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ABSTRACT

Traumatic brain injury (TBI) constitutes a major health problem worldwide and is

a leading cause of death and disability in individuals, contributing to devastating

socioeconomic consequences. Despite numerous promising pharmacological strate-

gies reported as neuroprotective in preclinical studies, the translation to clinical tri-

als always failed, albeit the great diversity of therapeutic targets evaluated. In this

review, first, we described epidemiologic features, causes, and primary and sec-

ondary injuries of TBI. Second, we outlined the current literature on animal mod-

els of TBI, and we described their goals, their advantages and disadvantages

according to the species used, the type of injury induced, and their clinical rele-

vance. Third, we defined the concept of neuroprotection and discussed its evolu-

tion. We also identified the reasons that might explain the failure of clinical

translation. Then, we reviewed post-TBI neuroprotective treatments with a focus

on the following pleiotropic drugs, considered “low hanging fruit” with high proba-

bility of success: glitazones, glibenclamide, statins, erythropoietin, and proges-

terone, that were largely tested and demonstrated efficient in preclinical models of

TBI. Finally, our review stresses the need to establish a close cooperation between

basic researchers and clinicians to ensure the best clinical translation for neuropro-

tective strategies for TBI.

INTRODUCT ION

Traumatic brain injury (TBI) is a leading cause of death

and disability among youths in industrialized societies

that imposes a substantial social and economic burden

on the community [1,2]. It is prevalent in both low-

and high-income countries and affects people of all ages.

Traumatic brain injury is defined as damage to the

brain sustained after the application of external physi-

cal force that causes temporary or permanent func-

tional or structural brain damages. The latter can be

mild, moderate, or severe [3,4].

Each year, more than 50 million new TBI cases

occur in the world, and over 90% are mild TBI. Indeed,

according to the Glasgow Coma Scale (GCS), the most

widely used measure of TBI severity, TBI can be range

from mild (including concussion; GSC 13–15) to mod-

erate (GSC 9–12) and severe TBI (GSC 3–8) [5].

Because by definition mild TBI is non-fatal and should

not alter life expectancy, prolonged symptoms can lead

to lifelong disabilities [3]. Therefore, the concept of

“mild TBI” can be misleading, as it does not reflect the

time course of injury symptoms and long-term effects.

Although the incidence of severe TBI is less important,

about 40% of patients will die from their injury, and

60% will have an unfavorable outcome [6]. It is pre-

dicted that close to 50% of the world’s population will

sustain at least one TBI in their lifetime.

Traumatic brain injury may originate from road traf-

fic incidents, falls, sports, military conflicts, and more
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recently from terrorism. A recent systematic review

and meta-analyses of articles describing the epidemiol-

ogy of TBI in 16 European countries showed that the

first two causes were the most frequent, with falls

being reported more frequently than motor vehicle

accidents [7]. However, within the studies that mainly

focus on more severe TBI, the latter remains dominant

as a cause of injury. Moreover, a correlation was found

between the cause of injury and age, with falls being

most common in elderly and children subpopulations,

while road traffic incidents were the most frequent in

young adults.

Reported new TBI cases vary greatly between coun-

tries and regions. In low- and middle-income countries,

the rising burden of TBI due to the increase of road traf-

fic incidents mainly affects youths, while in high-income

countries the changing epidemiology of TBI is related to

a high and increasing incidence in infants and elderly

people. At last, sports, such as rugby and boxing, and

military conflicts also enhance the number of TBI.

Regardless of age, TBI represents 30–40% of all

injury-related deaths. Moreover, it is now clear that

TBI is an important risk factor for the later develop-

ment of dementia and neurodegenerative disorders,

such as Alzheimer’s disease and Parkinson’s disease

[4,8], while repetitive mild TBI results in a distinct

pathology called chronic traumatic encephalopathy

(CTE) [9]. Moreover, unlike other neurodegenerative

diseases, the development of CTE symptoms often

occurs earlier in life. Unfortunately, currently, CTE can

only be diagnosed postmortem [10]. Epilepsy is also a

well-recognized complication of TBI, increasing with

the severity of the latter. Thus, TBI accounts for about

5% epilepsy cases in the entire population [1]. Alto-

gether, these data reinforce the view that TBI can

evolve into a progressive lifelong illness.

