants and is accessible to the research community via a centralized portal.
Conclusion: ANMerge is an information rich patient-level data resource that can serve as a discovery and validation cohort
for data-driven AD research, such as, for example, machine learning and artificial intelligence approaches.

Keywords: AddNeuroMed, Alzheimer’s disease, biomarkers, cohort analysis, cohort studies, data-driven science, dataset,
dementia, genome wide association studies, magnetic resonance imaging, multimodal

INTRODUCTION pre-symptomatic disease stages is instrumental to any
future disease modifying therapy. Enabling such an
early intervention poses the problem of diagnosing a
patient with AD before cognitive symptoms indicate
disease presence. One approach to establish whether a
specific individual is in the pre-symptomatic stages of
the disease is adiagnosis based on informative disease
biomarkers. The critical prerequisite for discovery
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Alzheimer’s disease (AD) is a progressive disease
whose pathology develops years before cognitive
symptoms arise and a diagnosis is made by a clinician
[1]. Early intervention in non-cognitively impaired,
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Open science is a paradigm aimed at increasing
societal benefit of research through dissemination
and sharing of scientific data. This enables usage and
analysis of collected data by the whole research com-
munity which subsequently will increase the achieved
knowledge gain. Currently, the prime example of fol-
lowing the open science paradigm in the AD field
is the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) [3]. ADNI is an information rich, comprehe-
nsive clinical AD cohort dataset that enables secure,
yet easy access to its patient level data for researchers
with reasonable study interest. In only a few days,
raw data as well as a preprocessed version of ADNI
(ADNIMERGE) are accessible via the Laboratory
of Neuro Imaging (LONI) service (https://loni.usc.
edu/). With regard to clinical data, initial preprocess-
ing, arranging, and cleaning of data is often the most
time-consuming step in data analysis. Due to that, a
major cumulative time save is possible by sharing an
already preprocessed, easy-to-analyze dataset instead
of araw data collection. Here, researchers can simply
use the provided ADNIMERGE and thereby avoid
investing additional time into data preprocessing and
cleaning.

While ADNI is a tremendously important resource,
as every cohort dataset, it comes with its own lim-
itations and biases [4]. To ensure reliability of obser-
vations made in one cohort, validation in data from
independent cohorts is necessary [5]. Still, apart from
ADNI there are not many AD cohort studies which
1) share their data in a similarly comprehensive ver-
sion and 2) keep the bureaucracy during an access
application as straightforward as ADNI does. From
our experience, access applications are often time
consuming and if access is granted, shared data is
sometimes lacking important information. Therefore,
other easily accessible and information rich alterna-
tives besides ADNI are crucial.

In 2005, Lovestone et al. started AddNeuroMed,
a project funded by InnoMed, a precursor of the
Innovative Medicine Initiative (IMI) [6]. It aimed at
collecting longitudinal patient data at multiple sites
across Europe to identify urgently needed progre-
ssion biomarkers for AD. For this purpose, a broad
spectrum of variables was measured including demo-
graphics, neuropsychological assessments, genetic
variations and transcriptomics, blood plasma prote-
omics, and structural magnetic resonance imaging
(MRI) of the brain. In 2015, a subset of the colle-
cted data was uploaded on Synapse (https:/www.
synapse.org/). Next to the original AddNeuroMed
data, some data from participants of the Maudsley

BRC Dementia Case Registry at King’s Health Part-
ners cohort (DCR) and the Alzheimer’s Research
Trust UK cohort (ART) was included [7]. Although
the shared AddNeuroMed collection is a large
dataset, involving more than 1,700 participants, it has
only been cited about 65 times. In contrast, ADNI,
which involves roughly 2,400 individuals, was cited
more than 1,300 times. Compared to the impact
ADNI has had on recent research activities, it seems
AddNeuroMed has not reached its full potential. One
probable reason for the comparably lower data usage
might be the findability and the state of the data pub-
lished on Synapse. The dataset 1) has never been
officially published, 2) is not easy to work with due
to missing organization, and 3) is not complete with
several entries being erroneous or lacking informa-
tion. To enable the research community to leverage
the full potential of this dataset, a lot of data prepro-
cessing efforts are needed and it is vital to point the
community toward this unsalvaged resource.

