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Blood viscosity is an important determinant of local flow characteristics, which exhibits
shear thinning behavior: it decreases exponentially with increasing shear rates. Both
hematocrit and plasma viscosity influence blood viscosity. The shear thinning property
of blood is mainly attributed to red blood cell (RBC) rheological properties. RBC
aggregation occurs at low shear rates, and increases blood viscosity and depends on
both cellular (RBC aggregability) and plasma factors. Blood flow in the microcirculation
is highly dependent on the ability of RBC to deform, but RBC deformability also affects
blood flow in the macrocirculation since a loss of deformability causes a rise in blood
viscosity. Indeed, any changes in one or several of these parameters may affect blood
viscosity differently. Poiseuille’s Law predicts that any increase in blood viscosity should
cause a rise in vascular resistance. However, blood viscosity, through its effects on wall
shear stress, is a key modulator of nitric oxide (NO) production by the endothelial NO-
synthase. Indeed, any increase in blood viscosity should promote vasodilation. This is
the case in healthy individuals when vascular function is intact and able to adapt to blood
rheological strains. However, in sickle cell disease (SCD) vascular function is impaired. In
this context, any increase in blood viscosity can promote vaso-occlusive like events. We
previously showed that sickle cell patients with high blood viscosity usually have more
frequent vaso-occlusive crises than those with low blood viscosity. However, while the
deformability of RBC decreases during acute vaso-occlusive events in SCD, patients
with the highest RBC deformability at steady-state have a higher risk of developing
frequent painful vaso-occlusive crises. This paradox seems to be due to the fact that
in SCD RBC with the highest deformability are also the most adherent, which would
trigger vaso-occlusion. While acute, intense exercise may increase blood viscosity in
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healthy individuals, recent works conducted in sickle cell patients have shown that light
cycling exercise did not cause dramatic changes in blood rheology. Moreover, regular
physical exercise has been shown to decrease blood viscosity in sickle cell mice, which
could be beneficial for adequate blood flow and tissue perfusion.

Keywords: blood rheology, red blood cell deformability, red blood cell aggregation, sickle cell disease, exercise

BLOOD FLOW RESISTANCE AND THE
CARDIOVASCULAR SYSTEM

Flow velocity in a given tube depends on pressure and
flow resistance. According to Poiseuille’s Law (Poiseuille,
1835), flow resistance depends on the geometry of the tube
[length (L) and radius of the tube (r)] and the fluid’s
viscosity (η), and is calculated using the following formula:

R =
8η L
π r4

When applying Poiseuille’s Law to the cardiovascular
system, one must consider the radius and the length of
the vessels, and the viscosity of the blood. The dimensions
of the vascular system (most notably the radius, which is
raised to the fourth power) play a more important role
in determining vascular resistance than blood viscosity
does. However, several works conducted in the past 10–
15 years have shown that, in a physiological context, the
parameters of this equation cannot be considered to be
truly independent of each other. This is because vessels
are not rigid tubes; they can change their diameters in
response to various physiological stimuli. One of the most
important molecules that promotes an augmentation in
vascular diameter (i.e., vasodilation) is nitric oxide (NO).
Martini et al. (2005), Tsai et al. (2005), Intaglietta (2009), and
Sriram et al. (2012) showed that mild to moderate increases
in hematocrit and blood viscosity did not result in a rise in
vascular resistance or blood pressure, but actually caused
the opposite effect. They also showed that increasing blood
viscosity promoted the activation of endothelial NO-synthase
through shear stress-dependent mechanisms, resulting in
higher NO production, compensatory vasodilation, and
decreased arterial pressure. However, evidence shows that
these vascular adaptations can only occur in a functioning
vascular system with a healthy endothelium. When vascular
dysfunction is present, vasodilation is impaired. Therefore,
a rise in blood viscosity is not accompanied by an increase
in vasodilation. As a result, vascular resistance and arterial
pressure increase (Vazquez et al., 2010; Salazar Vazquez
et al., 2011). Although the role of blood viscosity in vascular
adaptations is often ignored, these studies clearly demonstrate
that vascular geometry and blood viscosity should not be
considered separately when studying the regulation of
vascular resistance in healthy populations or in people with
cardiovascular diseases.

BLOOD IS NOT A SIMPLE FLUID

Whole blood is a two-phase liquid, composed of cellular elements
suspended in plasma, an aqueous solution containing organic
molecules, proteins, and salts (Baskurt and Meiselman, 2003).
The cellular phase of blood includes, erythrocytes, leukocytes,
and platelets. White blood cells and platelets can affect blood
rheology, but under normal conditions, red blood cells (RBCs)
have the biggest influence (Pop et al., 2002). Blood rheological
properties are determined by the physical properties of these two
phases and their relative contribution to total blood volume.

Blood is a non-Newtonian, shear thinning fluid with
thixotropic and viscoelastic properties. Many cardiovascular
handbooks consider blood viscosity values between 3.5 and 5.5 cP
to be normal. However, blood viscosity cannot be summarized by
a single value. Due to the shear thinning property of blood, which
is dependent on RBC rheological properties, the viscosity of this
fluid changes depending on the hemodynamic conditions. The
same blood can have a viscosity value of 60 cP at a shear rate of
0.1 s−1, whereas the viscosity would be 5 or 6 cP at a shear rate of
200 s−1. This means that blood viscosity is different in the large
arteries, the veins, and the microcirculation, where shear rate can
vary from few s−1 to more than 1000 s−1 (Connes et al., 2016).
Blood viscosity depends on several factors: hematocrit, plasma
viscosity, the ability of RBCs to deform under flow, and RBC
aggregation-disaggregation properties (Baskurt and Meiselman,
2003; Cokelet and Meiselman, 2007).