Traumatic brain injury represents a dynamic and

complex pathophysiological disease characterized by

primary damages leading to secondary lesions. Unfortu-

nately, to date, there is still no protective pharmacologi-

cal treatment. Pinpointing the pathophysiological

mechanisms at the cellular and molecular level is a key

step for the identification of pharmacological targets. The

interplay between pharmacological agents and their bio-

logical targets produces directly or indirectly quantifiable

effects. Identification and quantification of these effects in

animal models and in humans represent the objectives of

preclinical and clinical pharmacology.

Traumatic brain injury is considered as a silent epi-

demic present throughout the world, as the problems

resulting from TBI are often not immediately visible.

Each year, up to 50 million new cases occur worldwide

[1,11] and about 2.5 million in Europe [1], causing

more than 50 000 deaths annually in the United

States and Europe [1,12,13]. TBI incidence increases

with age, as well as the outcome severity. In high-in-

come countries, TBI remains the main cause of death

in children and adolescents, and affects more boys than

girls whatever the age range [1]. Although 65 years

old people represent only 10% of TBI cases, they

account for 50% of TBI-related 10-year mortality risk.

The epidemiology of TBI has changed over the years,

as a clear shift toward older traumatized patients has

been observed in high-income countries, with falls rep-

resenting the primary cause of TBI in elderly popula-

tion [14]. Unsurprisingly, older adults experience

poorer outcomes than younger adults with similar TBI

severity [15]. Studies also showed that prevalence of

TBI is higher in males than females, but this gender

disparity is reduced at both extremes of age [1].

For over a century, severe TBI-related mortality has

dropped by half thanks to advances in medical science

and to preventive measures. However, for the past

25 years, no further improvement has been noted

[1,16].

Extension and localization of acute and chronic trau-

matic brain lesions depend on the severity and type of

TBI. Briefly, the pathophysiology of TBI involves both

primary and secondary injury. Primary injury that is

directly caused by mechanical pulse/force can be

induced by numerous mechanisms, such as brain con-

tusion, hematoma, shearing, and stretching of the

brain tissue caused by motion of the brain structures

relative to the skull. The secondary injury is a conse-

quential event of the primary injury and includes com-

plex biochemical and physiological processes that

manifest over a period of hours to days and even

months and years. Animal models, commonly used in

TBI research, have been developed and used to experi-

mentally mimic some aspects of the behavioral, tissu-

lar, and cellular consequences of human TBI in order

to understand post-traumatic pathophysiology. Phar-

macological studies have been performed to identify

cellular and molecular targets promoting the reduction

of acute and chronic brain lesions.

ANIMAL MODELS OF TB I

Goals of preclinical TBI models are to identify biomark-

ers and understand mechanisms involved in post-
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traumatic consequences in order to propose therapeutic

strategies for TBI patients. Animal models of TBI are an

essential step toward a better understanding of the

pathophysiology of this pathology and the development

of novel therapies. The failure of bench to bedside trans-

lation might be overcome by modifying several preclini-

cal practices. In particular, to increase translation

potential of preclinical studies, an important considera-

tion should be to include more testing in females, as the

susceptibility to injury differs between genders [17].

Moreover, a better diagnosis and treatment requires a

better understanding of the injury mechanisms in a

well-defined severity of mild, moderate, and severe

injury in different models that may potentially reflect

the various types of human brain injuries [18]. Today,

there is no established guideline to assess injury severity

in experimental TBI, which makes it challenging for ani-

mal model findings to a clinical translation. Indeed, clin-

ical evaluation method, such as the GCS, is inadequate

to evaluate the severity of brain injury in animals, as in

humans, TBI severity is assessed in verbal response to

the state of consciousness. Therefore, over the years, a

broad variety of behavioral tests have been developed to

assess sensorimotor and cognitive functions, social inter-

actions, and anxiety-like and depression-like behavior in

animal models of neurological diseases [19–22]. As for

animal models, there is no perfect behavioral test and

the most suitable one has to be chosen depending on

the objectives of the research project.