In this work, we present and publish a new, im-
proved, and updated version of AddNeuroMed called
ANMerge. ANMerge is a comprehensive, prepro-
cessed AD cohort dataset which is again accessible
via Synapse (https://doi.org/10.7303/syn22252881).
It is fully interoperable in between its modalities, and
rigorous data curation was performed to ensure higher
information density and usability. Furthermore, we
present a detailed overview on which and how much
data is available in the dataset. Finally, we high-
light the increased preprocessing efforts involved in
creating such a dataset. By making ANMerge acces-
sible, we aim to provide the AD research community
with an information rich alternative to previously
published cohort datasets, and thereby support the
discovery and robust validation of scientific insights.

METHODS

Data collection

AddNeuroMed data collection was performed at
six different centers across Europe: University of
Kuopio, Finland; Aristotle University of Thessal-
oniki, Greece; King’s College London, United King-
dom; University of Lodz, Poland; University of
Perugia, Italy; and University of Toulouse, France
[6]. The participation of those centers highlights
AddNeuroMed as a major cross-European effort in
AD related data collection. At each site, all proto-
cols and procedures were approved by Institutional
Review Boards and informed consent was obtained
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Fig. 1. Overview on longitudinal data collection per modality.
Proteomics, Proteomic data from blood plasma. Transcriptomics,
Transcriptomic data from blood plasma. MRI, Structural magnetic
resonance imaging.

for all patients according to the Declaration of
Helsinki (1991) [8]. In cases where dementia com-
promised capacity assent from the patient and consent
from a relative, according to local law, was obtained.

Exclusion criteria included other neurological or
psychiatric diseases, significant unstable systemic ill-
ness or organ failure, and alcohol or substance mi-
suse. AD diagnosis followed the Diagnostic and
Statistical Manual for Mental Diagnosis, fourth edi-
tion and National Institute of Neurological and Com-
municative Disorders and Stroke—Alzheimer’s Dis-
ease and Related Disorders Association criteria [9].
AD patients were included if they exhibited a Mini-
Mental State Examination (MMSE) score in the range
of 12-28, a Clinical Dementia Rating (CDR) scale
score of above 0.5, and were aged 65 years or above.
Individuals were considered as mild cognitive impair-
ment (MCI) according to the Petersen criteria [10].
For inclusion, MCI patients aged 65 or above, the
MMSE score ranged between 24 and 30, and they
scored 0.5 on the CDR. Participants were considered
to be cognitively healthy if they showed normal per-
formance on cognitive tests (within 1.5 SD of average
for age, gender and education) and scored O on the
CDR [11].

AddNeuroMed’s study protocols were designed
to be at least partially compatible with ADNI [6].
Figure 1 illustrates when data collection was per-
formed for each modality.

Clinical assessments

At each participant’s visit throughout the study, a
broad collection of neurocognitive and psychological
assessments were performed, including the MMSE,
CDR, GDS (Geriatric Depression Scale), NPI (Neu-
ropsychiatric Inventory), ADAS-Cog (Alzheimer’s
Disease Assessment Scale-Cognitive Subscale),

ADCS-ADL (Alzheimer’s Disease Cooperative St-
udy Activities of Daily Living Scale), the full CE-
RAD battery [12], the Hachinski Ischemic Score, and
the Webster Rating Scale. The frequency with which
assessments were made varied between diagnostic
groups. During the first year, AD cases completed
assessments every three months and annual follow-up
visits afterwards. MCI patients and healthy individ-
uals from AddNeuroMed, as well as all participants
from the ART and DCR cohorts, were assessed reg-
ularly every twelve months.

Proteomics

Proteomic data were measured in blood plasma
using a Slow Off-rate Modified Aptamer (SOM
Amer)-based array called ‘SOMAscan’ (Somal.ogic,
Inc, Boulder, Colorado). Data collection was per-
formed at baseline and again one year into the study.
Details on data acquisition are presented in Kiddle
et al. [13] and Sattlecker et al. [14]. In brief, using
chemically altered nucleotides the protein signal is
turned into a nucleotide signal that can be measured
using microarrays. Per sample 8 uL plasma were
required and levels of 1,001 distinct proteins were
measured. An in-depth description of the array tech-
nology can be found in Gold et al. [15].

Genotyping

AddNeuroMed participants were genotyped in
three batches. For batch one, the Illumina Human
Hap610-Quad Beadchip was used, while batches
two and three were processed using the Illumina
HumanOmniExpress-12 v1.0. More information can
be found in the method section of Loudursamy et al.
[16] and Proitsi et al. [17]. All genotyping was per-
formed at the Centre National de Génotypage in
France.

