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In this paper, high-grade serous ovarian cancer (HGSOC) is studied, which is the most
common histological subtype of ovarian cancer. We use a new analytical procedure to
combine the bulk RNA-Seq sample for ovarian cancer, mRNA expression-based
stemness index (mRNAsi), and single-cell data for ovarian cancer. Through integrating
bulk RNA-Seq sample of cancer samples from TCGA, UCSC Xena and single-cell RNA-
Seq (scRNA-Seq) data of HGSOC from GEO, and performing a series of computational
analyses on them, we identify stemness markers and survival-related markers, explore
stem cell populations in ovarian cancer, and provide potential treatment recommendation.
As a result, 171 key genes for capturing stem cell characteristics are screened and one vital
cancer stem cell subpopulation is identified. Through further analysis of these key genes
and cancer stem cell subpopulation, more critical genes can be obtained as LCP2,
FCGR3A, COL1A1, COL1A2, MT-CYB, CCT5, and PAPPA, are closely associated with
ovarian cancer. So these genes have the potential to be used as prognostic biomarkers for
ovarian cancer.
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1 INTRODUCTION

Currently, ovarian cancer is not a single disease and can be subdivided into at least five different
histological subtypes with diverse identifiable risk factors, cellular origin, molecular compositions,
clinical features, and treatment approaches (Prasetyanti and Medema, 2017). Ovarian cancer is a
global problem, often diagnosed at an advanced stage, and there are currently no effective screening
strategies (Matulonis et al., 2016). For ovarian cancer research, omics big data research provides a
new biological perspective for ovarian cancer and offers a valuable reference for the pathophysiology
and treatment strategies of ovarian cancer patients (Ince et al., 2015). Improving the genomic
understanding of the histological subtypes of ovarian cancer has been an important goal for
researchers. This goal can promote researchers to understand the risk factors associated with the
disease and develop prevention and treatment strategies.

Because ovarian cancer has many subtypes, it leads to strong tumor heterogeneity. Tumor
heterogeneity is one of the characteristics of malignant tumors, that is, tumor tissue consists of cell
populations with different expression profiles or biological functions, which will lead to differences in
tumor growth rate, invasion and metastasis ability, drug sensitivity, and other aspects (Kim et al.,
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2021). Tumor heterogeneity not only leads to tumor recurrence,
metastasis, and drug resistance but also directly affects clinical
treatment. An in-depth study on the formation and regulation
mechanism of tumor heterogeneity will provide a theoretical
basis for precisely targeted therapy of tumors. With the rapid
development of single-cell sequencing technology, researchers
can study the biochemical process and the pathogenesis of some
diseases at the single-cell level. Single-cell sequencing technology
has been widely used in tumor, developmental biology, clinical
diagnosis of tumor and stem cell development and
differentiation, and so on (Navin and Hicks, 2011). Tumor
single-cell sequencing can be studied at the single-cell level in
many ways. For example, the heterogeneous tumor, tumor
microenvironment, tracking the metastasis and diffusion of
cancer cells, understanding the evolution of drug resistance of
cancer cells during drug therapy.

Each of these ovarian cancer cell types may represent either a
hierarchy of CSC or an entirely different population of CSC for
that particular ovarian histotype (Steffensen et al., 2011). Ovarian
cancer stem cells have unique genetic characteristics that enable
them to reproduce the ability of the original tumor to proliferate
with chemotherapy and promote relapse. The molecular
characteristics of these cells may explain some of the unique
characteristics of CSCs that control self-renewal and metastasis
(Alvero et al., 2011). In ovarian cancer, abnormal canonical and
atypical WNT signaling pathways are involved in CSC survival
tumor volume expansion and invasion/metastasis (Katoh, 2017).
All these indicate that the heterogeneity of ovarian cancer is
closely related to tumor stem cells.