The classification of TBI severity in experimental

models also varies with the device model used, and

from one laboratory to another. This highlights the

need to define convergent standard criteria for mild,

moderate, and severe TBI in animal models. The

heterogeneity of human TBI makes it difficult to

develop a single animal model that can accurately

replicate all of the primary and secondary events

observed in humans. Therefore, since the 1940s,

numerous animal models of TBI have been developed

according to the presence or absence of craniectomy

before brain trauma and the type of force applied

(Table I). Both present advantages and disadvantages,

head injuries are typically classified as closed or pene-

trating. The first one is usually used to describe road

traffic incidents, assaults, and falls, while the second

one results from gunshots or stab wounds. More

recently, military conflicts have generated a third cate-

gory known as blast injury due to explosive devices.

Animal models can also be classified into focal, dif-

fuse, and mixed (focal and diffuse) injury [18]. Focal

brain injury, defined as a localized tissue damage,

results from a blow to the head, road traffic incidents

or assaults, while diffuse brain injury is caused by

acceleration or deceleration impact, such as after blast

injury. At last, mixed injury results from falls or sport

injury.

So far, for ethical, economical, and practical reasons,

rodents, that is, mice and rats, are currently the mostly

used animals in TBI studies, but experiments in larger

animals (cat, rabbit, dog, sheep, ferret, swine, non-hu-

man primate) also exist and play crucial role in under-

standing the underlying mechanisms of TBI, given

their neuroanatomical similarities with the human

brain [29]. The lack of effective pharmacological treat-

ment for TBI may be partly ascribed to the predomi-

nant use of rodents with lissencephalic brain as

opposed to larger species with gyrencephalic brain

(sheep, pig and non-human primate) and higher white

to gray matter ratio close to human brain [30,32].

Indeed, lissencephalic brain will experience less brain

deformation than gyrencephalic one, given that gyri

influence the movement of the brain within the skull.

Therefore, the application of the same acceleration

force will induce only minor injury in animals with lis-

sencephalic brains compared to large animals. More-

over, the sensitivity of gray and white matter tissue to

injury is different, as the latter appears more vulnera-

ble. Thus, the use of large animal species may enhance

successful translation to clinic given the similarities in

neuroanatomical structure to the human brain and a

closer resemblance to the pathophysiological and clini-

cal manifestations of TBI in humans when compared

with rodent models [32]. Another advantage of large

animal species is that their brains lend themselves to

superior quality MRI studies, by using, in addition, the

same instrumentation for physiological monitoring

than in humans, with similar values observed, facilitat-

ing therefore the clinical translation. Now, it remains

to establish which of these large animal species would

be the more suitable. Non-human primates might be

the candidate of choice as they also express distinct

cognitive and behavioral superiority, advantageous for

neurobehavioral testing.

Nevertheless, mice are still increasingly being used

due to the availability of transgenic lines.

All models are valid whether their limitations are

taken into account when interpreting the results. For

example, the necessity of craniectomy and the use of

anesthetic and/or analgesic can modify and alter TBI

outcomes. Moreover, of note, models with craniectomy
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do not reflect the chronology of events occurring in the

majority of TBI, such as falls or road traffic accidents.

Indeed, in humans, the first TBI event is the impact on

the skull, eventually followed by a skull fracture or

opening, with or without penetration, while in animal

models with craniectomy, the first event is the opening

of the skull followed by the impact on the brain, but

without penetration. In addition, the craniectomy pre-

vents the intracranial pressure increase that is an

important consequence of severe TBI, requiring a

craniectomy afterward. Therefore, these models are not

the most relevant.

Moreover, to date, there is no doubt that a strong

correlation exists between the years of exposure to

repetitive mild TBI and the incidence of CTE. The latter

is typical of the contact forces that occur to athletes on

the field of play, and, more recently, has also been

reported in military personnel exposed to explosive

devices. Although long-term consequences of repetitive

mild TBI have long been considered as insignificant,

the last decade has seen increased awareness of poten-

tial chronic neurodegenerative detriment from such

injuries. In this context, several models have been

developed to reproduce repetitive mild TBI in animals,

Table I Animal models of TBI [23–31]

Model

Animal

Type of injury Clinical relevance Advantages & disadvantagesRodent Large animal

With craniectomy

Controlled cortical impact X X Mixed (focal and diffuse) Sport-related TBI +: fine tuning of injury severity