Effect of Hematocrit
Whole blood viscosity is dependent on the number (and volume)
of erythrocytes in the blood, and is thus linearly related to
hematocrit (Chien et al., 1975).The impact of hematocrit on
blood viscosity is much higher at low shear rates (veins for
instance) than at high shear rate (arteries for instance) (Cokelet
and Meiselman, 2007). At high shear rate, it is estimated that a
rise of hematocrit of one unit would cause an increase of blood
viscosity of 4% (if RBC rheological properties remain the same).

Plasma Viscosity
Plasma is a newtonian fluid, which means that its viscosity does
not vary with shear rate. The viscosity of plasma is dependent
on the concentration of plasma proteins, such as fibrinogen,
α1-globulins, α2-globulins, β-globulins, and γ-globulins (Connes
et al., 2008). Any elevation in the concentration of these proteins
can cause plasma, and thus whole blood, viscosity to increase
(Kesmarky et al., 2008). Normal plasma at 37 degrees Celsius
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has a viscosity of around 1.2–1.3 cP, but these values may be
higher in various inflammatory, metabolic, or cardiovascular
diseases (Kesmarky et al., 2008). Furthermore, increased plasma
viscosity is associated with higher rates of adverse clinical events
in unstable angina pectoris and stroke (Kesmarky et al., 2008).

RBC Deformability
Red blood cell deformability is another important determinant
of blood viscosity. RBC deformability depends on several factors,
including internal (cytosolic) viscosity (mainly determined by the
mean cell hemoglobin concentration), membrane viscoelasticity
(which is dependent on cytoskeleton proteins and lipid bilayer
properties), and the surface-area-to-volume ratio (also called cell
sphericity) (Clark et al., 1983; Renoux et al., 2019). At low shear
rates, rigid RBCs are less likely to aggregate than deformable
RBCs. Therefore, a loss of RBC deformability at very low shear
rates (less than 1 s−1) results in a decrease in blood viscosity
(Chien et al., 1970). In contrast, at shear rates above 1 s−1, a
decrease in RBC deformability causes blood viscosity to increase
(Chien et al., 1970).

Initial experiments done to analyze RBC deformability in
blood flow were conducted in the 1970s and 1980s using
microtubes (Goldsmith et al., 1972) and rheoscopes (Fischer
et al., 1978). These studies demonstrated that, as shear stress
increases, normal RBCs align with the direction of flow by
deforming into an elliptical shape via a “tank tread-like” motion
of the cell membrane around the cytoplasm (Schmid-Schonbein
et al., 1969; Goldsmith et al., 1972; Fischer et al., 1978). Rigid
RBCs, on the other hand, cannot properly deform into an
ellipse and remain perpendicular to blood flow, consequently
increasing vascular resistance. In these fundamental experiments,
RBCs were suspended in solutions, such as dextrose, with higher
viscosities than the internal viscosity of a RBC (Goldsmith
et al., 1972; Fischer et al., 1978). However, when a RBC is
flowing in plasma in vivo, the plasma viscosity is lower than the
viscosity of the erythrocyte’s cytosol. This is important because
recent experiments reveal that the “tank-treading” behavior
of erythrocytes does not occur when RBCs are suspended in
solutions with lower viscosities that are more similar to plasma
viscosity in vivo (Dupire et al., 2012). Instead, observations
by Lanotte et al. (2016) showed that RBCs display a wide
variety of cell shapes for any given flow condition. For example,
erythrocytes in dilute suspensions behave like rigid oblate
ellipsoids at low shear rates (<1 s−1). Then, as shear rates
increase, the erythrocytes successively tumble, roll, and deform
into stomatocytes, and eventually adopt highly deformed poly-
lobed. The findings of Lanotte et al. (2016) suggest that the
pathological alterations of multiple parameters, including plasma
composition, erythrocyte cytosol viscosity, and/or membrane
mechanical properties could contribute to pathological blood
rheology and flow. Further research should be conducted to
determine how decreased RBC deformability could affect RBC
shape transitions.

Red blood cell deformability is also a key determinant of
blood flow in the microcirculation. RBCs are bi-concave disks
with an average diameter of around 7–8 µm. Capillaries can
have a diameter of less than 5 µm. Therefore, RBC must be

highly deformable to pass through the narrowest vessels of the
microcirculation. A 15% decrease in RBC deformability has been
shown to cause a 75% increase in whole flow resistance in
isolated perfused rat hind limbs (Baskurt et al., 2004). Moreover,
when dog lungs were perfused with rigid RBC, whole pulmonary
arterial pressure increased, and the main increase was localized in
the microcirculation (Hakim, 1988; Raj et al., 1991). Indeed, any
decrease of RBC deformability may affect flow resistance, tissue
perfusion, and oxygenation (Parthasarathi and Lipowsky, 1999).

RBC Aggregation
Red blood cell aggregation is the reversible formation of three-
dimensional stacks of RBC, called “rouleaux,” which takes place
at low shear rates. This unique process requires low energy and
is reversible under high shear rate conditions. RBC aggregation
depends on both plasma and cellular factors. Initially, most
research on RBC aggregation formation was focused on the
effects of protein levels, polymer type, and concentration. More
recent research has shown that RBC cellular properties can also
modulate a cell’s intrinsic tendency to aggregate (termed RBC
aggregability) (Baskurt and Meiselman, 2009). For example, RBC
surface properties, including surface charge and glycocalyx depth,
also play an important role in this process. Two models have been
proposed to explain RBC aggregation mechanisms (Meiselman
et al., 2007), the depletion model and the bridging model.
The depletion model suggests that RBC aggregates are formed
due to osmotic pressure from surrounding plasma proteins
or other macromolecules. The bridging model suggests that
aggregates form due to “crossbridges,” made of plasma proteins
or other macromolecules (Rampling et al., 2004). Fibrinogen is
the most physiologically relevant macromolecule that promotes
RBC aggregation (Rampling et al., 2004), but other molecules,
including thrombospondin and the von-Willebrand factor, also
play a role (Nader et al., 2017).