There are growing interest in cancer stem cells (CSCs). CSCs
can self-renew, proliferate infinitely and form heterogeneous
tumor cell populations. mRNAsi can be used to evaluate
stemness. Higher mRNAsi scores are associated with active
biological processes in CSCs and greater tumor
dedifferentiation, as reflected by histopathological grades
(Vlashi and Pajonk, 2015). CSCs play a crucial role in the
metastasis, differentiation, and drug resistance of cancer
(Friedmann-Morvinski and Verma, 2014; Leon et al., 2016;
Shibue and Weinberg, 2017). Cancer stem cells can enhance
the ability of tumor progression, drug-resistant metastasis, and
self-renewal (Beck and Blanpain, 2013). Therefore, we combine
analysis of ovarian cancer and mRNAsi to obtain important
markers.

The results of the UK Collaborative Trial of Ovarian Cancer
Screening (UKCTOCS) study do not show an overall survival
advantage to use the Risk of Ovarian Cancer Algorithm (ROCA)
testing, thus no screening test exists at this time (Skates, 2003;
Jacobs et al., 2016; Tayob et al., 2018). To further elucidate the
genes associated with ovarian cancer and their role in the risk of
ovarian cancer, we seek to identify key high-risk prognostic genes
by mRNAsi in cancer samples. The idea of migration algorithm is
used to transfer the prognostic information to single-cell data to
assist the identification of cell subpopulations. Based on the
conclusion of single-cell data, we return the differentially
expressed genes obtained by single-cells to a bulk sample for
survival analysis to achieve a precisely targeted treatment effect.
Our work aims to: 1) Identify key genes associated with both

stemness and prognosis; 2) Find the cell populations associated
with stemness and poor prognosis; 3) Identify high-risk core
genes in cell populations except for key genes.

To our knowledge, this is an innovative analysis that the bulk
sample and individual clinical characteristics of ovarian cancer
are combined with stem cell characteristics, and the resulting
attributes are migrated to HGSOC single-cell data to assist
subsequent analysis of single-cell data. In the past, only cancer
and cancer stem cells, gene mutations, and tumor
microenvironment have been combined for analysis, but no
analysis has been performed to transfer the characteristics of
BULK RNA-Seq and cancer stem cells to single-cell data (Ye et al.,
2020). Thus, the final results are not only more accurate but also
have more diagnostic significance.

In our new analytical process, the key genes related to ovarian
cancer are identified as LCP2, FCGR3A, COL1A1, COL1A2, MT-
CYB, CCT5, and PAPPA, which may have important significance
in ovarian cancaer and drug therapy. With the improvement of
our understanding in terms of ovarian cancer subtypes’
composition, some histological specific therapeutic drugs can
be used to achieve the effect of precision-targeted therapy.
Aiming at the high-risk genes related to ovarian cancer is
helpful for the diagnosed patients to carry out risk reduction
assessment and preventive surgery (Zhang et al., 2018).

2 MATERIALS AND METHODS

Use bulk RNA-Seq sample and single-cell data of ovarian cancer
in this paper. Through calculating the mRNAsi of each sample in
bulk RNA-Seq sample, and analyzing the relationship between
mRNAsi and clinical features. The stemness-related key gene is
obtained by WGCNA analysis. Each cell subpopulation is
obtained by analyzing single-cell data, and combined with
stemness-related key gene analysis, the target cell
subpopulations are obtained.

In the data collection part (Figure 1A), bulk RNA-Seq sample
and single-cell RNA-Seq data are collected, among which bulk
RNA-Seq sample came fromUCSC Xena (https://xena.ucsc.edu/)
database and single-cell RNA-Seq data from GEO (https://www.
ncbi.nlm.nih.gov/gds) database. After collecting the data, the
mRNAsi is analyzed (Figure 1B). The mRNAsi of each
ovarian cancer sample data using One Class Linear Regression
(OCLR) (Malta et al., 2018) algorithm and combined with bulk
RNA-Seq sample is evaluated. Furthermore, the relationship
between ovarian cancer mRNAsi and each clinical feature is
analyzed, obtaining samples associated with stemness and low
survival. In order to obtain the stemness-related key genes
(Figure 1C), bulk RNA-Seq of ovarian cancer is analyzed first.
The data is used for differential analysis and up-regulated
differentially expressed genes are obtained (Ye et al., 2020).
Then, low-survival samples and up-regulated differentially
expressed genes are used for WGCNA (Langfelder and
Horvath, 2008) analysis to obtain stemness-related key genes,
and stemness-related key genes are analyzed for enrichment
analysis and protein interaction analysis. Meanwhile, using
Seurat (Butler et al., 2018) and SingleR (Aran et al., 2019) R
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packages for cell population cluster of single-cell data from
ovarian cancer (GSM5276940, GSM5276943) (Figure 1D).
Combining with the distribution of stemness-related key genes
in each cell population cluster, the target cell population is
determined. The differentially expressed genes between the
target cell population and all other cell populations are
analyzed to obtain the core genes most related to stemness key
genes. After the target cell population is determined, each cell
type was annotated using a SingleR (Figure 1E).