[controlled depth, velocity, impact

(dwell) time, size and type of

impactor tip]; no contrecoup injury;

no skull fracture

�: craniectomy

Fluid percussion X X Focal, diffuse, or mixed Sport-related TBI +: unique or repeated; central or lateral

impact; fine tuning of injury severity;

highly reproducible; no skull fracture

�: craniectomy

Weight drop X Not reported Focal, diffuse, or mixed Falls and motor

vehicle accidents

+: tuning of injury severity (mass of the

weight and the height from which it

falls); unique or repeated; no skull

fracture

�: hardly reproducible; variable

mortality rate; risk of contrecoup

injury; craniectomy

Without craniectomy

Controlled cortical impact X X Mixed Sport-related TBI +: fine tuning of injury severity

[controlled depth, velocity, impact

(dwell) time, size and type of

impactor tip]; no contrecoup injury

�: risk of skull fracture

Weight drop X Not reported Focal, diffuse,

or mixed

Falls and motor

vehicle accidents

+: fast; tuning of injury severity (mass

of weight and the height from which

it falls); unique or repeated

�: hardly reproducible; high variability

of mortality; risk of skull fracture; risk

of contrecoup injury

Impact acceleration X X Mixed Falls and motor

vehicle accidents

+: unique and repeated

�: high variability of injury severity

Inertial acceleration Not reported X Diffuse Motor vehicle accidents +: pure diffuse injury

Blast injury model X X Diffuse Civilian and

military-related TBI

+: pure diffuse injury
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in order to identify appropriate therapeutic strategies

[9,31,33-35].

Given the heterogeneity and etiological complexity of

TBI, no single animal model can mimic all TBI conse-

quences. Therefore, the recent preclinical strategy is to

perform large-scale preclinical multicenter consortium

involving multiple TBI models to ensure replication of

findings and the discovery of new treatments. This

approach has been developed by few groups [36].

Moreover, it seems crucial to set up a new conscious-

ness that any potential pharmacological strategy hav-

ing been proved efficient for TBI in rodent models

needs to be further investigated in large animal TBI

models.

Animal models are also extremely valuable to dis-

cover biomarkers that could diagnose TBI, predict its

outcomes and monitor its evolution, and evaluate the

therapeutic efficiency of new therapies. Thus, a recent

review reports several tools, such as biofluid biomark-

ers, that have been explored in both preclinical and

clinical TBI studies, and that have shown potential in

diagnosis, prognosis or monitoring [37].

NEUROPROTECT ION

The concept of neuroprotection

Pharmacological protection has been firstly introduced

in 1980 in the field of excitotoxicity and cerebral ische-

mia, and has been secondly extended to other acute

and chronic brain pathologies. Three scenarios can be

observed after brain injury: (i) neuron remains intact

without sequelae, (ii) neuron is suffering, or (iii) neu-

ron is dying. The last two situations require neuropro-

tective agents. Neuroprotection has been defined as the

protection or preservation of neuronal structure and

function. However, this definition, originated from

acute and chronic neurodegenerative disorders, is quite

broad and “neuronocentric.” Thus, clinicians proposed

a more pragmatic definition, consisting in the mainte-

nance of neuronal and glial damage without any clini-

cal symptoms. Indeed, increasing evidence underscores

the importance of glial (astrocyte, microglia, oligoden-

drocyte) and endothelial cells which have complex and

related interplay. Thus, the promotion of recovery and

optimal function of glial and endothelial cells is associ-

ated with the inhibition of neuronal cell death.

Although TBI affects all brain cells in both gray and

white matters, researchers mainly focused on neuronal

death for many years. Today, it is well established that

protective strategies have to target not only neurons,

the noble but the more vulnerable of central nervous

system (CNS) cells, but also other cell types such as

glial and vascular cells (endothelial cells, smooth mus-

cle cells, and pericytes) to promote neuroprotection. In

the field of TBI, many molecules have been tested in

animal models and have proven their neuroprotective

activities leading to their clinical evaluation. Despite

the numerous promising candidate therapies identified

using preclinical TBI models, none has yet successfully

shown clinical benefits. Several reasons have emerged

from the retrospective analysis of preclinical and clini-

cal studies:

• huge interspecies differences (between rodents and

humans) in anatomy, morphology, metabolism, neuro-

biology, and life span

• differences in size and cell density in rodent versus

human brain

• lissencephalic brain for rodents (main experimental

studies) versus gyrencephalic brain for humans [30,32]

• less white matter in rodents (10% white matter and

90% gray matter) than in humans (50% white matter

and 50% gray matter)

• irrelevant animal models of TBI

• inadequate sample size

• preclinical models performed mainly in males [17]