Transcriptomics

Blood samples for the collection of gene expres-
sion data were taken at study baseline. Transcriptional
profiling was performed in two batches using the Illu-
mina HumanHT-12 v3 (batch one) and v4 (batch two)
Expression BeadChip kits. Original raw data can be
found in GEO!. Preprocessed raw data files, as well
as post quality control, batch corrected expression
values, are distributed via Synapse. The processed
data underwent background correction, log base two
transformation and all values were robust spline
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normalized [18]. Outlying samples were excluded.
Batch correction was performed using ComBat [19].
All data were subset to probes that could reliably be
detected in at least 80% of samples in at least one
diagnostic group. More details on the processing of
the data is explained in Voyle et al. [18].

Magnetic resonance imaging

1.5 Tesla T1-weighted MRI images were taken
at three different timepoints throughout the study
(Month 0, 3, 12). The first 3-month interval was exp-
licitly chosen to contrast the 6-month MRI follow-
up of ADNI and thereby evaluate if 3 months could
potentially be enough to observe substantial changes
in brain structure. Protocols for imaging were aligned
to the ADNI study. Details on the AddNeuroMed
MRI data acquisition have been described in Sim-
mons et al. [8, 20]. ANMerge provides access to
collected raw images as well as processed brain vol-
umes and cortical thickness calculated using
FreeSurfer 5.3 and 6.0.

Data preprocessing

As a first step, manual investigation of all raw
AddNeuroMed data files was inevitable to assess the
availability and state of each data type. To avoid irre-
producible changes to the data, we did not alter any
entry manually but relied on programming for each
data changing step.

We tried to build the most informative and com-
plete, yet minimally complex, version of AddNe-
uroMed possible. Therefore, we carefully selected
variables from the raw data for inclusion into AN-
Merge. To limit the number of variables in ANMerge,
we only included total scores of clinical assess-
ments in the new ANMerge files instead of listing
all sub-scores and individual answers. Variables not
considered for inclusion into ANMerge, such as the
test subscores, are accessible through the additionally
provided raw data.

Not all participants from the DCR and ART cohorts
underwent data collection in the course of AddNeu-
roMed. However, since clinical assessments between
the original AddNeuroMed study and DCR were
largely overlapping, we decided to include all DCR
participants into ANMerge, even if they lacked other
modalities apart from clinical data. From the ART
cohort, only those individuals who had been assessed
in at least one modality next to the clinical data were
included in order to reduce sparsity in the resulting
tables.

In the original AddNeuroMed data, modality spe-
cific data tables lacked interoperability because dis-
tinct patient identifiers were used for many of them.
Additionally, only the visit numbers were reported
instead of the actual months in study. This was mis-
leading due to differences in assessment intervals
between diagnostic groups (e.g., visit 2 for healthy
and MCI participants corresponds to visit 5 of AD
patients). Information which is not subject to change
(e.g., APOE genotype) was only reported at base-
line which led to sparsity in follow-up visit entries.
Furthermore, to increase interoperability not only
within AddNeuroMed itself but also to other data
resources, we mapped variable names to public data-
base identifiers wherever possible. Finally, we en-
riched ANMerge with data previously not available in
the Synapse version. Among others, we added miss-
ing diagnoses and clinical assessment scores as well
as months in study as an unambiguous time scale.

RESULTS

Overview on data

The resulting ANMerge dataset comprises four
data modality specific subtables, genotype data in
PLINK format and one combined table providing
all preprocessed information as one. Respectively,
one subtable was created for clinical data, proteo-
mics, FreeSurfer calculated MRI features, and gene
expression values. Next to diagnosis and clinical ass-
essments, the clinical subtable also provides partici-
pants demographics, family history, and medication
data.

In total, the dataset comprises information on 1,702
patients, out of which 773, 665, and 264 originated
from the AddNeuroMed, DCR, and ART cohorts,
respectively (Table 1). Data on 4,585 individual par-
ticipant visits are reported. At study baseline, 512
participants had been diagnosed with AD, 397 with
MCI, and 793 were non-cognitively impaired indi-
viduals. Table 1 describes the average characteristics
of each diagnosis group at baseline. On average, cog-
nitively affected individuals (i.e., MCI and AD) in
ANMerge were 77 years old at baseline, completed
9.7 years of full-time education and 59% of them
were female. Healthy individuals averaged to an age
of 74.5 years, underwent 12.3 years of education
and 59% are female. During study runtime 48 and
11 healthy participants converted to MCI and AD
respectively. Out of all patients diagnosed with MCI
at baseline 70 converted to AD.
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Summary statistics describing the ANMerge dataset at baseline

Diagnosis N ANM DCR ART Age (SD) Female % Education APOE €4
(SD) positive %
CTL 793 266 423 104 74.5 (6.4) 59 12.3 (4.3) 25
MCI 397 247 89 61 76.0 (6.5) 55 10.0 (4.3) 40
AD 512 260 153 99 78.6 (7.2) 63 9.4 (4.3) 54
Total 1702 773 665 264 76.4 (6.9) 59 10.9 (4.5) 39

N, Number of participants with the corresponding diagnosis; ANM, Number of participants originally from the AddNeuroMed study; DCR,
Number of participants originally from the DCR study; ART, Number of participants originally from ART study; CTL, Healthy control

participants; SD, Standard deviation.