The impact of RBC aggregation on blood flow, tissue perfusion
and vascular resistance is complex and depends on the vascular
areas where RBC aggregates are flowing. RBC aggregates usually
form in low shear rate areas, such as in veins or in bifurcations.
Therefore, increased RBC aggregation would cause a dramatic
increase of blood viscosity in these zones. RBC aggregates
disaggregate in high shear rate areas, such as in arteries and
arterioles. However, it has been demonstrated that some RBC
aggregates can persist in large arteries and affect flow dynamics.
Increased RBC aggregation has been shown to promote RBC
axial migration in these vessels, which in turn increases the
cell free layer width (Baskurt and Meiselman, 2007). This
latter phenomenon has three main consequences: (i) a decrease
of apparent dynamic blood viscosity and of flow resistance,
(ii) a decrease of wall shear stress, which in turn results
in a lower activation of endothelial NO-synthase, lower NO
production, and less vasodilation, and (iii) an increase of plasma
skimming phenomena at bifurcations, which in turn lowers
microcirculatory hematocrit and blood viscosity (Fharaeus and
Fahraeaus–Lindqvist effects).

At the microcirculatory level, persisting RBC aggregates may
increase pre-capillary resistance. Experiments performed on large
glass tubes also shown that the consequences of RBC aggregation
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on flow resistance are dependent on the orientation of the
tube (vertical vs. horizontal) (Cokelet and Goldsmith, 1991). In
horizontal tubes, elevated RBC aggregation increases RBC
sedimentation, thereby increasing flow resistance. On the other
hand, in vertical tubes RBC aggregation increases RBC axial
migration and facilitates blood flow. For this reason, the
consequences of increased RBC aggregation on blood flow are
difficult to predict. However, experiments done on whole organs,
such as guinea pig hearts, reported that gradually increasing
RBC aggregation causes a 3-phase evolution of blood flow
resistance (Yalcin et al., 2005). First, when RBC aggregation was
increased by 50–100%, the authors observed a rise in blood
flow resistance. Next, a 100–150% increase in RBC aggregation
caused blood flow resistance to decrease. Finally, an increase
in RBC aggregation of over 150% caused blood flow resistance
to increase once again. Overall, predicting the consequences
of increased RBC aggregation in vivo appears to be complex.
However, clinical works performed to study aggregation in
cardiovascular, metabolic, or inflammatory diseases consistently
show that people with these diseases generally have higher RBC
aggregation levels than healthy individuals, and the elevated
aggregation contributes to the development of adverse disease
outcomes (Totsimon et al., 2017; Biro et al., 2018; Brun et al.,
2018; Ko et al., 2018; Lapoumeroulie et al., 2019; Piecuch et al.,
2019; Sheremet’ev et al., 2019).

SICKLE CELL DISEASE, BLOOD
RHEOLOGY AND VASCULAR
DYSFUNCTION

Sickle cell disease (SCD) is the most prevalent genetic disease in
the world. Sickle cell anemia (SCA) is by far the most common
form of SCD, followed by hemoglobin SC disease (SC) (Piel et al.,
2010).It is estimated that more than 300,000 children are born
each year with a severe inherited hemoglobinopathy, over 80%
of these infants are born in low-or middle-income countries, and
approximately 220,000 are affected by SCA (Piel et al., 2010).

Sickle Cell Anemia as a Hemorheological
Disease
Sickle cell anemia is caused by a single nucleotide mutation
(adenine→ thymine) in exon I of the β-globin gene. This point
mutation (rs334 T) leads to the production of sickle hemoglobin
(HbS), due to the substitution of valine for glutamic acid at the
sixth position of the β-globin chain. The hydrophobic residue of
valine associates with other hydrophobic residues, which causes
HbS molecules to aggregate, forming fibrous precipitates when
hemoglobin is deoxygenated. This phenomenon is called “HbS
polymerization,” and is responsible for the characteristic shape
change, termed “sickling,” of RBCs. Sickle RBC are rigid, and
therefore do not easily flow through the microcirculation, causing
frequent vaso-occlusive episodes in affected patients. In addition,
when RBCs lose their deformability, they become more fragile
and prone to hemolysis, which is the root cause of chronic
hemolytic anemia in SCA (Connes et al., 2014).

Although the loss of RBC deformability is a fundamental
characteristic of SCA, patients exhibit varying degrees of RBC
rigidity, which can differentially affect SCA disease severity
and complications (Renoux et al., 2016). Newborns usually
have almost normal RBC deformability because they still
have a high percentage of fetal hemoglobin (HbF) (Renoux
et al., 2016). However, when patients become older HbF
is replaced by HbS, and, as a result, RBC deformability
decreases (Renoux et al., 2016). Hydroxyurea (HU) therapy
can affect RBC deformability because HU stimulates HbF
synthesis, thereby improving RBC deformability, although the
deformability values still remain lower than in the healthy
population (Lemonne et al., 2015). In individuals who are
not under HU therapy, the presence or absence of alpha-
thalassemia can also modulate RBC deformability (Renoux
et al., 2017), as the inheritance of alpha-thalassemia results in
decreased production of HbS (Rees et al., 2010) and thus lower
HbS polymerization.

Rigid, sickle deformed RBC can cause pre-capillary
obstruction and contribute to vaso-occlusion (Rees et al., 2010).
Furthermore, RBC deformability further decreases during acute
vaso-occlusive events. However, patients (adults and children
over 5 years of age) who have the highest RBC deformability at
steady-state, and who are not under HU therapy, actually have a
higher risk of developing frequent painful vaso-occlusive crises,
as well as osteonecrosis (Lamarre et al., 2012; Lemonne et al.,
2013; Renoux et al., 2017). This paradox seems to be due to the
fact that in SCA, RBC with the highest deformability are also the
most adherent, which would trigger vaso-occlusion (Ballas et al.,
1988). On the other hand, individuals who have improved RBC
deformability as a result of HU therapy do not have an elevated
risk of vaso-occlusive crisis because HU inhibits RBC, platelets
and WBC adhesion to the vascular wall via several mechanisms
(Bartolucci et al., 2010; Laurance et al., 2011; Chaar et al., 2014;
Pallis et al., 2014; Verger et al., 2014). RBC aggregation is usually
lower in SCA patients because of low hematocrit and the inability
of irreversible sickle cell to form aggregates. However, the formed
RBCs aggregates are reported to be much more robust than in
healthy population which could further alter blood flow and
tissue perfusion at the pre and post capillary levels (Tripette et al.,
2009; Connes et al., 2014).