• lack of experimental studies taken into account

comorbidities

• poor understanding of secondary lesions, such as

white matter injury and long-term behavioral conse-

quences

• mild TBI 80% versus severe–moderate TBI 20%

• inadequate and untranslatable behavioral outcomes

• use of anesthesia in animal models with potential

drug/anesthetic interactions and/or neuroprotective

effects

• inappropriate therapeutic window [38]

• lack of pharmacokinetic/pharmacodynamic (PK/PD)

modeling studies: the concentration–response and

time–response relationships, the plasma protein bind-

ing, the influence of metabolism, and the measure-

ments of metabolites (actives or inactives) provide

valuable informations for translational purposes

• lack of predictive biomarkers

• no correlation between severity of TBI animal models

and that of traumatized patients included in clinical tri-

als

• heterogeneity of TBI patients versus reproducible ani-

mal models

• lack of multicenter preclinical trial of neuroprotective

molecules
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Nonetheless, these failures can be addressed with

improved preclinical drugs testing in TBI models. A TBI

preclinical consortium, Operation Brain Trauma Ther-

apy, has emerged in the United States to perform mul-

ticenter preclinical studies [36]. The objective is to

identify the most promising therapies that could

demonstrate robust beneficial effects across TBI models

and those with model dependent effects to guide to

patient with specific anatomical TBI phenotypes. This

consortium, which has already evaluated ten therapies

and assessed three serum biomarkers, links the finding

of optimized preclinical studies to clinical trial design to

produce successes in therapy and biomarker develop-

ment in TBI.

PHARMACOLOGICAL STRATEG IES

Traumatic brain injury is a complex process that

results from primary and secondary injuries. The latter

can happen from minutes to months from the primary

impact and consists of a cascade of events responsible

for further brain damages [2,5,39]. Indeed, different

cell death mechanisms drive TBI, such as excitotoxicity

that is characterized by the release of neurotransmit-

ters like glutamate [40], leading to increased intracellu-

lar calcium. In turn, high intracellular calcium

concentration activates an array of catabolic enzymes

including endonucleases, proteases, and phospholi-

pases, which damages DNA, structures, and mem-

branes. Another prominent mechanism that happens

shortly after TBI is oxidative stress, due to excessive

production of both reactive oxygen and nitrogen

species (ROS and RNS) that cause lipid peroxidation,

protein carbonylation and DNA oxidation. Neuroin-

flammation plays also a key role in post-traumatic

brain injury. Thus, inflammatory responses are acti-

vated with the invasion of monocytes, neutrophils, and

lymphocytes through the blood–brain barrier (BBB), as

well as via the glial cells, especially microglial cells that

release proinflammatory cytokines but also produce

ROS. Although all these post-TBI mechanisms occur in

both animals and humans, they may differ in terms of

timing, intensity and duration, according to the age of

TBI, the TBI severity, and the brain lesion location.

Consequently, many preclinical and clinical studies

have tested the therapeutic efficacy of drugs targeting

these mechanisms, including, among others, excitatory

amino acid inhibitors, calcium channel blockers, free

radical scavengers and antiinflammatory strategies.

Interested readers can find results of these studies in

some reviews that need not to be reitered here [5,41–
46]. Regarding past, present, and future clinical trials,

about 150 drugs were or are going to be evaluated in

447 clinical trials (https://www.clinicaltrials.gov/ct2/re

sults?term=drug&cond=Traumatic+Brain+Injury&age_

v=&gndr=&type=Intr&rslt=&Search=Apply).

The distribution per age group and study phase are

presented in Table II. However, among all these drugs,

each time that a neuroprotective one was put to test in

phase III trials, it consistently failed to make a signifi-

cant impact on day-to-day clinical practice.

Considering the interrelationship between all the dif-

ferent cells mentioned above, the ideal therapeutic

strategy should therefore target the “neurogliovascu-

lar” unit. Moreover, as numerous molecular mecha-

nisms contribute to the complexity of TBI, drugs

targeting only one mechanism failed to protect the

whole unit. Thus, pleiotropic drugs controlling multiple

deleterious biochemical pathways demonstrated benefi-

cial effects in experimental studies and showed promise

for success in clinical trials. Therefore, we limited this

review to the following pleiotropic strategies, glitazones,

glibenclamide, statins, erythropoietin (EPO), and pro-

gesterone, that were largely tested in preclinical models

of TBI (Table III). In addition, we focused on pharmaco-

logical therapies that are considered “low hanging

fruit,” that is, therapies approved by agencies, such as

European Medicine Agency (EMA) or Food and Drug

Administration (FDA), for other indications that should

have a high probability of success. Moreover, these

pleiotropic therapies have been translated from bench

to bedside, except glitazones. Consequently, their side

effects being well known, it is easier to evaluate the

benefit/risk balance of these drugs.

