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Abstract
Objectives To develop a pipeline for automated body composition analysis and skeletal muscle assessment with integrated 
quality control for large-scale application in opportunistic imaging.
Methods First, a convolutional neural network for extraction of a single slice at the L3/L4 lumbar level was developed on 
CT scans of 240 patients applying the nnU-Net framework. Second, a 2D competitive dense fully convolutional U-Net for 
segmentation of visceral and subcutaneous adipose tissue (VAT, SAT), skeletal muscle (SM), and subsequent determination 
of fatty muscle fraction (FMF) was developed on single CT slices of 1143 patients. For both steps, automated quality control 
was integrated by a logistic regression model classifying the presence of L3/L4 and a linear regression model predicting the 
segmentation quality in terms of Dice score. To evaluate the performance of the entire pipeline end-to-end, body composi-
tion metrics, and FMF were compared to manual analyses including 364 patients from two centers.
Results Excellent results were observed for slice extraction (z-deviation = 2.46 ± 6.20 mm) and segmentation (Dice score 
for SM = 0.95 ± 0.04, VAT = 0.98 ± 0.02, SAT = 0.97 ± 0.04) on the dual-center test set excluding cases with artifacts due to 
metallic implants. No data were excluded for end-to-end performance analyses. With a restrictive setting of the integrated 
segmentation quality control, 39 of 364 patients were excluded containing 8 cases with metallic implants. This setting ensured 
a high agreement between manual and fully automated analyses with mean relative area deviations of ΔSM = 3.3 ± 4.1%, 
ΔVAT = 3.0 ± 4.7%, ΔSAT = 2.7 ± 4.3%, and ΔFMF = 4.3 ± 4.4%.
Conclusions This study presents an end-to-end automated deep learning pipeline for large-scale opportunistic assessment 
of body composition metrics and sarcopenia biomarkers in clinical routine.
Key Points 
• Body composition metrics and skeletal muscle quality can be opportunistically determined from routine abdominal CT  
   scans.
• A pipeline consisting of two convolutional neural networks allows an end-to-end automated analysis.
• Machine-learning-based quality control ensures high agreement between manual and automatic analysis.
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Abbreviations
CDFNet  Competitive dense fully connected network
CNN  Convolutional neural network
FMF  Fatty muscle fraction
SAT  Subcutaneous adipose tissue

SM  Skeletal muscle
VAT  Visceral adipose tissue

Introduction

Body composition analyses aim to determine the quantity of con-
nective tissue compartments. In addition to quantifying the amount 
of adipose and muscle tissue, recent work proposed methods to 
obtain additional information about a patient’s general condition 
by also determining the quality of skeletal muscle tissue in terms of 
fatty degeneration. Several studies demonstrated that these metrics 

Sebastian Nowak and Maike Theis contributed equally to this 
study.

 * Alois M. Sprinkart 
 sprinkart@uni-bonn.de

Extended author information available on the last page of the article

/ Published online: 30 September 2021

European Radiology (2022) 32:3142–3151

1 3

http://crossmark.crossref.org/dialog/?doi=10.1007/s00330-021-08313-x&domain=pdf


determined from abdominal imaging provide prognostic implica-
tions in oncologic or cardiovascular diseases [1–8].

The amount of visceral and subcutaneous adipose tissue, as 
well as the amount and quality of muscle tissue, can be reliably 
determined from abdominal CT imaging. An opportunistic 
large-scale assessment in clinical routine has the potential to 
further enhance the understanding of the clinical value of body 
composition analyses in various diseases, e.g., for therapy 
decision and/or outcome prediction. Also, the establishment 
of gender-, age-, and ethnicity-specific norm values is only 
feasible through the widespread application of these analyses.

However, the determination of fat and muscle volume by 
manually annotating the region of interest by a radiologist is 
rather time-consuming, which currently prevents clinical rou-
tine application. Several studies have shown that area measure-
ments of connective tissue compartments on a single slice at 
a certain lumbar level are highly correlated with total volume 
in the abdomen [9–11]. This led to greatly reduced annota-
tion times for manual body composition analysis when apply-
ing a 2D— instead of a 3D approach. In recent years, several 
methods have been proposed for automating the required tissue 
segmentation step. It was a logical consequence that with the 
dominant rise of deep learning for image segmentation the 
previously manually segmented images were used to develop 
methods for automated segmentation by supervised learning 
[12–14]. However, manual interaction was still required for 
extraction of the single slice on which the automatic segmenta-
tion is performed. Only very recent work also includes deep-
learning-based automated slice extraction as the next step for 
truly automated body composition analyses [15–17].

