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Integration of feature vectors 
from raw laboratory, medication 
and procedure names improves 
the precision and recall of models 
to predict postoperative mortality 
and acute kidney injury
Ira S. Hofer1,2*, Marina Kupina1, Lori Laddaran3 & Eran Halperin4,5,6

Manuscripts that have successfully used machine learning (ML) to predict a variety of perioperative 
outcomes often use only a limited number of features selected by a clinician. We hypothesized that 
techniques leveraging a broad set of features for patient laboratory results, medications, and the 
surgical procedure name would improve performance as compared to a more limited set of features 
chosen by clinicians. Feature vectors for laboratory results included 702 features total derived from 
39 laboratory tests, medications consisted of a binary flag for 126 commonly used medications, 
procedure name used the Word2Vec package for create a vector of length 100. Nine models were 
trained: baseline features, one for each of the three types of data Baseline + Each data type, (all 
features, and then all features with feature reduction algorithm. Across both outcomes the models 
that contained all features (model 8) (Mortality ROC-AUC 94.32 ± 1.01, PR-AUC 36.80 ± 5.10 AKI 
ROC-AUC 92.45 ± 0.64, PR-AUC 76.22 ± 1.95) was superior to models with only subsets of features. 
Featurization techniques leveraging a broad away of clinical data can improve performance of 
perioperative prediction models.

The last several years have seen an explosion in the number of papers using machine learning (ML) techniques 
to predict a variety of perioperative outcomes. Models have been successfully developed to predict key outcomes 
such as  hypotension1,2,  mortality3–6,  readmission7, and acute kidney injury (AKI)4,8–11. As a group, these papers 
have proven the underlying hypothesis that ML techniques can be applied to healthcare data to predict outcomes.

Fortunately, negative outcomes in the perioperative setting are relatively rare. For example, the overall inci-
dence of postoperative mortality is roughly 1–4%12, and the rate of postoperative AKI is roughly 12%13. As a 
result, most models that have been published report relatively high accuracy and areas under the receiver operat-
ing characteristic curve (ROC AUC), while having an area under the precision recall curve (PR AUC) that are 
 lower3–5,14. This is more than a theoretical limitation. The successful implementation of ML models into clinical 
practice requires the successful identification of the rare event to the exclusion of other cases. To use a concrete 
example if a model is to be used to change the decision of surgery, the positive predictive value (precision) must 
be very high, otherwise large numbers of patients will receive the incorrect treatment.

One limitation of many of the ML models that have been published, especially in the perioperative space, is 
that they rely on a limited number of features, hand-selected by a clinician to predict the outcome of interest. 
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While this has proven effective, it also serves to leave a large amount of information from the electronic health 
record (EHR) out of the model, thus potentially limiting the model’s predictive power.

In this manuscript we hypothesized that creating feature vectors from a wide variety of data types in the 
EHR would improve model performance. In particular, we hypothesized that creating a feature vector for each 
of the last six months of laboratory values, patient medications and the type of procedure (as specified in the 
procedure name) would improve the performance of models trained to predict postoperative mortality and AKI 
as compared to a baseline feature set. As a primary outcome we look at the area under the Receiver Operating 
Characteristic (ROC) and Precision-Recall (PR) curves and as a secondary outcome we look at accuracy, preci-
sion and recall and various thresholds.

Methods
Data were extracted from the Perioperative Data Warehouse (PDW), a custom-built data warehouse contain-
ing all patients who have undergone surgery at the University of California Los Angeles (UCLA) Health since 
the implementation of our EHR (EPIC Systems, Madison, WI) in March 2013. The PDW has been previously 
 described15,16. Briefly, in the first stage, data are extracted from EPIC’s Clarity database into 29 tables organized 
to facilitate usage. In the second stage, these data are used to populate a series of measures and metrics such as 
procedure duration, readmissions, admission International Classification of Diseases (ICD) codes, and postopera-
tive  outcomes17–19. All data used for this study were obtained from this data warehouse, and institutional review 
board approval (18-002053) was obtained from the UCLA Office of the Human Research Protection Program, 
including exemption from written informed consent, for this retrospective review. All methods were performed 
in accordance with relevant guidelines and regulations.