2.1 Data Source and Preprocessing
The data are mainly from public databases TCGA, UCSC Xena
and GEO (Figure 1A). The gene expression RNA-Seq (HTSeq-
TPM) data are downloaded from the UCSC Xena database,
including 88 normal samples, and 416 tumor samples. Clinical
characteristic data of ovarian cancer are downloaded from the
TCGA database, including gender (female), age (26–89 years),
tumor stage (stageⅠ, stageⅡ, stageⅢ, and stageⅣ), tumor grade
(G1, G2, G3, and G4) and patient survival information (survival
time and survival status).

The single-cell RNA-Seq data are retrieved from GEO
(GSE173682). The data mainly includes four subtypes of
endometrial cancer, high-grade serous ovarian cancer
carcinosarcoma, and metastasis-associated ovarian cancer
(Figure 1A). In the data GSE173682 we used, only 11
scRNA_Seq samples are included, and only GSM5276940 and
GSM5276943 are primary ovarian cancer. GSM5276933
GSM5276934 GSM5276935 GSM5276936 GSM5276937 is
Endometrium, although the main site of GSM5276939 is
Ovary, they are not ovarian cancer in the traditional sense.
GSM5276938 and GSM5276942 are metastatic cancers.
GSM5276940 and GSM5276943 are carcinoma in situ. Here,
GSM5276940 mainly contains 8,181 single-cell samples,

involving one patient. GSM5276940 mainly contains
6,939 single-cell samples, involving one patient.

2.2 Analyze Ovarian Cancer mRNAsi
OCLR method is used to calculate the mRNAsi of each sample in
combination with bulk RNA-Seq sample in UCSC Xena. The
relationship between mRNAsi and various clinical features is
analyzed to obtain the stemness-related low survival samples,
which are used in obtaining the stemness-related key genes in Get
Stemness-Related Key Genes.

2.2.1 Calculate mRNAsi of Ovarian Cancer
For the mRNAsi of ovarian cancer samples, using the One Class
Linear Regression (OCLR) algorithm combined with the human
stem cell data provided by Progenitor Cell Biology Consortium
(PCBC) (https://www.synapse.org) for training, and then
quantifying the mRNAsi of our ovarian cancer samples
(Figure 1B). Using mRNAsi (0-1) evaluate the mRNAsi of
ovarian cancer cells, and the closer the value is to 1, the
stronger stemness of cancer cells is.

2.2.2 Analysis of Clinical Features and mRNAsi
Ovarian cancer samples are divided into normal and tumor
groups, ovarian cancer samples are divided into two groups
based on median age, and ovarian cancer samples are divided
into two groups based on mRNAsi. Differences in each group are
analyzed. The main grouping is as follows, the samples are
divided into two groups based on the median age of all
samples in the clinical data. After ranking the samples
according to the mRNAsi, the first 1/3 and the last 2/3 are
defined as high mRNAsi and low mRNAsi groups. Wilcox’s
rank-sum test is used to identify differentially expressed genes
(DEGs) in each group. Genes with FDR <0.05 and logFC >1 are

FIGURE 1 |Holistic approach. (A)Data collection. (B)mRNAsi of ovarian cancer bulk RNA-Seq sample is calculated and analyzed. (C) Access to stemness-related
key genes. (D) Single-cell data of ovarian cancer are analyzed using Seurat and SingleR package. (E) Annotation cell types for sub-population.
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identified as differentially expressed genes. To investigate whether
cell stemness is associated with patient survival, we use cox
regression to test survival differences between the high and
low mRNAsi groups. The p-values < 0.05 are considered as
significant. The sample is defined as stemness-related low
survival rates samples, which will be used in the construction
of the co-expression network in WGCNA (Langfelder and
Horvath, 2008).