Glitazones, also called thiazolidinediones, are syn-

thetic peroxisome proliferator-activated receptor

(PPAR) c agonists prescribed worldwide to treat hyper-

glycemia and diabetes. PPAR, or nuclear receptor 1 C

(NR1C), family are nuclear receptors leading to the

regulation of gene transcription essential in metabolic

processes and cell differentiation. Three PPAR isotypes

are currently identified in mammals: PPARa (NR1C1),

b/d (NR1C2), and c (NR1C3). All subtypes are

expressed in the CNS, albeit at different levels [132].

Under physiological conditions, PPARc is mainly

expressed in neuronal cells and astrocytes [133,134],

while its expression is increased in microglia during

inflammatory conditions [134]. Most of PPARc ago-

nists activate PPARc, as well as other PPAR, but are

also involved in PPAR-independent pathways. Thus,
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glitazones exert pleiotropic effects through PPAR-de-

pendent and -independent mechanisms that are not

fully differentiated. A large body of preclinical data sup-

ports the future translation to clinical trial for TBI

(Table III).

Glibenclamide, also known as glyburide, is an antag-

onist of SulfonylUrea Receptor-1-Transient Receptor

Potential Melastatin member 4 (SUR1-TRPM4). It is a

well-known drug used in type 2 diabetes mellitus to

promote the release of insulin by blocking SUR1-pan-

creatic potassium adenosine triphosphate (ATP) chan-

nels. SUR1 is a member of the ATP binding cassette

transporter superfamily also coupled to TRPM4. This

ion channel complex is a hetero-octameric structure

comprising four SUR1 subunits and four subunits of

TRPM4. SUR1-TRPM4 is not normally present in the

brain but undergoes upregulation in multiple CNS cell

types after TBI (neurons, microglia, astrocytes,

endothelial cells) [54,55,60,135]. Glibenclamide has

received considerable attention due to the demonstra-

tion of its pleiotropic protective effects in animal models

of TBI (Table III), which has led to a phase II clinical

trial currently evaluating whether glibenclamide will

decrease post-traumatic edema and/or hemorrhage

compared to placebo (NCT01454154; https://clinica

ltrials.gov/ct2/show/NCT01454154).

Statins are a well-known class of medications acting

through the inhibition of 3-hydroxy-3-methylglutaryl

coenzyme A (HMGCoA) reductase to decrease hepatic

cholesterol synthesis, which in turn lowers serum low-

density lipoprotein levels by hepatic low-density

lipoprotein–receptor upregulation. Studies have identi-

fied the pleiotropic properties of statins and their benefi-

cial effects in other pathologies than hyperlipidemia,

such as TBI. Modulation of lipid synthesis, by inhibition

of HMGCoA reductase, lowers mevalonic acid levels

promoting numerous intracellular signaling cascades,

which leads to the pleiotropic effects of statins

(Table III). A clinical study demonstrated that prior sta-

tin usage to TBI did not improve functional outcome

3 months after TBI [136,137] but improved functional

recovery 12 months post-injury [136]. However,

cardiovascular comorbidities caused the benefit loss of

premorbid statin use. In addition, post-TBI treatment

with atorvastatin reduced tumor necrosis alpha (TNFa)
and improved functional outcome [138]. A randomized

double-blind placebo-controlled clinical trial, enrolling

65 TBI patients, demonstrated an improved functional

outcome at 3 months, but without reducing contusion

[139]. These results should be followed by larger multi-

center clinical trials.