Determination of outcome variables—mortality and AKI—from EHR data. Postoperative mor-
tality was defined as death during the same hospitalization as the surgery as identified by either (1) a death date 
is noted in the EHR between hospital admission and discharge or (2) a postoperative discharge status of expired, 
presence of a “death note” by a treating provider, and the lack of future admissions or encounters for the patient 
in the EHR. Postoperative AKI was defined based upon the Acute Kidney Injury Network (AKIN) criteria cre-
atinine  criteria20. The baseline creatinine was taken to be the most recent serum creatinine prior to surgery. The 
postoperative creatinine was the highest creatinine value within 48 h of surgery. If either the preoperative or 
postoperative creatinine was missing, the value was set to NULL. A value of 0 was used to denote no AKI while 
any AKIN stage 1 or above was denoted as a 1 (i.e. this was set to a binary variable). It would have been possible 
to create a multi-class prediction algorithm to predict the actual AKI class, as opposed to the binary classifica-
tion, however we chose to use the more simplistic binary classification in order to keep the focus of the analysis 
on the featurization techniques.

Inclusion and exclusion criteria. The inclusion data set was surgeries with general anesthesia that 
occurred between April 1, 2013 and July 2021 that were performed at the Ronald Reagan UCLA Medical Center 
and Santa Monica Medical Center hospitals. Patients were filtered by their class, selecting only inpatient, same 
day hospitalization, emergency care and overnight recovery patients (i.e. those that spent at least one night in 
the hospital). Patients aged less than 18 years old or older than 89 years old were excluded from the dataset due 
to the institutional restrictions on data security. Cases were excluded if they had an ASA physical status score of 
6 (indicating organ donors).

Figure 1 demonstrates the overall study design.

Model input features. In this manuscript, four sets of input features were defined depending on their 
characteristics: (1) baseline features including basic patient information and surgery specifications, (2) the most 
recent laboratory tests obtained before the surgery, (3) procedure description, and (4) medications taken.

Figure 1.  Study design.
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Baseline feature vector. The features used in the baseline model were based on previous work by our 
group predicting postoperative mortality both before and after  surgery3–5. For the purposes of this analysis, we 
removed those features that would be redundant with the additional feature vectors (see below). For example, 
lab results were removed from the feature sets used in those models because we created a separate, more compre-
hensive feature vector, comprised only of the labs. The list of features included in this group is in Supplementary 
table 1A.

Laboratory result feature vector. A set of 39 commonly used laboratory results were extracted from 
the EHR (see Supplementary Table 2A for a complete list). These results were chosen because they are common 
preoperative tests (i.e. included in complete blood count, comprehensive metabolic panels or coagulation pan-
els). Test all results were then binned in 6 months before surgery, 3 before months, and 1 month prior to surgery. 
Then, for each laboratory test bin the following descriptive statistics were calculated: total number of tests, cu-
sum, median, variance, mean, standard score (z-score). The goal of the cu-sum was to incorporate a measure of 
temporal change into the descriptive statistics. The standard score (or z-score) is the number of standard devia-
tions at which the mean of a patient’s test results for each laboratory is higher or lower than the mean of that test 
for all patients. Thus, for each surgery we had a vector of 702 features (39 laboratory results, 3 bins, 6 descriptive 
statistics per bin).

Procedure name embedding. As part of our research, we experimented with the inclusion of clinical 
text data in the form of procedure names as the model inputs. Administrative codes, such as CPT codes are only 
available after surgery (patient discharge), thus we focused on representing the procedure name using a numeri-
cal vector available before surgery. The procedure name, as booked by the surgeon, consists of a string with a 
variable number of words. The number of unique words contained in all procedures names was 22,003 in the 
training dataset. In order to include the procedure name in the prediction model, we applied word embedding; 
a common method for representing words, typically in the form of a real-valued vector that encodes the mean-
ing of the word such that the words that are closer in the vector space are expected to be similar in  meaning21. 
We trained word embeddings on the clinical text data to allow the model to understand a clinical context using 
class Word2Vec from Gensim  library22. In order to train the model, each procedure name is broken into words 
(tokens). The Word2Vec model takes a list of tokens for each sentence as input and returns a set of numeric 
vectors as output using a two-layer neural network. The Word2Vec guide suggests the size of dimensions rang-
ing from 100 to 1000. In this paper, the size of the numeric vector is given as a model parameter and is chosen 
during the hyper-parameter tuning process. The dimension of the numerical vector depends on the corpus 
that was trained on the names of clinical procedures. Since the size of the trained corpus is not large enough, 
higher values do not affect the result and increase the overall computation time. While the lowered dimensions 
reduced the quality of the model. In this paper a vector size of 100 was found to be optimal. The trained model 
was applied for each procedure name, returning a set of numeric vectors for each word. Since the procedure 
name contains multiple words, the length of the procedure name is variable. Thus, in order to get a single vector 
representation of the procedure name, we calculated the average vector of its words, which is the input to the 
main predictive model.