2.3 Get Stemness-Related Key Genes
The up-regulated differentially expressed genes are obtained by
differential analysis using WGCNA. The up-regulated
differentially expressed genes and stemness-related low
survival samples are analyzed to obtain the stemness-related
key genes. The stemness-related key genes are analyzed by
enrichment analysis and protein interaction analysis.
Stemness-related key genes will be used to identify target cell
populations in Identify Cell Populations of Stemness-Related Key
Genes.

2.3.1 Screening of Differentially Expressed Genes
First, genes with an average expression value of less than 0.2 in all
samples are defined as unexpressed and filtered. Then, all samples
are divided into two groups, the normal group and the tumor
group. The Wilcoxon test is used to identify differentially
expressed genes between the normal sample group and the
tumor sample group. Genes with FDR <0.05 and logFC >1 are
identified as differentially expressed genes.

2.3.2 WGCNA Co-expression Network Analysis
WGCNA is a multiplex analysis method for clustering similar
gene expression patterns (Figure 1C). Key genes associated with
cell stemness are identified using WGCNA co-expression
network analysis based on stemness-related low survival rates
samples and differentially expressed genes. Before the
construction and analysis of the co-expression network, the
quality control of the data is carried out. The samples with
missing values and discrete samples are deleted. Selecting the
optimal soft threshold β (β = 6) to construct a weighted co-
expression network. In addition, the weighted adjacency matrix is
transformed into a topological overlap matrix (TOM) to estimate
the connectivity of the network. Then, the hierarchical clustering
method is used to construct a clustering tree to determine that the
module size is set to 80, and the threshold of similarity module
merging is set to 0.35.

2.3.3 Identification of Important Modules and Key
Genes
The gene sets under the same co-expression module have high
topological overlap similarity, and the co-expression degree of
these genes is usually higher. Using two approaches to identify
important modules associated with mRNAsi. The similarity
between modules refers to the correlation coefficient between
module and module (MM) characteristic genes, which is used to
describe the degree of correlation between each module. Finally,
the correlation between a module and mRNAsi is calculated to
identify important clinical modules and define the obtained genes

as stemness key genes. Genes with p < 0.05 are considered key
genes. The key gene is defined as stemness-related key gene.

2.3.4 Functional Enrichment Analysis
This analysis is conducted by the cluster profiler package in R (Yu
et al., 2012). The biological functions of key DEGs are determined
by Gene Ontology (GO) functional annotation and Kyoto
Encyclopedia of Genes and Genomes (KEGG) analysis.
Stemness-related key gene are selected for analysis, and FDR<
0.05 is taken as the criteria in this section.

2.3.5 Co-expression Analysis and Protein-Protein
Interaction Network Construction
The 11.5 version of STRING (https://www.string-db.org) is chosen to
investigate and generate the PPI network among key genes, to
evaluate the protein-protein interaction (PPI) among key genes.
And the key genes are from the stemness-related key genes.

2.4 Identify Cell Populations of
Stemness-Related Key Genes
The scRNA-Seq (GSM5276940, GSM5276943) of 10X Genomics
scRNA-Seq one patient tumor tissue of HGSOC is analyzed
(Figure 1D). To identify clusters and find biomarkers for each
cluster, selecting Seurat (Butler et al., 2018) and SingleR (Aran
et al., 2019) for single-cell data analysis. Single-cell gene
expression matrices are entered into R and processed by
Seurat 4.0.5 version using principal component analysis (PCA)
to reduce the dimension of the data. Elbow plot is used to select
the top PCs, which are used downstream for Louvain clustering
and visualization using t-distributed stochastic neighbor
embedding (tSNE) and uniform manifold approximation and
projection (UMAP). Reference-based single-cell RNA-Seq
Annotation tool SingleR using HPCA (Human Primary Cell
Atlas) reference data to extensively identify cell types of cell
populations, through machine learning. Once the cell type is
determined, the distribution of each gene in each cell
subpopulation is observed in combination with the stemness-
related key gene, and the main cell subpopulation is identified as
our target cell subpopulation. The marker genes of the target
subpopulation are expressed by differential gene expression
(logFC >0.5), target differentially expressed genes are
identified and survival analysis is performed to find genes that
are more closely related to the prognosis of ovarian cancer.