Moreover, to the best of our knowledge, there is currently no 
work that presents integrated quality control for both slice extrac-
tion and tissue segmentation. This still leaves one factor that repre-
sents an additional human effort in opportunistic analysis, namely 
identifying cases where the algorithm fails. Automatic determina-
tion of the predictive uncertainties can help identify cases with 
low-quality analyses and can additionally be used to monitor the 
performance of an autonomous system during deployment, as 
suggested for machine learning operations to manage deep learn-
ing life cycles. This can also help to detect changes in the data and 
to raise a warning in case of domain shifts.

Hence, the aim of this study was to develop an automated 
body composition analysis for abdominal CT with integrated 
quality checks and to evaluate the end-to-end performance of 
the proposed pipeline on dual-center test data.

Material and methods

Overview

Figure 1 shows an overview of the developed pipeline. In the 
first part, a single slice at the L3/L4 lumbar level is extracted 

from a 3D CT scan. In the second part, the extracted 2D 
image is segmented into three compartment classes: visceral 
and subcutaneous adipose tissue (VAT, SAT) and skeletal 
muscle (SM). The fatty muscle fraction (FMF), a quanti-
tative marker for fatty muscle degeneration, is determined 
in a subsequent post-processing step [1, 6]. For both deep-
learning-based slice extraction and segmentation, classical 
machine learning methods were employed for integration of 
quality control steps that capture the predictive uncertainty 
during deployment.

Slice extraction and tissue segmentation were developed 
independently. To evaluate the end-to-end performance of 
the entire pipeline, automatically extracted body composi-
tion metrics and FMF were compared with manual analyses 
on an unselected dual-center test set. Figure 2 provides an 
overview of the data sets used for method development and 
evaluation.

Method development for slice extraction

Dataset

With institutional review board approval, written informed 
patient consent was waived because of the retrospective 
nature of all parts of the study. Retrospectively derived 3D 
CT scans of 240 patients (94 female, mean age 65 ± 14 years) 
referred for diagnostic CT including imaging of the upper 
abdomen acquired at eight different CT scanners were used 
for development of the slice extraction method. Of these 
patients, 43 received CT before undergoing transcatheter 
aortic valve implantation, 91 before transjugular intrahe-
patic portosystemic shunt intervention, and 106 patients 
received CT in the setting of immunotherapy for malignant 
melanoma.

The ground truth was generated by a board-certified radi-
ologist (A.F.) by manually defining the center of the L3/L4 
vertebral disk with an in-house tool (Matlab, Mathworks). 
Data were randomly split into a training set (n = 192, 80%) 
and a hold-out test (n = 48, 20%) set. The method was addi-
tionally tested on dual-center test data (described below).

Model

The extraction of a single slice at L3/L4 lumbar level was 
formulated as a segmentation task. A 3D U-Net architec-
ture was trained using the nnU-Net framework, which has 
achieved high-performance values for various medical 
segmentation tasks and has the advantage of automatically 
adapting to different input sizes [18]. This is a relevant 
feature for the slice extraction task since the input are CT 
scans with a wide variety of scan lengths. The label map for 
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training of the network was generated by applying a Gauss-
ian distribution to the coordinates of the L3/L4 vertebral disk 
and binarizing the resulting probability map by a threshold 
[19]. Further details on image pre-processing, augmentation, 
and experimental design can be found in Supplement S1. For 
training, fivefold cross-validation was used and testing was 
performed with an ensemble of the cross-validated models.

Quality control

After training of the slice extraction method, a logistic 
regression model was built to automatically identify 3D CT 
scans that do not include the L3/L4 lumbar level. To obtain a 
balanced distribution of images with and without the L3/L4 
lumbar level, for each 3D CT scan of the training, hold-out 
and dual-center test set, a cropped version was created. The 
logistic regression model was trained based on the predicted 
volume of all validation cases of the cross-validated slice 
extraction nnU-Net and applied to all test sets. Additional 
information about cropping and feature selection can be 
found in Supplement S2.