Medications. The last type of feature we analyzed was the medications taken by a patient before surgery. A 
set of high use and likely clinically predictive medications was made based on clinical judgement. Medications 
that were taken 24 h before surgery were excluded. Medications were broken up into two different categories: 
given as an inpatient and taken at home. Combined medications (e.g. HYDROCODONE-ACETAMINOPHEN 
5-325 MG PO TABS) were separated into single medications, and each prescription dose was calculated with 
normalized units (e.g. Hydrocodone 5 mg, Acetaminophen 325 mg). For each patient we created a binary vec-
tor, where each element of the vector indicated if the specific medication was taken by a patient. Then for each 
medication the Fisher’s Exact Test was used to determine a significant association between medication and target 
variable. Medications with a p-value of less than 0.05 were included in the model. In order to avoid any bias, 
the Fisher’s Exact Test was applied only to data in the training data set. The final vector contained a set of 126 
medications (see Supplementary Table 3A for a complete list).

Data preprocessing. Data were split training and testing datasets with the split ratio 75:25. To avoid infor-
mation leakage, all patients that appeared in the test set were removed from the training set.

Categorical variables such as ethnicity, gender, etc. in clinical data were converted to a numerical representa-
tion by applying the One-Hot-Encoding algorithm that decoded each category in a binary vector. To optimize 
the memory usage, a memory reduction function was implemented that validated the feasibility of the data type 
modification. On the training dataset, this technique decreased the dataset used memory by almost 68% from 
740 to 237 MB, which significantly accelerated the model training process. Because single training-test splits are 
subject to bias, the train test splits were done 50 times and the results were averaged.

Model creation, training, and testing. Nine models were trained. Model 1 is the baseline model that 
includes only the basic features in Supplementary Table 1A. Models 2, 3 and 4 were trained only on labora-
tory results, procedure name embeddings, and medication features respectively. The main goal of training these 
models was to measure the individual contributions to the prediction model. Models 5, 6, and 7 were extensions 
of Models 2, 3, and 4 with added features from the baseline model to the features of the respective models (i.e. 
baseline + laboratory, baseline + medications, etc.). Finally, Model 8 was obtained by combining features from 
the previous models—1088 features in total (https:// github. com/ scikit- learn- contr ib/ boruta_ py).

https://github.com/scikit-learn-contrib/boruta_py
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To simplify Model 8, we built Model 9which was designed to include the most powerful features from Model 
8. For feature selection, we chose a wrapper-based feature selector Boruta 23. Unlike other popular feature selec-
tion algorithms, Boruta analyzes feature interactions and ranks each feature to get all relevant features rather than 
considering only non-redundant features. This was a major reason for choosing Bortura, as it provides a list of 
all the important features, rather than finding a compact subset of features in which the model achieves higher 
performance. The algorithm completed 100 independent trials and divided features into 3 parts: confirmed, 
tentative, and rejected. In our experiment, of the 1088 original features, 381 features were confirmed, and 3 
features were tentative. During the experiments, it was found that tentative features contribute to improving the 
performance of the model, they, along with the confirmed features, were included in model 9.

All models were gradient boosted trees (XGB) as previous work by our group has shown this technique 
to consistently perform  well3,5. The main advantage of gradient boosted trees, as opposed to other tree based 
models, is that trees are created sequentially which reduces the residual error of previous trees and recent work 
by Yu et al. have shown that XGB XGB attained a balanced performance across accuracy, runtime, and energy 
efficiency in the medical  datasets24.