The target cell subpopulations are analyzed and the co-expression
network of differentially expressed genes is constructed. Then the
genes with a strong correlation (cor >0.6, p < 0.05) with stemness-
related key genes are found to be identified as a key target gene for the
treatment of ovarian cancer.

3 RESULTS

3.1 Correlation Between mRNAsi and
Clinical Features in Ovarian Cancer
Considering whether mRNAsi is associated with the clinical
features. The tumor samples into two groups according to
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mRNAsi are divided. There represents a significant difference in
survival rate between the high mRNAsi group and the low
mRNAsi group, and the Kaplan Meier survival curve shows
that the low group enjoyed a lower survival probability (p =
0.03, Figure 2A). We explore the characteristic of mRNAsi in
ovary cancer and then compare the expression of mRNAsi

between cancer and normal samples. The mRNAsi expression
in cancer samples is significantly higher than that in normal
samples (Figure 2B). Ovarian cancer samples are divided into
two groups based on median age. According to the mRNAsi of
each sample, there is a correlation between age and ovarian
cancer (p = 0.07, Figure 2C). According to each grade of

FIGURE 2 | The correlation of mRNAsi index with ovarian cancer. (A) The scatter plot shows that the mRNAsi expression in 416 tumor cases is higher than that in
88 normal cases (p-value < 0.05). (B) The tumor case is divided into two groups based on their mRNAsi score. The Kaplan Meier survival curve shows that the low group
enjoyed a lower survival probability. And it is significant statistical differences as a whole (p-value < 0.05). (C) The tumor cases are divided into two groups based on their
age (median age = 59), it is no statistical differences (p = 0.07). (D) The distribution of the mRNAsi for the clinical grade. The mRNAsi scores increase in more
advanced clinical grades, and extremely so in G4 (p = 0.07). (E) The distribution of mRNAsi scores for stage of ovarian cancer cases.
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ovarian cancer, it finds that the higher the grade of ovarian
cancer, the higher the mRNAsi of ovarian cancer samples, which
is also due to the discovery of ovarian cancer in the advanced
stage (p = 0.007, Figure 2D). From the stage of ovarian cancer, it
obviously discoveries that there is a big difference between each
stage, especially between stage I and stage II, stage III, and stage
IV. However, there is no significant difference on the whole,
whichmay be caused by the fact that most ovarian cancer is found
in the advanced stage (p = 0.352, Figure 2E). Therefore, we can
find a clear relationship between the mRNAsi and clinical features
of ovarian cancer.

3.2 Analyze Stemness-Related Key Genes
3.2.1 Identification of Stemness-Related Key Genes in
Ovarian Cancer Based on Weighted Co-expression
Matrix Network
To identify key genes related to ovarian cancer more
specifically, 12,438 differentially expressed genes have been
screened from the normal and tumor tissues of ovarian cancer,
including 5,885 up-regulated genes and 6,553 down-regulated
genes (Figures 3A,B). Based on samples with a low survival
rate and differentially expressed genes, a co-expression
network is constructed using WGCNA. To ensure that the
co-expression network meets the requirement of a scale-free
network, the soft threshold β (β = 6) and the scale-free scale
(scale = 0.85) are selected to obtain good average connectivity
as shown in (Figure 4A). Modules can be combined by
determining the minimum gene number and similarity
degree in modules (Figure 4B). A total of 12,438
differentially expressed genes are clustered into 24 co-

expression modules (Figure 4C). Among the identified gene
co-expression modules, tan and yellow-green co-expression
modules are the most closely related to mRNAsi (Figure 4D).
There are 171 key genes in the two modules, which are defined
as stemness-related key genes for subsequent analysis.

3.2.2 The Cellular Functions and Pathway Analysis of
Stemness-Related Key Genes
There are 40 differentially up-regulated genes among the
171 stemness-related key genes. Performing cellular functions
and pathway analysis on these up-regulated genes and finding
that most of the pathways are related to tumor metastasis and
epithelial mesenchymal cells (EMT) (Table 1). EMT, which
occurs during tumor progression is highly deregulated, making
solid tumors more malignant and increasing their invasiveness
and metastatic activity (Ribatti et al., 2020). This is associated
with ovarian cancer being found in advanced stages.