Sickle cell anemia patients with the highest degree of
chronic hemolysis (i.e., those with the most severe anemia)
are usually characterized by a severe and chronic reduction
of RBC deformability as well as the presence of robust RBC
aggregates, and seem to be more prone to develop complications
such as leg ulcers, priapism and glomerulopathy (Bartolucci
et al., 2012; Connes et al., 2013a; Lamarre et al., 2014). In
contrast, patients with the highest RBC deformability tend to
have less severe anemia and increased blood viscosity, which
could increase the risk of developing frequent vaso-occlusive
like complications (Nebor et al., 2011; Lamarre et al., 2012;
Charlot et al., 2016). Surprisingly, a recent study did not show a
further rise of blood viscosity during acute painful vaso-occlusive
crisis (Lapoumeroulie et al., 2019). Instead, the authors found a
decrease of RBC deformability, as a result of massive RBC sickling
(Ballas and Smith, 1992), and a rise in RBC aggregation and RBC
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aggregates robustness, which would probably impair blood flow
into the microcirculation (Lapoumeroulie et al., 2019).

Vascular Function Cannot Compensate
for the Hemorheological Alterations in
SCA
As previously discussed, recent works have demonstrated that
increased blood viscosity does not systematically cause a rise in
vascular resistance in healthy individuals (Vazquez et al., 2010;
Salazar Vazquez et al., 2011). Instead, increasing blood viscosity
can facilitate vasodilation and decrease vascular resistance
through shear stress-dependent mechanisms, which increase NO
production. However, when endothelial/vascular dysfunction is
present, like in SCA (Kato et al., 2007; Ataga et al., 2016; Charlot
et al., 2016), vasodilation is impaired. Therefore, a rise in blood
viscosity cannot be fully compensated for, and could increase
the risk of frequent vaso-occlusive crises (Lemonne et al., 2012;
Charlot et al., 2016).

Chronic hemolysis is highly implicated in the development of
vascular dysfunction in SCA. Once hemoglobin is released into
the plasma it autoxidizes, forming free heme, iron, and reactive
oxygen species, which cause eNOS uncoupling, and decrease
NO bioavailability (Kato et al., 2007).These alterations limit the
relaxation of vascular smooth muscle, and contribute to the
onset of vaso-occlusive crises (Hebbel et al., 2004). In addition,
hemolysis releases the arginase contained in erythrocytes into
the plasma. The free arginase hydrolyzes arginine, which is the
NO precursor, to ornithine and urea, thereby exacerbating the
decrease of NO bioavailability (Kato et al., 2007).

Xanthine oxidase (XO) also contributes to vascular
dysfunction in SCA. Aslan et al. (2001) demonstrated that
episodes of intrahepatic hypoxia-reoxygenation, which can occur
in SCA, induce the release of plasma XO. The released XO
can impair vascular function by binding to the vessel luminal
cells. This creates an oxidative milieu, which results in NO
scavenging via an oxygen free radical-dependent mechanism.
Furthermore, Mockesch et al. (2017) recently showed that loss of
microvascular function in children with SCA was significantly
associated with both nitrotyrosine and markers of systemic
oxidative stress. These findings confirm the important roles
oxidative stress and NO scavenging play in the development of
vascular dysfunction in SCA.

Circulating extra-vesicles, such as microparticles (Camus
et al., 2012, 2015) and exosomes (Khalyfa et al., 2016), are
also thought to play a role in the development of vascular
dysfunction in SCA. Indeed, Camus et al. (2012) demonstrated
that infusion of in vitro-generated RBC microparticles caused
kidney vaso-occlusion in sickle cell mice. Additionally, Khalyfa
et al. (2016) demonstrated that exosomes isolated from SCA
patients with frequent vaso-occlusive crises decreased endothelial
permeability and promoted P-selectin expression on cultured
endothelial cells. The exosomes isolated from SCA patients
with frequent vaso-occlusive crises also significantly increased
the adhesion of monocytes to the vascular wall in mice,
compared with exosomes isolated from SCA patients with
a less severe phenotype. Overall, these works suggest that

therapies focusing both on blood rheology and vascular
function could be helpful to decrease the clinical severity
of SCA patients.

EXERCISE AND BLOOD RHEOLOGY IN
HEALTHY INDIVIDUALS AND
INDIVIDUALS WITH SCA

Blood rheology plays an important role in the regulation of tissue
perfusion at rest and during exercise. For example, RBCs need
to be highly deformable to easily flow through small capillaries
and transport oxygen to the tissues (Parthasarathi and Lipowsky,
1999). Any changes in RBC rheological properties during exercise
may affect blood viscosity (Baskurt and Meiselman, 2003),
which in turn may impact blood flow and exercise performance
(Connes et al., 2013b; Waltz et al., 2015). Several investigators
have reported significant correlations between blood fluidity and
indices of physical fitness in sportsmen, such as time of endurance
until exhaustion, aerobic working capacity at 170 W (W170), and
maximal oxygen consumption (VO2max) (Ernst et al., 1985; Brun
et al., 1986, 1989, 1995).

The Effect of Acute Cycling Exercise on
Blood Viscosity and Its Determinants in
Healthy Individuals
Most of the studies conducted in the eighties and nineties to
investigate the acute effects of exercise on blood rheology focused
on cycling efforts performed by moderately trained subjects
(Brun et al., 1998). These studies reported that acute cycling
exercise caused blood viscosity measured at high shear rate (i.e.,
100–200 s−1) to increase by more than 15% above pre-exercise
values (Brun et al., 1998; Connes et al., 2004a, 2013b; Figure 1).
This increase in blood viscosity has been attributed to changes
in plasma viscosity, hematocrit, and RBC rheological properties
(Brun et al., 1998).