Method development for tissue segmentation

Dataset

For the development of the tissue segmentation method 
(VAT, SAT, SM), retrospectively derived single slice images 
at the L3/L4 lumbar level from 1143 patients (559 female, 
mean age 77 ± 11 years) were used. 937 patients underwent 
pre-interventional CT for transcatheter aortic valve implan-
tation and 206 patients underwent diagnostic CT for liver 
cirrhosis with portosystemic shunting. The dataset inten-
tionally included a high number of patients with anasarca 
(19.2%), ascites (9.4%), or both anasarca and ascites (6.5%). 
The ground truth of the segmentation was defined by manual 
drawing and was also used to train a different CNN in a 
previous work, where additional details on the dataset are 
reported [13].

The data for method development were randomly split 
into a training set (n = 972, 85%) and hold-out test (n = 171, 
15%) set. The method was additionally tested on dual-center 
test data (described below).

Fig. 1  Schematic representation of the presented pipeline for auton-
omous body composition analysis. Input of the pipeline is a 3D CT 
scan. In the first part, a 3D convolutional neural network (CNN) was 
employed for slice extraction using nnU-Net. In the second part, a 
competitive dense fully connected CNN (CDFNet) is applied for 
segmentation of the body compartments. Classical machine learning 

methods were employed for integration of quality control steps. For 
the slice extraction part, a logistic regression model was developed 
that classifies the presence of L3/L4 lumbar level in the 3D CT scan. 
For segmentation of the different tissues, a linear regression model 
was established that predicts segmentation quality in terms of the 
Dice score
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Model

A 2D competitive dense fully convolutional network 
(CDFNet), which has shown promising results for body 
composition analysis in magnetic resonance imaging, 
was used for tissue segmentation [20]. This architecture 
is proposed as an extension of the Dense-UNet architec-
ture by max-out activation units. In a CDFNet, feature 
maps are generated by element-wise selection of the 
maximum values of previous feature maps, which has 
been shown to have a positive effect on performance 
and generalizability compared to unselective concatena-
tion [20–22]. Further details on image pre-processing, 
augmentation, experimental design and computation of 
the fatty muscle fraction are provided in Supplement 
S3.

For training, fivefold cross-validation was used and test-
ing was performed with an ensemble of the cross-validated 
models.

Quality control

To assess the predictive uncertainty of the segmentation dur-
ing employment, a linear regression model was developed 
that predicts the segmentation Dice score for the muscle 

class based on the average entropies of the probability 
maps. This metric is proposed by a recent work as a feature 
to estimate quality of medical image segmentation and to 
detect out-of-distribution samples and ambiguous cases [23]. 
Although this method could be applied to all tissue classes, 
we focused on the muscle class because we consider it the 
most important class for the assessment of sarcopenia.

The linear regression model was trained with the pre-
dictions of all validation cases of the cross-validated tissue 
segmentation CDFNet and tested on all test sets.

Dual‑center test data and end‑to‑end evaluation

The entire pipeline was finally evaluated end-to-end, i.e., from 
3D CT scan to extracted body composition metrics. The auto-
matically determined tissue areas and the fatty muscle frac-
tion were compared with the manually determined values. For 
this purpose, 3D CT scans of consecutive patients referred for 
diagnostic CT including imaging of the upper abdomen were 
retrospectively retrieved from two centers.

• Center A: 83 (41 females, mean age 60 ± 15  years) 
patients were used as internal test data from the Depart-
ment of Diagnostic and Interventional Radiology, Uni-

Fig. 2  Overview of the data sets used for method development and 
evaluation. The nnU-Net employed for extraction of a single slice at 
L3/L4 level from a 3D CT scan and the CDFNet for tissue segmen-
tation of the 2D CT slices were developed on two different datasets. 
Both methods were fivefold cross-validated and an ensemble of the 
cross-validated models was tested on the hold-out data. The regres-

sion models for integrated quality control (QC) were developed on 
the validation data of the cross-validated models and were also tested 
on the hold-out data. Finally, the entire pipeline of slice extraction, 
tissue segmentation, and quality control was evaluated end-to-end on 
the dual-center test data and compared against manual analyses
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versity Hospital Bonn. Data were acquired at four differ-
ent CT scanners.

• Center B: 281 (111 females, mean age 63 ± 16 years) 
patients were used as external test data from the Depart-
ment of Radiology and Nuclear Medicine, University 
Medical Centre Mannheim. Data were acquired at three 
different CT scanners.