3.2.3 Correlation Between Stemness-Related Key
Genes at Transcription and Protein Levels
We use the STRING to build the PPI network of the stemness-
related key genes (Figure 5A). The more edges the gene connects,
the more important the gene is in the PPI network. LCP2 has 28
sides and FCGR3A has 26 sides, so LCP2 and FCGR3A are the
most critical proteins (Guo et al., 2020; Ye et al., 2020). Indicating
that they are closely related to cancer (Figure 5B). LCP2 can be
used as a prognostic biomarker and therapeutic target in anti-
tumor immunity (Wang and Peng, 2021). FCGR3A is related to
treatment andmetastasis in colorectal cancer (CRC) (Zhang et al.,
2007).

FIGURE 3 | The summary of differential expression genes in ovary cancer samples vs. controls. (A) The heatmap shows the top 50 differentially expressed genes.
(B) The volcano shows a log-fold change of expression of each gene. The red dots represent the up-regulated genes and the green ones represent the down-regulated
genes. The black dots represent the gene without significant differential expression in cancer vs. controls.

Frontiers in Genetics | www.frontiersin.org March 2022 | Volume 13 | Article 8619546

Wang et al. Ovarian Cancer Based on Stemness

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


3.3 Target Cell Subpopulations are
Identified According to Stemness-Related
Key Genes
According to the dominant proportion of stemness-related key
genes in each cell subpopulation, the key target cell subpopulation
can be obtained. By analyzing the single-cell data of
GSM5276940, 9 cell populations can be gotten. Based on the
proportion of stemness-related key genes in these 9 cell
populations, we define the cell population with the largest
proportion as the target cell subpopulation, namely cell
population 1 and cell population 4 (Figure 6A). By annotating
the cells in each cell population, the cell types contained in each
cell population can be gotten (Figure 6B). In population 1, there
are 291 cells of 7 cell types, including 188 cancer stem cells. Only
60% of cancer stem cells in population 1 could not be defined as
the target cell subpopulation. In cell population 4, there were 171
cells in 4 types of cells, among which 161 were cancer stem cells,
and 95% are cancer stem cells in the cell population. So
population 4 as the cancer stem cell subpopulation is our
target cell subpopulation.

By analyzing the single-cell data of GSM5276943, 8 cell
populations can be gotten. Based on the proportion of
stemness-related key genes in these 8 cell populations, we
define the cell population with the largest proportion as the
target cell subpopulation, namely cell population 1, cell
population 3, and cell population 5 (Figure 6C). By
annotating the cells in each cell population, the cell types
contained in each cell population can be gotten (Figure 6D).
In population 1, there are 562 cells of 4 cell types, including 354
cancer stem cells. Only 69% of cancer stem cells in population 1
could not be defined as the target cell subpopulation. In
population 3, there are 331 cells of 4 cell types, including 221
cancer stem cells. Only 68% of cancer stem cells in population 3
could not be defined as the target cell subpopulation. In cell
population 5, there were 218 cells in 4 types of cells, among which
257 are cancer stem cells, and 85% are cancer stem cells in the cell
population. So population 5 as the cancer stem cell subpopulation
is our target cell subpopulation.

Therefore, through the analysis method of this paper. First,
stemness-related key genes are identified by bulk RNA-Seq
samples combined with the mRNAsi of each sample. Then
Cell populations are identified from single-cell data. Finally,

FIGURE 4 | The gene modules are identified by weighted gene co-
expression network analysis (WGCNA) and related to the mRNAsi in ovary
cancer. (A) The indexes are used to determine the power of weight in the co-
expression network. (B) The branches of the cluster for the different
gene modules. (C) The correlation between the gene modules and the
mRNAsi. (D,E) Scatter plot showing the filter of key genes. Each scatter
represents a gene. The gene correlated with a module (module membership)
and mRNAsi together is considered as the key gene.

TABLE 1 | Results of stemness-related key gene enrichment analysis.