The model was created in Python v 3.8.0. The gradient boosted tree classifiers were implemented using 
the XGBoost package (version 1.3.3) and the “genism” library was used used in the Word2Vec model. Model 
hyperparameters were selected using five-fold cross-validation with grid-search on the training dataset, where 
patients undergoing multiple surgeries appeared only in the training or testing set, but not simultaneously in 
both. In five-fold cross-validation, the dataset is divided into five partitions; four-fifths of the data is used to train 
the models and the remaining one-fifth is used as the testing set. This process is repeated so that each partition 
is used as a testing set only once and a training set four times. Cross-validation provides a better assessment of 
model performance by averaging metrics across multiple tests. The models best parameters were a maximum 
depth of 12, and minimum child weight of 5. A copy of the code can be found at https:// github. com/ marit um/ 
Perio pMort ality- Predi ction.

Model performance. Prediction of both mortality and AKI were treated as binary classification problems 
with highly imbalanced classes. The issue of class imbalance has significant implications for metrics of model 
performance.

Receiver operating characteristic (ROC) curves are widely used for the estimation of predictive model per-
formance with a binary outcome. ROC curves characterize the trade-off between true positive and false positive 
rates for the binary classification model by varying the discriminative threshold. However, the false positive 
rate is affected by the underlying rate of the event and can be deceptive for data with a large skew in the class 
distribution, thus making ROC curves overly optimistic.

Thus, in addition to ROC curves we considered precision-recall (PR) curves, which summarize the trade-off 
between true positive rate and positive predictive value by changing the prediction threshold. Positive predictive 
value (or precision) penalizes a model for a large number of false positives relative to the number of true posi-
tives that makes PR curves robust even under imbalanced data. Simultaneously recall, instead of focusing on the 
number of predicted false positives, penalizes a model for a large number of false negative. The penalties in preci-
sion and recall are opposites, making this curve a better metric for model performance with imbalanced data.

Lastly, the F-beta score is a useful metric that calculates the weighted harmonic mean of precision and recall, 
reaching its optimal value at 1 and its worst value at 0. The beta parameter determines the weight of recall in the 
combined score (https:// sciki tlearn. org/ stable/ modul es/ gener ated/ sklea rn. metri cs. fbeta_ score. html) and allows 
data scientists to pick a threshold that optimizes the implementation tradeoffs between precision and recall. 
Numbers greater than 1 will give increased weight to the recall, while those less than one will give increased 
weight to the precision.

To examine the performance of the different models we examined model performance with beta values of 
1, 2, and3 were chosen. The higher beta values gave more weight to the recall and penalized the number of false 
negatives. The F-beta score is a threshold metric; thus, scores were calculated for each model based on the selected 
discriminative threshold that maximizes the F-score. One of the limitations of these metrics is that they assume 
the distribution of the classes observed in the training dataset will match the distribution in the test set and in 
real data when the model is used to make predictions.

Results
Overall the dataset identified 101,070 surgeries across 93,335 admission and 79,662 patients. Patient ages ranged 
between 18 and 89 years with a mean age of almost 55.79. Overall, the rate of mortality in the dataset was 2.29% 
and the rate of AKI was 15.8%. ASA Physical status of 3 was the most common physical status and the most 
common surgical specialty was General Surgery. Detailed information of patient demographics for both the 
mortality and AKI models is show in Table 1.

Receiver operating characteristic and precisions-recall performance of the models. Table  2 
and Fig. 2 demonstrate the performance of the models. Overall, across both outcomes the models that contained 
combined feature sets (model 8) (Mortality ROC-AUC 94.32 ± 1.01, PR-AUC 36.80 ± 5.10; AKI ROC-AUC 
92.45 ± 0.64, PR-AUC 76.22 ± 1.95) was superior to models with only subsets of features and model 9, which 
contained all features with feature selection (35% of features from model 8), performed nearly as well as model 8.

For the models with the individual feature sets (models 1–4), the baseline feature set, those features selected 
by clinicians, performed the best with a ROC-AUC of 92.13 ± 0.23 for mortality and 91.01 ± 0.54 for AKI, and 
a PR-AUC of 22.93 ± 1.13 for mortality and 72.13 ± 1.65 for AKI. In general ROC-AUC tended to be higher for 
mortality and the PR-AUC was higher for AKI. Figure 1 shows the ROC and PR curves for these models.

https://github.com/maritum/PeriopMortality-Prediction
https://github.com/maritum/PeriopMortality-Prediction
https://scikitlearn.org/stable/modules/generated/sklearn.metrics.fbeta_score.html
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In looking at the combined feature sets there were fewer clear themes, but it was notable that even features 
that had relatively lower AUCs on their own (such as procedure names and medications) seemed to improve the 
models when added to the baseline features.