Multiple studies have shown that an acute bout of maximal
or submaximal cycling exercise may cause plasma viscosity to
increase by 10–12%, compared to resting values (Ernst, 1985;
Ernst et al., 1991b; Brun et al., 1994b, 1998; Bouix et al.,
1998; Connes et al., 2004b). This increase has been attributed
to a rise in plasma protein content, such as fibrinogen, α1-
globulins, α2-globulins, β-globulins, and γ-globulins during
exercise (Nosadova, 1977; Convertino et al., 1981; Vandewalle
et al., 1988; Wood et al., 1991).

Several studies have also shown that an acute cycling exercise
can result in a 10–12% (i.e., 3–4 units) rise in hematocrit,
when compared to pre-exercise values (Brun et al., 1994b;
Bouix et al., 1998; Connes et al., 2004a). The effect of elevated
hematocrit on blood viscosity at high shear rates has been well
described (Cokelet and Meiselman, 2007). A 1-unit increase in
hematocrit can cause a 4% increase in blood viscosity. This rise
in hematocrit has been attributed to several mechanisms such
as fluid shift between intra- and extra-vascular spaces (Sjogaard
et al., 1985; Ploutz-Snyder et al., 1995), dehydration (Nosadova,
1977; Stephenson and Kolka, 1988) the release of sequestered
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FIGURE 1 | Effects of different kind of exercise on blood viscosity measured at
several shear rates in the same trained subject (maximal oxygen consumption,
VO2max = 64 ml/kg/min). The maximal treadmill and cycling tests consisted in
a progressive and maximal exercise conducted until VO2max and performed
in laboratory conditions (temperature: 24◦C). The 10 km running was
performed outdoor (20◦C) and at the highest intensity the subject could run.
Indeed, the subject ran at 77% of his maximal aerobic velocity determined on
the treadmill and reached a heart rate of 92% of his maximal heart rate. The
subject did not drink water during each test. For the three tests, blood was
sampled immediately at the end of the exercise and blood viscosity was
measured with the same cone-plate viscometer within 1 h after sampling.

RBCs from the spleen (Isbister, 1997), and water trapping in
muscle (Ploutz-Snyder et al., 1995).

Acute cycling exercise can also modulate RBC deformability.
Several authors have reported a decrease in RBC deformability
during and immediately after exercise (Reinhart et al., 1983; Galea
and Davidson, 1985; Gueguen-Duchesne et al., 1987; Brun et al.,
1993, 1994a; Oostenbrug et al., 1997; Yalcin et al., 2000, 2003).
This decrease could be a consequence of lactic acid and reactive
oxygen species production that occurs during exercise (Connes
et al., 2013b). The accumulation of lactate ions and the decrease
in pH would promote RBC dehydration through the activation
of several RBC cationic channels, leading to RBC shrinkage and
decreased RBC deformability (Van Beaumont et al., 1981; Lipovac
et al., 1985; Smith et al., 1997; Connes et al., 2004c). Moreover,
several groups have suggested that oxidative stress could also
play a role in the decreased RBC deformability through the
oxidation of membrane lipid and protein components (Senturk
et al., 2005a,b; Connes et al., 2013b). However, the magnitude
of the change in RBC deformability that occurs during exercise
seems to depend on the training status and physical fitness of the
subjects. For instance, Senturk et al. (2005a) reported that a short,
progressive, maximal cycling exercise test promoted oxidative
stress in both sedentary and well-trained subjects, but they only
observed a decrease in RBC deformability and an increase of RBC
fragility in sedentary individuals.

Very few studies have observed RBC aggregation during
cycling exercise, and the results of these studies are very
heterogeneous (Connes et al., 2013b). Yalcin et al. (2003) found
that RBC aggregation decreased after a Wingate exercise test.
In contrast, Ernst et al. (1991b) observed a transient increase in
RBC aggregation above pre-exercise values after 1 h of pedaling
at a heart rate of 150 beats min−1. RBC aggregation then
returned to baseline during the 2 h following the cycling test.
Varlet-Marie et al. (2003) and Connes et al. (2007) found no
change in RBC aggregation in response to submaximal/maximal
cycling exercise. The discrepancies observed are not very
well understood and might be related to the (1) kind of
exercise performed (short versus prolonged exercise), (2) time
of measurement during exercise (i.e., immediately at the end of
exercise or few minutes after), (3) time delay for measurement
after sampling, and (4) procedure used for RBC aggregation
measurement (adequate oxygenation and adjusted hematocrit
before measurement or not).

On the whole, these changes lead to a rise in blood
viscosity during acute cycling exercise. Large elevations in blood
viscosity have generally been considered to be deleterious for
the cardiovascular system (Brun et al., 1998; Connes et al.,
2013b). However, Connes et al. (2012) reported a positive
correlation between the magnitude of change in blood viscosity
and the magnitude of change in NO end-stable products, and a
negative correlation between the magnitude of change in blood
viscosity and the magnitude of change in vascular resistance.
These findings suggest that increasing blood viscosity during
exercise could be a way to stimulate endothelium-dependent NO
production through shear stress-related mechanisms. In healthy
individuals, this would result in compensatory vasodilation,
thereby preventing any large increases in vascular resistance.