Pathway p_value

Extracellular matrix organization 1.06E-09
Cell-substrate adhesion 3.73E-06
Wound healing 3.78E-06
Collagen fibril organization 6.48E-06
Collagen catabolic process 1.53E-05
Positive regulation of epithelial cell migration 5.69E-05
Epithelial cell migration 3.79E-04
Cell-cell signaling by Wnt 5.67E-04
Maintenance of location 8.43E-04
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Combined with the distribution of stemness-related key genes in
each cell subpopulation. This can identify cancer stem cells.

Analyzing the differences between tumor and other cell
populations by cell population. We define log2FC > 0.5 as up-
regulated gene and log2FC < −0.5 as down-regulated gene. Using
the expression data of single-cells with differentially expressed
genes and calculating the correlation coefficients between each

differential gene according to the spearman correlation. We select
stemness-related key genes between genes with cor greater than
0.5 as high-risk stemness-related key genes. A total of 5 stemness-
related high-risk genes are obtained (Table 2). Among them,
COL1A1, COL1A2, MT-CYB, CCT5, and PAPPA have been
reported to be closely related to cancer. Therefore, COL1A1,
COL1A2, MT-CYB, CCT5, and PAPPA may be potential genetic
biomarkers for the treatment of ovarian cancer.

We identified stem cell-related pathways and analyzed LCP2,
FCGR3A, COL1A1, COL1A2, MT-CYB, CCT5, and PAPPA with
genes in each pathway. As long as more than 50% of the genes in
each pathway are associated with LCP2, FCGR3A, COL1A1,
COL1A2, MT-CYB, CCT5, and PAPPA p_value <0.05, we
expect this pathway to be affected. There are altogether 8 such
pathways (Table 3).

4 DISCUSSION

Through our new analysis method ovarian cancer and stem cell
characteristics combined with single-cell data analysis, our results are
closely related to the development and metastasis of ovarian cancer,
and demonstrate the characteristics of cancer stem cells. Cancer stem
cells are self-renewing, multipotent properties, and proliferative,
giving certain cell subpopulations the ability to initiate, develop,
and progress cancer (Matulonis et al., 2016). Different
mechanisms contribute to intratumor heterogeneity, including
genetic mutations, the microenvironment, and the existence of
subpopulations of cancer cells with increased renewal capacity and
the ability to recapitulate the heterogeneity found in primary tumors
(Kim et al., 2016). Common CSC identification markers include
ALDH1A1, CD34, CD24, CD44, CD123, CD133, CD117, and
EPCAM (Jin et al., 2009; Kim et al., 2016). These specific CSC
markers can be selectively targeted and used to treat invasive,
metastatic, and relapse tumors. For example, targeting the
overexpressed CD123 marker on CD34+ CD38− leukemic stem
cells in acute myelogenous leukemia impairs leukemic stem cells
homing to the bone marrow and induces a decrease in the overall
AML cell repopulation (Jin et al., 2009). Inhibition of developmental
signaling pathways that are crucial for stem and progenitor cell
homeostasis and function, such as the Notch, Wnt, Hedgehog, and
Hippo signaling cascades, and continues to be pursued across
multiple cancer types as a strategy for targeting the CSCs
hypothesized to drive cancer progression with some success in
certain malignancies (Clara et al., 2020). Due to their plasticity
and given that CSCs need to be eradicated to prevent malignancy
and metastasis, targeting specific niche components relevant to that
particular cancer type in addition to standard cancer therapy that
tackles the bulk of the tumor bears therapeutic promise (Plaks et al.,
2015). High-grade serous ovarian cancer (HGSOC) is the most
common pathological type of ovarian cancer and is typically very
responsive to platinum-based chemotherapy (Matulonis et al., 2016).
Immune therapies have had limited efficacy in high-grade serous
ovarian cancer (HGSOC), as the cellular targets and mechanisms of
action of these agents in HGSOC are unknown (Wan et al., 2020).