Secondary performance metrics—accuracy, precision and recall and various thresh-
olds. Table 3 shows the overall F1, F2 and F3 scores as well as the accuracy, precision and recall, specificity, 
and negative predictive value (NPV) at the various thresholds. There were fewer clear trends across the different 
models with much greater variability in the performance from one model to the next. Of note, Model 3 (pro-
cedure name) achieved perfect recall for both outcomes though with very low precision. For the AKI outcome 
some of the models achieved very high recall (above 90%) with overall accuracies above 75%.

Discussion
In this manuscript we successfully created feature vectors from a variety of clinical data types (medications, labo-
ratory results, and surgical procedure name) and were able to leverage these additional features to improve the 
performance of models to predict postoperative AKI and mortality as compared to a baseline feature set chosen 
by clinician judgment. Of particular note, some features (such as procedure name) which did not necessarily 
perform well on their own, still enhanced the performance of the models when combined with other features. 

Table 1.  Patient characteristics. Patient characteristics for the cohort used for training and testing models. 
Number of patients and percent of the cohort are shown. The selected surgical services represent the top four 
most frequent surgical services.

Property Population

Patients, n 79,662

Admissions, n 93,335

Surgeries, n 101,070

Mortalities, n  (%) 2312 (2.29)

Kidney failure 15,985 (15.8)

Mean age 55.79 (18–89)

Female patients, n  (%) 41,062 (51.55)

ASA physical status, n (%)

1 5629 (5.57)

2 34,468 (34.10)

3 47,596 (47.09)

4 11,294 (11.17)

5 713 (0.71)

Types of surgery, n (%)

General surgery 20,097 (19.88)

Orthopaedics 15,346 (15.18)

Urology 12,600 (12.47)

Neurosurgery 10,971 (10.85)

Other 41,639 (41.2)

Table 2.  Performance metrics for XGBoost model. XGBoost model performance metrics for predicting 
in-hospital mortality using different sets of features.

Mortality AKI

ROC-AUC PR-AUC ROC-AUC PR-AUC 

Model 1 (baseline) 92.13 ± 0.23 22.93 ± 1.13 91.01 ± 0.54 72.13 ± 1.65

Model 2 (labs) 86.53 ± 0.38 20.03 ± 1.06 86.49 ± 0.48 68.78 ± 0.84

Model 3 (proc_name) 50.04 ± 0.30 3.16 ± 3.11 50.05 ± 0.11 18.12 ± 5.05

Model 4 (medications) 72.26 ± 0.83 9.14 ± 0.58 70.75 ± 0.29 40.06 ± 0.52

Model 5 (baseline ± labs) 92.95 ± 0.25 23.87 ± 1.32 92.10 ± 0.48 75.44 ± 1.87

Model 6 (baseline ± proc_name) 92.89 ± 0.82 27.08 ± 4.12 91.40 ± 0.45 72.79 ± 1.51

Model 7 (baseline ± meds) 93.09 ± 0.22 24.24 ± 1.25 91.37 ± 0.55 73.13 ± 1.62

Model 8 (all sets) 94.32 ± 1.01 36.80 ± 5.10 92.45 ± 0.64 76.22 ± 1.95

Model 9 (all_sets ± feature selection) 93.76 ± 0.95 32.33 ± 5.23 92.32 ± 0.47 75.22 ± 1.71
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Additionally, while there were some trends in model performance, the additional benefit of a particular feature 
often differed between the two outcomes.

We believe that these results lead to some important conclusions. Firstly, these results demonstrate that the 
inclusion of more information from the electronic health record has the ability to improve model performance. 
Crucially, for the outcomes in this paper, the improvement in performance was not linear—i.e. more features 
were not always better, and features that performed poorly in one model performed better when combined with 
different features in another model. We believe these results point to the need for more research into a variety of 
modeling techniques. While this manuscript used gradient boosted trees, the performance of other techniques, 
such as neural networks, might be better or at least different.