In this data set, 10 patients had metallic implants. How-
ever, in the end-to-end evaluation, these cases were inten-
tionally not excluded. For demonstration of the tissue seg-
mentation quality control, a restrictive setting was applied 
excluding 10% of the cases with lowest predicted Dice score 
of the muscle class. End-to-end performance is reported for 
both included and excluded cases.

The ground truth for slice extraction and tissue segmenta-
tion was labeled by a radiology resident (B.W.) and a board-
certified radiologist (A.F.). All labels of the radiology resi-
dent were validated by the board-certified radiologist.

Additional information on dual-center test data can be 
found in Supplement S5.

Results

A summary of the results can be found in Fig. 3.

Slice extraction

The mean deviations between the predictions of the ensem-
ble of cross-validated slice extraction models and the manu-
ally defined ground truth were Δz = 2.27 ± 7.08 mm for the 
hold-out test data and Δz = 2.46 ± 6.20 mm for the dual-
center test data. Considering an acceptable deviation of up 
to 10 mm, 96% of the extracted slices of the hold-out test 
set and 96% of the dual-center test data were extracted at the 
correct level. The mean deviations are listed separately for 
all test sets in Table 1.

Tissue segmentation

The ensemble of fivefold cross-validated CDFNet models 
achieved excellent Dice scores, both on the hold-out test 
data (SM: 0.96 ± 0.02, VAT: 0.98 ± 0.02, SAT: 0.98 ± 0.01) 
and on the dual-center test data (SM: 0.95 ± 0.04, VAT: 
0.98 ± 0.02, SAT: 0.97 ± 0.04). Table 2 lists the Dice scores 
separately for each test set.

Quality control

Figure 4a shows the logistic regression model developed for 
identifying 3D CT scans that do not contain the L3/L4 level. 
High accuracy was observed for predicting the presence of 

Fig. 3  Summary of results: separate analyses of slice extraction, tis-
sue segmentation, and respective quality control (QC), as well as 
agreement between end-to-end automated and manual area measure-

ments of skeletal muscle (SM), visceral adipose tissue (VAT), sub-
cutaneous adipose tissue (SAT), and the fatty muscle fraction (FMF)
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the L3/L4 level in the original and cropped versions of the 
hold-out test data (100%) and also on the dual-center test 
data (center A: 99%, center B: 98%). Sensitivity and speci-
ficity were 97% and 99% for the dual-center test data.

The linear regression model developed for integrated 
quality control of the tissue segmentation is shown in Fig. 4b. 
Mean differences between the observed and the predicted 
Dice score for the hold-out test data were 0.016 ± 0.016 
(SM), 0.005 ± 0.005 (VAT), and 0.008 ± 0.010 (SAT) and for 
the dual-center 0.016 ± 0.016 (SM), 0.007 ± 0.012 (VAT), 
and 0.010 ± 0.015 (SAT).

End‑to‑end evaluation

Figure 5 shows examples of the end-to-end analyses. Appli-
cation of the logistic regression model to the dual-center test 
data, all of which contained the L3/L4 lumbar level, resulted 
in 14 of 364 3D CT scans with a warning that the scan may 
not contain the L3/L4 level. In three of these cases, the 
patients had implants at the L3/L4 level. For the remaining 
11 cases, the difference between predicted L3/L4 level and 
ground truth was Δz = 6.38 ± 10.77 mm. Except for the three 
patients with implants, none of the patients were excluded 
from further analyses. Subsequently, the linear regression 
model for integrated quality control of the tissue segmenta-
tion was applied. With a restrictive setting, 36 of 361 cases 
were flagged as possibly having limited segmentation qual-
ity with predicted Dice scores of the muscle class ranging 
from 0.861 to 0.924. In 5 of these 36 cases, the patients had 
implants at the L3/L4 level, and 4 patients had a pronounced 
hernia. In the remaining cases, there were various reasons 
for limited segmentation quality, such as parts of the arms 
included in the tissue segmentation or parts of the kidney 
classified as muscle. In total, 8 of 10 cases with metallic 
implants on the L3/L4 level were excluded by the two qual-
ity control steps. For the two cases not excluded by quality 

Table 1  Mean z-deviation (Δz) and slice extraction accuracy for different tolerance margins obtained with the cross-validated nnU-Net ensemble 
for the hold-out test set and for the additional test data from center A and center B