Acute Running Exercise, Blood Viscosity
and Its Determinants in Healthy
Individuals
Surprisingly, in contrast to cycling exercises, running exercises,
such as a marathon or a 10-km race, do not cause a rise
in blood viscosity (Neuhaus et al., 1992; Tripette et al., 2011;
Figure 1). The main reason is that hematocrit and plasma
viscosity usually remain very stable during these kinds of efforts,
despite dehydration (Galea and Davidson, 1985; Neuhaus et al.,
1992; Neuhaus and Gaehtgens, 1994). It has been hypothesized
that the lack of change in hematocrit could be explained by
repeated RBC foot strike hemolysis during running (Neuhaus
et al., 1992; Neuhaus and Gaehtgens, 1994; Tripette et al., 2011;
Connes et al., 2013b). However, a recent study in which highly
trained subjects performed a progressive and maximal treadmill
test did not observe any signs of RBC damage or eryptosis (Nader
et al., 2018). However, the picture could be slightly different
during ultra-running events. For instance, Robach et al. (2014)
reported increased hemolysis and large plasma volume expansion
immediately after a 166-km long mountain ultra-endurance
marathon with 9500 m of altitude gain/loss. The impact of these
changes on blood rheology has not been investigated and further
studies are needed to address this question.
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Surprisingly, Nader et al. (2018) found a slight but significant
increase in RBC deformability in response to a short and
maximal exercise test. Indeed, although hematocrit increased,
blood viscosity remained unchanged (and tended to decrease), as
has been observed in previous studies (Neuhaus and Gaehtgens,
1994; Tripette et al., 2011). The findings suggest that the slight
increase in RBC deformability could have compensated for
the rise in hematocrit observed during short running events,
resulting in a lack of change in blood viscosity. The impact
of ultra-run events on RBC deformability is unknown. Several
other groups found a slight increase in RBC deformability during
running (Suhr et al., 2012) and cycling (Connes et al., 2009)
exercises. Although the exact reasons for these findings are
unknown, it has been suggested that increased NO production
during exercise could increase RBC deformability. One of the
first works to suggest that NO could affect RBC deformability
was the study of Starzyk et al. (1997), which demonstrated
that intravenous infusion of L-NAME (an eNOS inhibitor) in
rats caused a reduction of RBC deformability. In addition, Bor-
Kucukatay et al. (2003) reported that several eNOS inhibitors
also decreased RBC deformability, suggesting that basal release
of NO actively maintains RBC deformability. While extracellular
sources of NO may impact the deformability of RBC, several
works suggest that endogenous RBC NO synthesis may also
modulate RBC deformability (Kleinbongard et al., 2006). Suhr
et al. (2012) demonstrated that an acute running exercise
induced shear stress activation of RBC NOS (increased RBC
NOS phosphorylation at Ser1177) via the PI3-kinase/Akt kinase
pathway, leading to increased NO production by the RBC,
which was critical to maintaining RBC deformability during
exercise. Grau et al. (2013) further extended these findings
by showing that RBC NOS activation by pharmacological
treatment (insulin) increased RBC NO content and improved
RBC deformability through direct S-nitrosylation of cytoskeleton
proteins, most likely the α- and β-spectrins. In contrast,
the use of RBC NOS inhibitors [wortmannin or L-N5-(1-
Iminoethyl)-ornithin] resulted in a decrease of RBC NOS
Ser1177 phosphorylation, NO content, cytoskeleton protein
S-nitrosylation, and RBC deformability.

Impact of Physiological Changes During
Acute Exercise on Blood Viscosity
As discussed above, acute cycling exercise would lead to a rise in
blood viscosity while running exercise would be characterized by
a lack of change in blood viscosity compared to the pre-exercise
values. Although methodological aspects could partly explain
some of these differences, such as the use of different viscometers
(cone-plate viscometer, couette viscometer, capillary viscometer,
etc.) or the use of different shear rates (low, moderate, and high
shear rate viscosity are affected by different RBC rheological
parameters), the picture is probably a little bit more complex.
Several physiological changes occur during exercise, which may
affect blood viscosity.

To avoid large dehydration during exercise, sportsmen usually
drink water or carbohydrate-rich drinks. However, most of the
studies performed in the field of blood rheology have been done

in laboratory conditions where water is not allowed during the
various exercise tests and water loss cannot be compensated
by water intake. Tripette et al. (2010) and Diaw et al. (2014)
previously tested the impact of add-libitum hydration and water
deprivation on blood viscosity during a prolonged submaximal
exercise and a soccer game, respectively. Healthy individuals and
subjects carrying sickle cell trait were included. While hydration
during exercise was able to decrease blood viscosity below the
pre-exercise levels in sickle cell trait carriers, blood viscosity
increased similarly in healthy individuals in both the “hydration”
and “water deprivation” conditions. The rate of dehydration was
around 1.5–2% in these studies, which is not very severe. There
is a growing interest from the runners community to participate
to very prolonged race (>100 kms), sometimes performed
at high altitude. The impact of the environment and higher
dehydration rate on blood viscosity are unknown and further
studies are needed.

Exercise is accompanied by a rise cardiac output and
blood flow leading to an increase of shear rate values in
the vascular system. For instance, shear rate in the femoral
artery has been reported to increase from 60 s−1 at rest
to 200–250 s−1 during exercise (Gonzales et al., 2009).
Blood is a shear-thinning fluid, meaning that its viscosity
decreases when shear rate increases. Connes et al. (2013b)
shown that 15 min of cycling exercise performed at a
submaximal intensity increased blood viscosity measured at
90 s−1. However, when the viscosity of the blood sampled
at the end of exercise was measured at 225 s−1 (which
reflects the shear rate reached during exercise), the mean value
was almost identical to the viscosity of the blood sampled
before exercise and measured at 90 s−1. Indeed, the effects
of hemoconcentration, increased plasma viscosity, decreased
RBC deformability and increased RBC aggregation on blood
viscosity during exercise could be counterbalanced by the effects
of increasing shear rate (Connes et al., 2013b). However, the
slight remaining changes in blood viscosity observed during
exercise were still correlated with the magnitude of changes in
NO-end products concentration, suggesting that blood viscosity
plays a role in promoting NO production during exercise
(Connes et al., 2013b).