Of note, there is far more information in the EHR than what we attempted to include in this manuscript. For 
example, we focused on a set of commonly used laboratory tests and medications as opposed to all medications 
and tests. Further, the medications were turned into a binary vector (thus ignoring the dose) and the laboratory 
results were summarized with basic descriptive statistics. Regarding outcomes, we created models to predict AKI 
as a binary outcome—however the clinical reality is more complex. In fact the AKIN criteria have 3 stages of 
acute kidney injury. It is possible that the model we created performs better at predicting more severe injury or 
that a model performing a multi-class prediction would perform differently. Additional work examining things 
like the use of medication dose, time series techniques, and/or ratios of different laboratory results may yield 

Figure 2.  AUC curves.
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even more powerful results. Additionally, use of natural language processing techniques on clinician notes, image 
processing of radiographic results and other types of data may further improve model performance.

Lastly, the accuracy, precision, recall, specificity and negative predictive value at the various thresholds studies 
(F1, F2 and F3 score) demonstrate that there is no one perfect model. For example, the use of procedure name 
had relatively poor AUC results but achieved perfect recall for both outcomes, indicating its potential use in 
workflows where that is a key performance metrics. Thus, while summary performance metrics, such as AUC, are 
useful for global purposes the actual workflow and clinical tradeoffs must be evaluated when picking a specific 

Table 3.  Performance metrics for XGBoost model using different sets of features.

Mortality AKI

F1 F1

Score Accurarcy Recall Precision Specificity NPv Score Accuracy Recall Precision Specificity NPV

Model 1 (baseline) 36.3 ± 2.2 96.6 ± 0.3 45.2 ± 3.6 33.5 ± 2.9 97.7 ± 0.4 98.8 ± 0.1 66.1 ± 1.0 89.5 ± 0.5 67.0 ± 1.4 66.1 ± 1.9 93.5 ± 0.7 94.1 ± 0.2

Model 2 (labs) 48.3 ± 2.9 92.8 ± 0.8 49.1 ± 2.7 50.7 ± 3.5 96.1 ± 0.5 95.7 ± 0.5 63.0 ± 0.8 89.0 ± 0.4 60.7 ± 1.2 66.4 ± 1.8 94.1 ± 0.5 92.9 ± 0.2

Model 3 (proc_
name) 4.2 ± 0.4 5.9 ± 5.0 96.3 ± 4.8 3.3 ± 1.9 4.1 ± 5.2 27.1 ± 0.4 15.7 ± 0.3 100.0 ±   15.7 ± 0.3 0.1 ± 0.0

Model 4 (medica-
tions) 22.7 ± 1.7 95.3 ± 0.6 32.1 ± 2.9 21.8 ± 4.0 96.6 ± 0.6 98.6 ± 0.1 46.2 ± 0.9 82.0 ± 0.5 49.8 ± 1.5 43.8 ± 1.5 87.9 ± 0.8 90.5 ± 0.3

Model 5 (baseline 
+ labs) 40.6 ± 2.7 97.1 ± 0.4 50.9 ± 4.8 40.3 ± 4.0 98.0 ± 0.4 99.0 ± 0.1 69.2 ± 0.8 90.6 ± 0.4 67.6 ± 1.1 71.4 ± 1.4 94.8 ± 0.5 94.1 ± 0.2

Model 6 (baseline + 
proc_name) 37.8 ± 2.9 96.8 ± 0.3 47.7 ± 3.2 34.5 ± 3.9 97.8 ± 0.3 98.9 ± 0.1 66.3 ± 0.8 89.7 ± 0.4 66.9 ± 1.5 66.4 ± 1.4 93.7 ± 0.5 94.1 ± 0.2

Model 7 (baseline + 
meds) 38.3 ± 2.7 96.8 ± 0.4 46.3 ± 3.8 37.3 ± 3.8 97.9 ± 0.5 98.9 ± 0.1 67.2 ± 0.9 90.1 ± 0.3 66.0 ± 1.3 69.1 ± 1.7 94.5 ± 0.5 93.9 ± 0.2

Model 8 (all sets) 43.8 ± 2.5 97.5 ± 0.2 50.2 ± 3.1 42.3 ± 3.9 98.4 ± 0.2 99.0 ± 0.1 69.4 ± 0.8 90.8 ± 0.2 69.5 ± 1.4 69.9 ± 1.4 94.6 ± 0.4 94.6 ± 0.2

Model 9 (all_sets 
+feature selection) 41.7 ± 2.9 97.1 ± 0.2 51.2 ± 3.3 37.7 ± 3.7 98.0 ± 0.3 99.0 ± 0.1 68.6 ± 1.0 90.4 ± 0.4 68.6 ± 1.7 69.6 ± 1.9 94.3 ± 0.6 94.4 ± 0.2