Table 2
Number of assessed variables and participants per modality
subtables
Modality Participants Variables
Clinical 1,702 40
Proteomics 680 1,016
MRI 453 136
Gene expression 709 56,701
Genotype 1,014 789,470

Not every study participant took part in data col-
lection of all modalities. For our evaluation, we
considered participants as represented in a modality
if at least one modality specific variable was mea-
sured. This implies that not necessarily all variables
of that modality were available for a given partic-
ipant (e.g., an individual listed in the clinical table
might have MMSE scores but no ADAS-Cog). We
found that clinical data is reported for all 1,702
participants, while MRI, proteomic, gene expres-
sion, and genotype data were collected for subsets
of several hundred participants each (Table 2 ‘Par-
ticipants’). Figure 2 demonstrates the number of
patients assessed across multiple modalities. In total,
239 participants have been assessed with regard to
all five data modalities. By reducing the number of
modalities included into an analysis, subsequently the
number of available participants rises. For example,
when conducting a multimodal study using transcrip-
tomic, genotype and clinical variables data from 614
participants would be available. Focusing only on
genotype and clinical data yields 1,010 analyzable
subjects.

All in all, data on more than 800,000 variables are
reported in ANMerge. 40 of them correspond to the
clinical modality, 56,701 originate from gene expres-
sion analysis, 136 are MRI variables, and 1,016 were
assessed in blood proteomics (Table 2 ‘Variables’).

As with most clinical studies, AddNeuroMed exh-
ibits a declining number of participants over study
runtime (Fig. 3). For most patients (n=1,136) at
least one additional visit 12 months after baseline is

Clinical
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Fig. 2. Participant overlap across modalities. The numbers illus-
trate the number of participants with available information for the
intersection of the respective modalities.
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Fig. 3. Longitudinal follow-up and patient drop-out throughout
study runtime per diagnosis group. CTL, healthy controls; MCI,
mild cognitive impaired participants; AD, Alzheimer’s disease
patients.

available in the data. The drop of AD patients at
month 3 to 9 is explained by the fact that only AD
cases recruited in the original AddNeuroMed study
had three monthly visits during the first year, while
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ART and DCR assessed all patients annually. The
longest follow-up exhibited in the data spanned 12
years.

Data after preprocessing

The new ANMerge dataset is divided into mod-
ality specific subtables which makes unimodal ana-
lysis straightforward. During the preprocessing of
AddNeuroMed we addressed multiple issues dete-
cted in the original data. The previous version of Add
NeuroMed was indexed using distinct patient iden-
tifiers across its modalities, thereby impeding mul-
timodal analysis due to missing internal interoper-
ability. Standard data integration techniques like table
joins were impossible. By mapping all present iden-
tifiers to a unique one, we enabled inter-modality
interoperability such that tables can now easily be
analyzed together. Additionally, we provide a new
identifier mapping file which helps to map the un-
ified identifiers to the raw data for backwards com-
patibility. To increase interoperability also beyond
ANMerge itself, we mapped variable names to pub-
lic database identifiers. For example, proteomic vari-
ables are now also given as UniProt identifiers,
genotype data is encoded as rs-numbers, and gene
expression probes as Illumina IDs [21]. All of these
identifiers can be easily mapped to other resources
and be enriched with information from public data-
bases. Instead of relying on the misleading reported
visit numbers, in ANMerge we added an unambigu-
ous time scale (months in study) to patient entries
to make longitudinal follow-up easier to understand.
Information that will stay permanent (e.g., APOE &4
status) throughout study runtime is now reported at
every visit for that respective patient, not only at base-
line. Multiple issues found in the data (e.g., typos and
erroneous entries) have been corrected.

Although proteomic and transcriptomic data, for
example, were presented for some DCR and ART
participants in the previous AddNeuroMed version,
no corresponding clinical data was available, includ-
ing important information like participant diagnosis.
ANMerge now has all available clinical data for the
two associated cohorts, which critically increases the
amount of actionable information in the dataset.