EPO is a member of the type 1 cytokine superfamily,

produced by kidneys, leading to the production of ery-

throcytes. The role of EPO goes far beyond erythro-

poiesis, as EPO receptor (EPOR) is expressed in

erythroid tissue but also in non-erythroid tissue, such

as brain. EPOR is a transmembrane receptor with tyro-

sine kinase activity by Janus kinase-2 (JAK-2). Brain-

expressed EPOR is structurally different from that of

erythroid tissue. Indeed, it is a heterodimer composed

of a monomer of the canonical EPOR and another sub-

unit of the ß-common receptor, cluster of differentia-

tion (CD) 131 (EPOR-ß-comm) that is identical to the b
region of cytokine receptor, such as interleukin (IL) 3

or granulocyte-macrophage colony-stimulating factor

(GM-CSF) receptors. EPOR activation, by EPO or its car-

bamylated analogs, leads to an intracellular signaling

cascade resulting in neuroprotective effects (Table III).

Results from a double-blind randomized controlled trial

in patients with TBI showed no evidence of EPO effi-

ciency neither on the neurological outcome at

6 months [140] nor on the number of patients with

severe neurological dysfunction (EPO-TBI) [141]. How-

ever, recently, a follow-up of patients treated in EPO-

TBI trial [141] will enable to evaluate any possible

long-term differences (survival, neurological function

Table II Clinical trials in TBI.

Age group

Study phase

% of study per age groupI II III IV

Child (birth-17) 2% 5% 4% 2% 13%

Adult (18–64) 9% 21% 11% 9% 50%

Older adult (65+) 5% 15% 10% 7% 37%

% of study

per phase

16% 41% 25% 18% 100%
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and quality of life) between patients treated with EPO

or placebo (NCT03061565; https://clinicaltrials.gov/

ct2/show/NCT03061565).

Progesterone is a female steroid hormone that easily

crosses the BBB, rapidly diffuses throughout the brain

and is well tolerated. The biosynthesis of this hormone

is a multistep process starting with cholesterol, passing

by pregnenolone, progesterone, aldosterone, cortisol,

testosterone, and estradiol. These multiple conversions,

many bidirectional, in the biosynthesis of steroids

reveal that progesterone effects not only come from

progesterone itself, but may also be the result of these

other related hormonal effects. Indeed, the mechanisms

of progesterone administration are multiple, inducing

pleiotropic effects. Neuroprotective efficacy of proges-

terone has been demonstrated in a large number of

TBI animal models (Table III). However, ProTECT III

and SyNAPSe (2000 patients) [142,143], two phase III

clinical trials enrolling more than 2 000 patients, failed

to show clinical benefit of progesterone treatment.

CONCLUS ION

Over the past thirty years, more than 40 major neuro-

protective drugs assessed in clinical trials failed in

phase II or III [144]. This gap between the bench and

the bedside needs to be urgently addressed to improve

both patient survival and outcomes. Recommendations

have been made for improving successful translation of

neuroprotective agents from preclinical to clinical TBI

studies [145]. The failure in introducing efficient drugs

and clinical protocols shows the need to establish a clo-

ser cooperation between basic researchers and clini-

cians that should help to define more realistic goals

and provide a more objective purpose, guiding research

protocols in useful directions [146]. In conclusion, the

ground for a robust and relevant preclinical evaluation

of drugs requires testing in multicenter preclinical trials

on different models of TBI to mimic at best the hetero-

geneity of clinical situations. The decades of clinical

translation failure clearly demonstrate that research in

neuroprotection is especially difficult but basic

researchers and clinicians should not give up as there

is still an urgent need for efficient pharmacological

intervention for TBI patients.
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ABBREV IAT IONS

ATP – adenosine triphosphate

BBB – blood–brain barrier

CD – cluster of differentiation

CNS – central nervous system

CTE – chronic traumatic encephalopathy

EMA – European Medicine Agency

EPO – erythropoietin

EPOR – erythropoietin receptor

FDA – Food and Drug Administration

GCS – Glasgow Coma Scale

GM-CSF – granulocyte-macrophage colony-stimulating

factor

HMGCoA – 3-hydroxy-3-methylglutaryl coenzyme A

IL – interleukin

JAK-2 – Janus kinase-2

NR1C – nuclear receptor 1 C

PK/PD – pharmacokinetic/pharmacodynamic

PPAR – peroxisome proliferator-activated receptor

RNS – reactive nitrogen species

ROS – reactive oxygen species

SUR – sulfonylurea receptor

TBI – traumatic brain injury

TNFa – tumor necrosis factor a
TRPM4 – transient receptor potential melastatin
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