Using our new analytical method, we first examine ovarian
cancer, both normal and tumor samples, a total of 12,439

FIGURE 5 | (A) Using the STRING (https://string-db.org/) to build the
protein interaction network of key genes. (B) The number of edges of key
genes through the protein interaction network. The X-axis represents the total
number of edges connected by genes, and the Y-axis represents the
gene name.
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differentially expressed genes are identified in normal, and
tumor tissue samples. The clinically relevant survival time
and survival status are analyzed together with mRNAsi, and
90 samples of stemness-related ovarian cancer patients with low

survival rates are obtained. For these samples, WGCNA further
identifies the most significant correlation two gene co-
expression modules and mRNAsi. After GO enrichment
analysis of 171 stemness-related key genes in the two
modules, these genes are primarily involved in the metastasis
of ovarian cancer. In addition, in cancer, EMT is associated with
the occurrence of tumor invasion, metastasis, and treatment
resistance (Pastushenko and Blanpain, 2019). Wnt signal
transduction and the role of Wnt-regulated stem cells in the
homeostasis regeneration of intestinal, gastric, cutaneous, and
hepatocellular cancer environment (Tan and Barker, 2018).

In addition, we analyze the single-cell data from a patient
with HGSOC on a 10X data platform. Single-cell data are
homogenized and standardized using the Seurat R package,
and highly variable genes are selected. After PCA
dimensionality reduction, the samples are clustered. And

FIGURE 6 | Visualizing each cell population using UMAP. The distribution of individual cell populations in single-cell data. (A,C) The main distribution of stemness-
related key genes in all cell populations. (B,D) The proportion of each cell type in each cell population.

TABLE 2 | Stemness-related high-risk genes obtained from the tumor cell
population.

Cell population Reported(cor)

Tissue stem cells population COL1A2(0.55) Yang et al. (2018)
COL1A1(0.53) Yang et al. (2018)
MT-CYB(0.54) Feng et al. (2021)
CCT5(0.50) Engqvist et al. (2020)
PAPPA(0.50) Conover and Oxvig (2018)

Each gene is followed by a correlation coefficient(cor) with the stemness-related
key gene.
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UMAP algorithm is used to visually of the sample. Each cell
type is annotated using the SingleR R package. Finally, the
main proportion of 171 key genes in each cell subpopulation is
obtained by analyzing the bulk sample. Consistent with our
preconceive hypothesis, we obtain a key target cell
subpopulation.

Through the analysis of stemness-related key genes and
tumor stem cell subpopulations, LCP2, FCGR3A, COL1A1,
COL1A2, MT-CYB, CCT5, and PAPPA are closely related to
ovarian cancer. We consult these genes and find that they are
associated with ovarian cancer in different reports. LCP2 is
associated with hsa-miR-142 expression in ovarian cancer, and
hsa-miR-142-related signaling may lead to progressive loss of
cell-cell adhesion (Andreopoulos and Anastassiou, 2012). In the
treatment of ovarian cancer, the high affinity and low affinity
receptor types of FCGR3A may contribute to clinical outcomes
in ovarian cancer treatment (Wang et al., 2017, 125). COL1A1
and COL1A2 may be involved in the occurrence and metastasis
of ovarian cancer (Yang et al., 2018). MT-CYB is closely related
to oocyte repair and can be cited as a potential target for the
treatment of premature ovarian insufficiency (Feng et al., 2021).
CCT5 can be used as a prognostic marker of ovarian cancer and
can improve the prognosis of ovarian cancer (Engqvist et al.,
2020). PAPPA is associated with the growth, invasion and
metastasis of ovarian cancer (Conover and Oxvig, 2018).
Therefore, these genes can serve as important markers for
the treatment and prediction of ovarian cancer.

5 CONCLUSION

In this study, our new method combines bulk RNA-Seq sample
with ovarian cancer stem cells, and transfers the obtained
attributes to HGSOC single-cell data. Thus a better effect is
achieved. And the key genes related to poor prognosis and
stem cells are identified through bulk samples. We can obtain
the genes that are super closely related to ovary are LCP2,
FCGR3A, COL1A1, COL1A2, MT-CYB, CCT5, and PAPPA.
The above genes can be targeted for the study of inhibitory
agents, so as to achieve the precisely targeted therapy and specific
markers of ovarian cancer stem cell populations. At the same
time, accurate consultation on risk reduction and preventive
surgery is also helpful.
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