Mortality AKI

F2 F2

Score Accurarcy Recall Precision Specificity NPv Score Accuracy Recall Precision Specificity NPV

Model 1 (baseline) 49.6 ± 2.3 92.5 ± 0.8 69.8 ± 3.4 19.6 ± 1.8 93.0 ± 0.9 99.3 ± 0.1 75.8 ± 0.7 77.5 ± 1.3 89.0 ± 1.0 40.2 ± 1.5 75.4 ± 1.7 97.5 ± 0.2

Model 2 (labs) 57.0 ± 2.7 85.0 ± 1.7 69.8 ± 2.5 30.0 ± 2.3 85.0 ± 1.9 97.4 ± 0.3 70.8 ± 0.6 78.0 ± 1.5 80.9 ± 0.9 40.7 ± 1.5 77.4 ± 1.9 95.7 ± 0.2

Model 3 (proc_
name) 12.9 ± 0.6 4.0 ± 3.6 98.2 ± 3.4 2.3 ± 0.6 2.1 ± 3.7 57.4 ± 0.5 15.7 ± 0.3 100.0 ±   15.7 ± 0.3 0.1 ± 0.0

Model 4 (medica-
tions) 33.0 ± 1.7 91.1 ± 0.9 48.0 ± 2.4 12.7 ± 1.6 92.0 ± 0.9 98.8 ± 0.1 58.8 ± 0.6 31.9 ± 4.5 93.1 ± 2.6 19.0 ± 1.3 20.5 ± 5.8 95.6 ± 0.5

Model 5 (baseline 
+ labs) 55.5 ± 2.6 94.0 ± 0.7 75.4 ± 2.5 23.5 ± 2.4 94.3 ± 0.8 99.5 ± 0.1 78.3 ± 0.6 79.3 ± 1.0 90.6 ± 0.8 42.8 ± 1.1 77.2 ± 1.3 97.9 ± 0.1

Model 6 (baseline + 
proc_name) 51.2 ± 2.6 93.2 ± 0.8 71.2 ± 2.8 21.9 ± 2.7 93.7 ± 0.9 99.4 ± 0.1 76.1 ± 0.7 78.4 ± 1.2 88.6 ± 0.9 41.3 ± 1.7 76.6 ± 1.5 97.4 ± 0.2

Model 7 (baseline + 
meds) 52.6 ± 2.6 92.7 ± 0.9 74.2 ± 2.9 21.3 ± 2.4 93.1 ± 0.9 99.4 ± 0.1 76.9 ± 0.7 78.0 ± 1.1 90.0 ± 0.9 40.9 ± 1.3 75.8 ± 1.4 97.7 ± 0.2

Model 8 (all sets) 56.3 ± 2.1 94.4 ± 0.8 74.2 ± 2.6 24.8 ± 2.2 94.8 ± 0.8 99.5 ± 0.1 77.9 ± 0.7 81.8 ± 1.0 88.3 ± 0.9 45.6 ± 1.6 80.6 ± 1.3 97.5 ± 0.2

Model 9 (all_sets 
+feature selection) 55.7 ± 2.8 94.3 ± 0.6 73.1 ± 3.2 24.8 ± 2.6 94.7 ± 0.7 99.5 ± 0.1 77.5 ± 0.7 80.9 ± 1.4 88.2 ± 1.2 45.0 ± 1.7 79.5 ± 1.8 97.5 ± 0.2

Mortality AKI

F3 F3

Score Accurarcy Recall Precision Specificity NPv Score Accuracy Recall Precision Specificity NPV

Model 1 (baseline) 54.1 ± 2.3 90.7 ± 0.8 76.0 ± 2.7 16.6 ± 1.4 91.0 ± 0.9 99.5 ± 0.1 79.3 ± 0.6 73.6 ± 1.6 91.8 ± 1.0 36.6 ± 1.5 70.3 ± 2.0 98.0 ± 0.2

Model 2 (labs) 60.2 ± 2.7 79.5 ± 2.8 74.3 ± 2.8 25.7 ± 2.0 78.1 ± 3.3 97.8 ± 0.3 73.8 ± 0.5 68.5 ± 3.3 86.7 ± 1.5 33.9 ± 2.1 65.1 ± 4.2 96.6 ± 0.2