Accessing ANMerge

ANMerge and the underlying data are avail-
able under https://doi.org/10.7303/syn22252881. To
ensure data privacy, a straight-forward data access

application has to be completed. During this access
application, researchers are asked to 1) register a
Synapse account, 2) have all collaborators who will
access the data sign a data use certificate (DUC), 3)
provide a brief research proposal (1-3 paragraphs),
and 4) agree that the appropriate citation of ANMerge
will be used. By signing the DUC, applicants confirm
that the planned study underwent ethical review. If
successful, access approval is granted within approx-
imately 14 days.

DISCUSSION

In this work, we presented ANMerge, a longitu-
dinal multimodal AD cohort dataset that we made
accessible to the research community. Since the most
time-consuming part about data analysis is often the
preprocessing of data, we believe that the cumulative
time save, achieved by sharing readily preprocessed
datasets, can lead to faster global scientific advance-
ment. Additionally, by describing the characteristics
of the dataset in detail, we aim to enable researchers
to evaluate on first sight if ANMerge is suited for their
analysis.

Establishing reliable results through external
validation on independent cohorts is of utmost impor-
tance, especially when dealing with high complex
diseases like AD. Up to date, and to the best of our
knowledge, the vast majority of data-driven appro-
aches in AD relied solely on ADNI data. To validate
discoveries made in ADNI on other datasets, a high
overlap in measured variables is a prerequisite. Pre-
viously, we could demonstrate that despite evident
differences to ADNI, ANMerge is a viable validation
dataset [22].

Providing clean, preprocessed datasets is a key
prerequisite to enable any data-driven AD research.
However, small cohort studies, for example con-
ducted in single hospitals, often lack the resources
to provide such readily preprocessed data. In an
era where data re-use beyond the initial study itself
becomes increasingly important, we believe that ade-
quate data preprocessing and sharing should resemble
a planned position in the initial funding proposal for
all cohort studies.

Limitations

While AddNeuroMed collected a valuable dataset,
it still has some noteworthy limitations. The main
limitation of the data is that the amyloid status
of participants is unknown. No positron emission
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tomography (PET) imaging was performed and cere-
brospinal fluid markers were not assessed. This
difference to the ADNI data could partially explain
the comparably lower number of citations of the orig-
inal AddNeuroMed data.

As in many clinical cohort datasets, missing data
is a considerable issue in AddNeuroMed. Not every
patient was involved in the assessment of every data
modality and within a modality not necessarily all
variables were measured for each patient.

Compared to ADNI, AddNeuroMed lacks compre-
hensive documentation. Retrospectively searching
for study procedures and protocols of an already con-
cluded, older cohort study proved to be very difficult.
The original study website is not available anymore
and exhaustive study protocols were not findable.
However, we tried to address this limitation by col-
lecting and assembling all available information and
links in this publication. While the original AddNeu-
roMed dataset provided descriptive data dictionaries
for most clinical variables, we extent the documen-
tation by meaningful connections of other modalities
to public databases (e.g., UniProt or dbSNP) by map-
ping their variable names to appropriate identifiers
wherever possible.

The genotype and transcriptomic data presented in
ANMerge was acquired in two separate batches of
participants. This implies that the data can be subject
to systematic batch effects and appropriate adjust-
ments should be made [23].

Conclusion

Over the last years, the AD field witnessed a for-
tunate shift to a more accessible and comprehensible
data culture. New studies such as PREVENT-AD [24]
and EPAD [25] recently joined the ranks of ADNI,
DIAN [26], and others by making their data acces-
sible to third party researchers. Currently running
studies, for example the Deep Frequent Phenotype
Study [27], already emphasized that the collected data
will be published. On the metadata-level, projects
such as EMIF [28] and ROADMAP [29] aimed at aid-
ing researchers to understand the datasets in our field
by providing comprehensive metadata resources.
This shift in the AD data landscape toward increas-
ingly accessible and understandable datasets marks
an important development to facilitate data-driven
research in the dementia domain.

By publishing ANMerge, we want to contribute
to a culture of data sharing in AD research and
follow the open science paradigm. Participation in

observational clinical cohort studies represents an
immense investment by volunteering patients and
healthy individuals. They undergo extensive and
sometimes intrusive repeated measurements, most of
the time without any direct benefit for the individu-
als themselves, with the ultimate aim to contribute to
disease research. We believe that it is an ethical imper-
ative to honor their investment by enabling their data
to be used for generating the most societal benefit
possible.
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