Core temperature rises during exercise and it is well known
that blood viscosity also depends on temperature (Baskurt et al.,
2009). A recent elegant study shown that when the changes in
temperature occurring during exercise are took into account
in the measurements of blood viscosity, there is no difference
between the pre- and post-exercise values (Buono et al., 2016).
The slight physiological hyperthermia was shown to increase
RBC deformability, which compensated the rise in hematocrit
and resulted in a lack of change in blood viscosity. The authors
estimated that the combined effects of increasing shear rate
and hyperthermia during exercise could decrease blood viscosity
by 31% below the pre-exercise levels, in spite of the exercise
induced hemoconcentration (Buono et al., 2016). These findings
clearly show that studies in the field of exercise hemorheology
should consider the effects of various physiological factors for
better interpretation about the role of blood viscosity in the
cardiovascular adaptations and physical fitness.
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Long Term Effects of Exercise on Blood
Rheology in Healthy Individuals
Chronic exercise (endurance or resistance exercise) usually
decreases blood viscosity (Brun et al., 1998; Romain et al., 2011;
Kilic-Toprak et al., 2012). One reason for this change is that
plasma volume increases few hours or several days after a single
bout of exercise (Fellmann, 1992; Brun et al., 1998), resulting
in an “autohemodilution” (Ernst, 1987; Ernst et al., 1991a).
Repeated exercise bouts on consecutive days leads to a chronic
“autohemodilution” resulting in a low baseline hematocrit – low
baseline viscosity pattern (Ernst, 1987; Brun et al., 1998; Kilic-
Toprak et al., 2012). The magnitude of plasma volume expansion
ranges from 9 to 25%, corresponding to an additional 300 to
700 ml of plasma. It has been shown that the larger the reduction
in plasma volume during exercise, the greater the subsequent
plasma volume expansion (Fellmann, 1992). The amount of water
ingested during and after exercise, as well several fluid-regulating
hormones (aldosterone, vasopressin and the atrial natriuretic
factor) and the level of plasma proteins, influence the degree
of the plasma volume expansion after exercise. Plasma volume
expansion is responsible for the decrease in plasma viscosity that
contributes to the decrease in blood viscosity (Ernst, 1987).

Exercise training also induces RBC rheological adaptations
(Brun et al., 2010; Kilic-Toprak et al., 2012). Ernst (1987)
reported increased RBC deformability in athletes compared to
sedentary subjects, a finding later confirmed by Smith et al.
(1999). A 3-month longitudinal study of initially untrained
healthy volunteers who performed regular training also showed
a decrease of blood viscosity and a rise of RBC deformability
(Ernst, 1987). Few studies have been conducted to determine
why RBC deformability improves in healthy individuals after
chronic exercise. However, Smith et al. (1999) and Tomschi
et al. (2018) found a higher proportion of young deformable
RBCs in athletes than in untrained subjects. The hemorheological
benefits induced by regular exercise are suspected to contribute
to the improvements in cardiovascular health that are induced
by training programs in patients with cardiovascular disorders
(Sandor et al., 2014).

Acute and Chronic Effects of Exercise in
SCA
The metabolic changes occurring during exercise may promote
HbS polymerization, RBC sickling, oxidative stress and
inflammation. For this reason, physicians have generally been
reluctant to promote physical activity for individuals with SCA
(Connes, 2010; Waltz and Connes, 2014; Chirico et al., 2016;
Martin et al., 2018). However, since regular physical activity
has been shown to provide health benefits in various chronic
diseases, several groups have begun to study the effects of acute
and chronic exercise in individuals and mice with SCA.

Sickle cell anemia patients have decreased aerobic physical
fitness compared to the general population (Connes et al.,
2011). This is probably due to a combination of several
factors, including chronic anemia, reduced muscle mass and
strength, abnormal cardiac function, gas exchange abnormalities,
mechanical ventilation limitations and peripheral vascular

impairment (Callahan et al., 2002; Dougherty et al., 2011;
Liem et al., 2015; Badawy et al., 2018; Merlet et al., 2019).
A recent study reported negative associations between the
oxygen uptake efficiency slope (an index of aerobic physical
fitness) and hematocrit, RBC deformability, and RBC aggregate
strength in adults with SCA (Charlot et al., 2015). These
biological parameters were also associated with the ability of
recover from a short submaximal exercise (Charlot et al.,
2015). In another study, Waltz et al. (2013) showed that high
levels of anemia, low fetal hemoglobin levels, and low RBC
deformability were independent predictors of a low 6-min
walking test performance.

Blood rheological abnormalities play a key role in the
pathophysiology of SCA. For this reason, several works have
investigated the effects of acute exercise on various biological
parameters to determine what kind of exercise could be
considered completely safe for individuals with SCA. In a study
performed in Ivory Coast, 17 patients with SCA performed a
20 min moderate exercise (45 Watts) with blood sampling before
and at the end of exercise (Balayssac-Siransy et al., 2011; Faes
et al., 2014). Despite an increase in the percentages of dense
RBC at the end of the effort, blood viscosity and soluble forms
of P- and E-selectin remained unchanged compared to the pre-
exercise level (Balayssac-Siransy et al., 2011; Faes et al., 2014).
Slight increases of the plasma soluble forms of VCAM-1 and
ICAM-1 were noted at the end of the exercise in SCA patients,
suggesting slight endothelial activation (Faes et al., 2014). On
the other hand, another study by Liem et al. (2015) reported
higher concentrations of soluble VCAM-1 in the plasma of SCA
patients at rest compared to a control group, but progressive
and maximal exercise tests did not induce any further rise of
VCAM-1. An additional study by Waltz et al. (2012) evaluated
blood rheological parameters in subjects with SCA following
a short (10–12 min) progressive submaximal cycling exercise,
conducted until the first ventilatory threshold was reached. The
exercise caused no changes in hematocrit, white blood cell
count, blood viscosity, RBC deformability, or RBC aggregation.
Furthermore, the strength of RBC aggregates decreased 2 and
3 days after the exercise. This delayed effect of exercise on
RBC aggregate strength could be beneficial from a clinical
point of view since this parameter is associated with risk of
acute chest syndrome (Lamarre et al., 2012), and is increased
during vaso-occlusive crises (Lapoumeroulie et al., 2019). Grau
et al. (2019) recently confirmed that a short progressive and
submaximal cycling exercise had no deleterious effect on RBC
deformability and showed that this kind of effort does not
exacerbate hemolysis. Finally, Barbeau et al. (2001) previously
reported that the repetition of 30 min of moderate exercise for
three consecutive days increased plasma NO concentrations in
subjects with SCA. This could be viewed as a positive effect
since NO bioavailability is reduced in SCA (Kato et al., 2007).
It is important to note that none of these studies reported
any clinical complications immediately or several days after the
exercise (Barbeau et al., 2001; Balayssac-Siransy et al., 2011; Waltz
et al., 2012; Faes et al., 2014; Grau et al., 2019). Overall, the
results of these studies suggest that mild-to-moderate intensity
exercise is probably safe in SCA, but longer or high-intensity
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FIGURE 2 | Acute (A) and chronic (B) effects of exercise on blood rheology (blood viscosity, plasma viscosity, hematocrit, red blood cell deformability, and
aggregation) in healthy individuals and patients with sickle cell anemia., ↑, ↓; =, no change; ?, unknown.