Model 3 (proc_
name) 16.9 ± 0.8 2.1 ± 0.1 100.0 2.0 ± 0.1 0.1 ± 0.0 65.0 ± 0.4 15.7 ± 0.3 100.0 15.7 ± 0.3 0.1 ± 0.0

Model 4 (medica-
tions) 36.2 ± 1.7 90.4 ± 1.0 49.7 ± 2.7 11.8 ± 1.3 91.3 ± 1.0 98.9 ± 0.1 65.8 ± 0.5 23.0 ± 0.9 98.3 ± 0.4 16.6 ± 0.3 9.1 ± 1.1 96.9 ± 0.5

Model 5 (baseline 
+ labs) 59.7 ± 2.5 93.4 ± 0.8 77.3 ± 2.3 22.1 ± 2.3 93.7 ± 0.8 99.5 ± 0.0 81.6 ± 0.5 77.2 ± 1.0 92.3 ± 0.7 40.3 ± 1.1 74.3 ± 1.2 98.2 ± 0.1

Model 6 (baseline + 
proc_name) 55.4 ± 2.5 92.2 ± 0.9 74.5 ± 2.7 19.4 ± 2.3 92.6 ± 1.0 99.5 ± 0.1 79.6 ± 0.6 72.9 ± 1.4 92.7 ± 0.7 35.8 ± 1.3 69.3 ± 1.8 98.2 ± 0.1

Model 7 (baseline + 
meds) 57.3 ± 2.5 91.2 ± 0.9 79.4 ± 2.4 18.2 ± 1.9 91.4 ± 1.0 99.5 ± 0.1 80.5 ± 0.6 74.3 ± 1.4 92.9 ± 0.7 37.3 ± 1.4 70.9 ± 1.7 98.2 ± 0.2

Model 8 (all sets) 60.4 ± 2.0 93.4 ± 0.8 78.6 ± 2.5 22.1 ± 2.0 93.7 ± 0.9 99.6 ± 0.1 80.8 ± 0.6 77.6 ± 1.2 91.4 ± 0.7 40.3 ± 1.4 75.1 ± 1.5 98.0 ± 0.1

Model 9 (all_sets 
+feature selection) 59.7 ± 2.7 93.1 ± 0.8 77.2 ± 2.7 22.7 ± 2.5 93.4 ± 0.9 99.5 ± 0.0 80.6 ± 0.7 75.7 ± 1.6 92.1 ± 0.8 38.9 ± 1.6 72.6 ± 2.0 98.1 ± 0.1
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model for clinical care. Critically, this may require the evaluation of different types of features, or modeling 
techniques in addition to determining the proper threshold.

As we noted in the introduction, the dataset is highly imbalanced (i.e. the rates of the two outcomes are 
relatively rare). There are a variety of techniques that can be used to optimize one of the above parameters given 
this imbalance including oversampling and undersampling; we chose not to attempt anyof these techniques 
to retain focus on the featurization. However, future work should certainly include such attempts as they may 
improve model performance.

This study does have some limitations. Most significantly, this is a single center trial examining a single type 
of model (gradient boosted trees) and two clinical outcomes—postoperative mortality and AKI. While the con-
clusions we draw from these results are likely applicable to other hospitals and may generalize to other modeling 
techniques or outcomes, this cannot be known for certain. Additionally, as noted, this study only used certain 
medications and laboratory results. While we believe that we have identified those most common and most likely 
to influence outcomes, it is possible that the results would have been different with a different medications/tests.

Overall, we believe this study adds to the body of work that demonstrates the need for more research into 
techniques to improve healthcare model performance. There is likely no “magic bullet” of a perfect model that 
always performs the best. Rather what is needed is a variety of techniques (featurization, modeling, etc.) that can 
be called upon for a specific clinical task to find the optimal model for that workflow. What does seem to be clear 
from this manuscript, is that having ways to access more data is probably better and simply relying on a small set 
of features thought to be clinically relevant is unlikely to create the best performing model.

Data availability
Due to institutional restriction regarding protected health information and patient privacy the data used in this 
manuscript are not publicly available. Researchers interested in obtaining the data are encouraged to contact the 
corresponding author who will do his best to facilitate access subject to institutional guidelines.
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