Slice extraction Mean, Δz [mm] Accuracy, Δz = 0 mm Accuracy, Δz <  = 5 mm Accuracy, 
Δz <  = 10 mm

Hold-out 2.27 ± 7.08 0.79 0.96 0.96
Center A 3.35 ± 4.10 0.51 0.88 0.99
Center B 2.19 ± 6.70 0.85 0.96 0.96

Table 2  Dice scores for segmentation of skeletal muscle (SM), vis-
ceral adipose tissue (VAT), and subcutaneous adipose tissue (SAT) 
obtained with the cross-validated CDFNet ensemble for the hold-out 
test set and for the additional test data from center A and center B

Tissue segmen-
tation

Dice score, SM Dice score, 
VAT

Dice score, SAT

Hold-out 0.958 ± 0.023 0.981 ± 0.015 0.982 ± 0.012
Center A 0.959 ± 0.021 0.981 ± 0.012 0.979 ± 0.038
Center B 0.944 ± 0.039 0.974 ± 0.027 0.969 ± 0.037

Fig. 4  Models trained for quality control: a Based on the predicted 
volume of the nnU-Net employed for slice extraction, a logistic 
regression model was trained to predict the presence of the slice at 
L3/L4 lumbar level in the 3D CT scan. b For prediction of the tissue 
segmentation quality in terms of the Dice score, a linear regression 

model was trained based on the entropy of the probability map of the 
CDFNet for the muscle class. Both regression models were built on 
features derived from cross-validation data of slice extraction and tis-
sue segmentation, respectively. Gray areas represent the 95% confi-
dence intervals
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control, only minor hardening artifacts were observed, as 
shown in Supplement 4S.

Results of the entire end-to-end evaluation are sum-
marized in Table  3. A high agreement was observed 
for the 325 cases of the dual-center data that passed the 
quality control. Body composition metrics and FMF 
derived from automated and manual analysis showed 

absolute differences in area of ΔSM = 5.0 ± 6.0  cm2, 
ΔVAT = 3.7 ± 5.8  cm2, and ΔSAT = 5.7 ± 10.4  cm2, corre-
sponding to low relative differences of ΔSM = 3.3 ± 4.1%, 
ΔVAT = 3.0 ± 4.7%, and ΔSAT = 2.7 ± 4.3%. Also for 
FMF, low absolute deviations of ΔFMF = 0.014 ± 0.012 
and relative deviations of ΔFMF = 4.3 ± 4.4% were 
observed.

Fig. 5  Compartmental areas of visceral adipose tissue, subcutaneous 
adipose tissue (VAT, SAT), skeletal muscle (SM), and fatty muscle 
fraction (FMF) derived for patients from center A (a) and center B 

(b). Manual analysis is marked in green, while results from the pro-
posed pipeline are marked with a red line
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Discussion

This paper presents a method that allows the application of 
body composition analysis without human interaction, thus 
permitting opportunistic determination of body compart-
ment areas and FMF as a marker for sarcopenia in routine 
clinical practice. For both CNNs applied in the pipeline, the 
trained networks are available on reasonable request (https:// 
qilab. de).

In recent years, a variety of deep learning methods have 
been presented that address the topic of automated body 
composition analysis. Most of these studies focus on the 
segmentation of the tissue compartments in a single slice at 
a certain lumbar level, as it has been demonstrated that 2D 
and 3D measurements for quantification of VAT, SAT, and 
SM show a high correlation [9–14]. Although very recent 
works have also addressed automation of slice extraction, 
routine clinical application additionally requires the integra-
tion of quality control methods for both slice extraction and 
tissue segmentation [15, 16]. For this purpose, two classic 
machine learning models have been developed in this study. 
The developed pipeline therefore provides full automation 
of body composition analysis in abdominal CT, including 
deep-learning-based slice extraction and tissue segmentation 
and integrated application of quality control models.

Compared to previous research in the field of automated 
body composition analyses, we observed similar or supe-
rior performance values for slice extraction task and tissue 
segmentation in our study [12–17]. In previous work, the 
slice extraction task was formulated either as a regression 
problem, a classification task, or, similar to our approach, a 
segmentation problem [15–17]. While the methods proposed 
so far for slice extraction are based on 2D images or require 
the generation of a maximum intensity projection in a pre-
processing step, the use of the nnU-Net framework allows 
the direct input of 3D CT datasets of different sizes. For 
tissue segmentation, different variants of a 2D U-Net archi-
tecture have been used [12, 15–17]. The CDFNet architec-
ture applied in the current study is an extension of a Dense-
UNet architecture with max-out activation units, which has 
recently also been successfully used for body composition 

analyses in magnetic resonance imaging [20]. A detailed 
comparison to previous work can be found in Supplement 
S6.