exercise should be avoided, or recommended only on a case-
by-case basis (Martin et al., 2018). Still, some patients may
experience moderate to severe hemoglobin desaturation, even
during low-intensity or submaximal exercises, like the 6-min
walking test (Waltz et al., 2013). Hemoglobin desaturation can
promote RBC sickling in conditions of prolonged hypoxemic
stress. Therefore, SCA patients should always be screened for
hemoglobin desaturation during exercise tests to identify whether
the person is at risk of experiencing exercise-induced hypoxemia
during submaximal efforts.

The accumulating evidence showing that acute exercise
could be safe for SCA patients prompted several groups
to test the effects of regular exercise in mice and humans
with SCA. Studies conducted in sickle SAD mice showed
that 8 weeks of voluntary wheel running decreased
blood viscosity (Faes et al., 2015), limited systemic
oxidative stress (Charrin et al., 2015), and decreased
pulmonary endothelial activation in response to an hypoxic-
reoxygenation stimulus (Aufradet et al., 2014). An additional
study conducted by Charrin et al. (2018) evaluated the
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effects of 8 weeks of aerobic training (1 h/day, 5 days/week) in
a more severe mice model of SCA (Townes mice). The chronic
exercise decreased several markers of systemic inflammation,
including white blood cell count, plasma Th1/Th2 cytokine
ratio, and Interleukin-1β level, and reduced the occurrence of
splenomegaly. Furthermore, two other studies have also shown
that endurance training improved muscle function in Townes
SCA mice (Chatel et al., 2018; Gouraud et al., 2019).

Presently, only a few studies have been conducted to evaluate
chronic exercise in people with SCA. Omwanghe et al. (2017)
recently reported that 90% of children with SCA participate in
physical education and 48% participate in sports. These findings
illustrate that children with SCA do moderate to vigorous
intensity physical activity for short durations. The same research
group also prescribed three home exercise sessions per week, for
12 weeks, to 13 children with SCA. Results showed that 77%
of subjects completed 89% of the prescribed sessions without
any exercise-related adverse events. These results indicate that
regular moderate exercise is safe and feasible in children with
SCA. In an additional study by Gellen et al. (2018), adults
with SCA performed 45 min of exercise three times a week for
8 weeks. No adverse events were reported in the study period,
confirming that regular physical activity can be safe for people
with SCA. Moreover, the SCA subjects’ power outputs measured
at 4 mmol/L blood lactate significantly increased after the 8 weeks
training period, indicating improved physical fitness. Currently,
no human studies have been conducted to determine whether
chronic exercise can modulate the biological parameters (i.e.,
blood rheology, hematology, inflammation, oxidative stress) that
cause the various acute complications experienced by people with
SCA. However, the current evidence that exists suggests that
moderate-intensity endurance-exercise training could potentially
be used as a beneficial therapeutic strategy for patients with SCA
(Gellen et al., 2018).

CONCLUSION

In conclusion, whole blood viscosity is a physiological parameter
that should be considered when studying vascular resistance
in healthy populations or in patients affected by various
diseases. Plasma viscosity, hematocrit, RBC deformability, and

RBC aggregation are all factors that modulate blood viscosity.
Alterations in any of these factors can modify blood flow
resistance in the vasculature and alter tissue perfusion. In
healthy individuals, the vascular system can adapt to elevations
in blood viscosity because increased shear stress results in
endothelium-dependent NO production. However, in individuals
with vascular dysfunction, the vessels are not able to effectively
vasodilate. Therefore, elevated blood viscosity can increase
vascular resistance.

Tissue perfusion plays a key role during exercise and
exercise can modulate blood viscosity and RBC rheology. The
effects of acute exercise in healthy individuals are dependent
on exercise modality, intensity, duration and physical fitness
of the subjects. Most of the studies have found that acute
cycling exercise increases blood viscosity by decreasing RBC
deformability and increasing hematocrit and plasma viscosity
(Figure 2). In contrast, acute running exercise is suggested to
not cause any change in blood viscosity because of unaltered
hematocrit (Figure 2). Furthermore, chronic exercise has
been shown to decrease blood viscosity by increasing RBC
deformability and decreasing hematocrit because of chronic
auto-hemodilution (Figure 2).

Sickle cell anemia is a hereditary disease that causes
pathological changes in blood rheology that ultimately contribute
to the development of vascular dysfunction and disease
complications. Several studies have shown that light to moderate
intensity acute exercise is well-tolerated in individuals with SCA
(Figure 2). Additionally, chronic exercise has been shown to
cause positive hemorheological adaptations that could play a
role in the positive benefits that result from training programs
in patients with various cardiovascular disorders (Figure 2).
Therefore, additional studies should be carried out to determine
whether chronic exercise could improve blood rheological
profiles in individuals with SCA, and decrease the severity of
disease complications.
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