For the development of the tissue segmentation CNN, 
patient collectives were included that also represent tissue 
alterations, as ascites and anasarca, which are challenging 
for body composition analysis [14]. In addition, segmenta-
tion results from other studies show the disadvantages of 
using only threshold-based pre-processing steps to define 
segmentation ground truth, resulting in misclassification 
of intermuscular fat to one of the abdominal adipose tis-
sue classes (VAT, SAT) [15]. To overcome this limitation, 
intermuscular fat was manually assigned to the muscle class 
in this study, allowing additional analyses of muscle [13].

Several aspects of body composition, such as skeletal 
muscle fat infiltration as an indicator of skeletal muscle 
quality were shown to provide prognostic information in 
patients with cardiovascular and oncologic diseases [1–3]. 
Thereby, FMF was recently proposed as an easy-accessible 
body composition metric which may be considered particu-
larly promising as it additionally integrates information on 
skeletal muscle quality [1, 5]. Previous studies have demon-
strated its prognostic value both as an indicator of frailty in 
patients with planned endovascular aortic valve replacement 
as well as an powerful predictor of outcome in critically ill 
patients receiving extracorporeal membrane oxygenation 
therapy [1, 6].

A recent work on 3D tissue segmentation points out that 
for a truly automated application of body compartment 
analysis, the development of quality assurance procedures 
is warranted to identify patients with metal artifacts [24]. 
The dual-center end-to-end analysis presented in the current 
work demonstrates that the proposed quality control ensures 
a high agreement between manual and automated analyses 
by identifying cases that are unsuitable for body composi-
tion analyses not only due to hardening artifacts but also due 
to other reasons limiting the segmentation quality. Interest-
ingly, end-to-end performance analysis of cases flagged by 
quality control as having limited segmentation quality shows 
that FMF is quite robust to segmentation errors.

Table 3  Evaluation of the end-to-end performance of the body composition analyses

Absolute and relative differences (in parentheses) between the values obtained with the proposed pipeline and the manually determined values 
are listed separately for center A and center B and for all 3D CT scans that were included and excluded by restrictive setting of the tissue seg-
mentation quality control. The excluded cases show markedly lower agreement of muscle area, while FMF agreement is still reasonably good 
(marked in bold)

Center Quality control Fatty muscle fraction Muscle area  (cm2) Visceral fat area  (cm2) Subcutaneous fat area  (cm2)

A Passed, n = 82 0.009 ± 0.008 (3.1% ± 3.5%) 3.7 ± 4.1 (2.7% ± 4.4%) 3.6 ± 4.3 (2.7% ± 3.6%) 5.4 ± 5.3 (2.7% ± 3.0%)
B Passed, n = 243 0.016 ± 0.013 (4.8% ± 4.6%) 5.4 ± 6.4 (3.5% ± 4.0%) 3.8 ± 6.2 (3.1% ± 5.0%) 5.8 ± 11.7 (2.8% ± 4.6%)
A Excluded, n = 1 0.046 (9.3%) 16.0 (16.6%) 2.0 (2.3%) 14.9 (10.8%)
B Excluded, n = 35 0.033 ± 0.036 (6.1% ± 6.6%) 18.6 ± 21.6 (14.1% ± 15.6%) 7.2 ± 10.4 (7.0% ± 8.6%) 18.4 ± 29.5 (7.8% ± 9.5%)
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As a limitation of this study, only the areas of VAT, SAT, 
and SM are determined in a single slice instead of deter-
mining the respective tissue volumes in the entire abdomen. 
However, we are not aware of studies demonstrating that a 
3D approach has significant advantages over the established 
2D measurement for assessment of sarcopenia. Also, refer-
ence values for body compartments have so far only been 
determined in large studies for 2D measurements [15].

Conclusion

This study presents an end-to-end automated deep-learning 
pipeline for large-scale opportunistic assessment of body 
composition metrics and sarcopenia biomarker in clinical 
routine.
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