Supplementary Information for

Synthesis of propenone-linked covalent organic frameworks via Claisen-Schmidt reaction for photocatalytic removal of uranium

Cheng-Peng Niu^{1,†}, Cheng-Rong Zhang^{1,†}, Xin Liu¹, Ru-Ping Liang^{1*}, Jian-Ding Qiu^{1,2*}

¹School of Chemistry and Chemical Engineering, Nanchang University, Nanchang

330031, China

²State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, China

[†]These authors contributed equally.

^{*}Corresponding authors: rpliang@ncu.edu.cn; jdqiu@ncu.edu.cn

Table of contents

1. Supplementary Notes	3
2. Supplementary Methods	4
2.1 Synthesis of model compound	4
2.2 Electrochemical test	5
2.3 Adsorption experiment	6
2.4 Recyclability test	7
2.5 Antibacterial activity assay	8
2.6 DFT calculations	9
3. Supplementary Figures and Tables	10
4. Supplementary References	42

1. Supplementary Notes.

Sodium hydroxide, potassium hydroxide, acetic acid, aqua fortis, ascorbic acid, mesitylene, N,N-dimethylformamide (DMF), o-dichlorobenzene (O-DCB), piperidine, tetrahydrofuran (THF), propanone, ethanol and other nitrate salts were purchased from Sinopharm Chemical Reagent Co., Ltd. Trifluoroacetic acid, 1,8-Diazabicyclo[5,4,0]undec-7-ene (DBU), sodium ethoxide were purchased from Energy Chemical Technology (Shanghai) Co., Ltd. 1,3,6,8-Tetrakis-(4-formylphenyl)-pyrene (TFPPy), 5,5',5",5"'-(pyrene-1,3,6,8-tetray)tetrapicolinaldehyde (TFPPyN) were purchased from Jilin Chinese Academy of Sciences-Yanshen Technology Co., Ltd. 1,4-Diacetylbenzene (DAB), 4,4'-Diacetylbiphenyl (DBE) were purchased from Shanghai Aladdin Bio-Chem Technology Co., Ltd. P. aeruginosa, S. aureus and V. alginolyticus were purchased from China Center of Industrial Culture Collection. Water used in the experiment was prepared with a Millipore system (18.25 MΩ·cm). All reagents were used without further purification, and all the experiments were conducted at room temperature.

Fourier-transform infrared (FTIR) spectra were recorded with a Bruker TENSOR 27 instrument. Powder X-ray diffraction (PXRD) data of the nanomaterials were collected on a Bruker AXS D8 Advance A25 Powder X-ray diffractometer (40 kV, 40 mA) using Cu K α (λ =1.5406 Å) radiation. X-ray photoelectron spectroscopy (XPS) spectra of the PyN-DAB and photocatalytic reduction products of U(VI) were performed on ground powders using a Thermo VG Multilab 2000X. Among them, the vacuum degree of the analysis chamber is 8^10-10 Pa, the excitation source adopts Al K α rays (hv = 1486.6 eV), the working voltage is 12.5 kV, the filament current is 16 mA, and the signal accumulation is performed for 10 cycles. The test Passing-Energy full spectrum is 50 eV, the narrow spectrum is 20 eV, the step length is 0.05 eV, the residence time is 40-50 ms, and the charge correction is carried out with C 1s = 284.80 eV binding energy as the energy standard. The morphology of the material was imaged by a scanning electron microscope (SEM, JEM-2010, JEOL). The

morphology of the material was imaged by transmission electron microscopy (TEM, FEI Talos F200X G2, USA). The radiation stabilities of COFs were investigated in a GAMMATOR M-38-2 (USA) irradiator with a 60Co source (γ-ray). Solid-state ¹³C cross-polarization magic-angle spinning (13C CP/MAS NMR) spectra were recorded with a 4-mm double-resonance MAS probe; a sample spinning rate of 10.0 kHz, a contact time of 2 ms (ramp 100), and a pulse delay of 3 s were applied. The samples were outgassed at 120 °C for 12 h before the measurements. The nitrogen adsorption and desorption isotherms were measured at 77 K using a Micromeritics ASAP 2020M Surface areas were calculated from the adsorption data using system. Brunauer-Emmett-Teller (BET) methods. The pore-size-distribution curves were obtained via the non-local density functional theory (NLDFT) method. Metal ions concentrations were determined using an iCAP Q inductively coupled plasma mass spectrometry (ICP-MS, Thermo Fisher Scientific, USA). The thermal properties of the nanomaterials were evaluated using a STA PT1600 Linseis thermogravimetric analysis (TGA) instrument over the temperature range of 30 to 800 °C under nitrogen atmosphere with a heating rate of 10 °C/min. UV-vis diffuse reflectance spectra (DRS) were recorded with a PE Lambda 900 UV/vis spectrophotometer at room temperature. Steady-state photoluminescence (PL) decay spectra were measured at room temperature using FLS 1000 spectrometer (Edinburgh Instruments, UK).

2. Supplementary Methods.

2.1 Synthesis of model compound

1,3-diphenyl-2-propenone was synthesized according to the reported procedure. To a 250 mL round bottom flask, 20 mmol of benzaldehyde and 20 mmol of acetophenone were added sequentially, 150 mL of water was used as the medium and 8 mmol of sodium hydroxide was used as the catalyst, the reaction was heated and

stirred until the end of the reaction (depending on the thin layer chromatography/TIC to determine if the reaction was complete and the conversion and selectivity of the reaction). At the end of the reaction, the reaction is left to stand and chilled until the product is precipitated. The solution is filtered through an extraction flask (water can be added during the extraction process) to obtain the crude product and the solid product is collected and dried. The fine product can be further separated and purified by column chromatography (δ 191.00, 144.94, 134.92, 132.89, 130.46, 128.47 (d, J = 9.8 Hz), 121.66.).

2.2 Electrochemical test

Indium-tin oxide (ITO) glasses were firstly cleaned by sonication in ethanol for 30 min and dried under nitrogen flow. 5 mg of COF powder was mixed with 1 mL n-BuOH and ultra-sonicated for 30 min to get slurry. 150 μL of the slurry was spreading onto ITO glass. After air drying, the boundary of the electrode was isolated with epoxy resin. A conventional three electrodes cell was used with a platinum mesh as the counter electrode and an Ag/AgCl electrode (saturated KCl) as reference electrode. The electrolyte was a 5 mM K₃[Fe(CN)₆] aqueous solution and was purged with nitrogen gas for 1 h prior to the measurements. The working electrodes were immersed in the electrolyte for 60 s before any measurements were taken. The photocurrent responses were conducted with a CHI 760E workstation, with the working electrodes irradiated from the front side. The light was generated by a 300W xenon lamp (wavelength range 320 nm $\leq \lambda \leq$ 780 nm, light intensity 1 kW m⁻², Perfect Light, PLS-SXE300D) with a light density of 1 kW m⁻² at room temperature with the light wavelength from 300 nm to 2500 nm. For Mott-Schottky experiments, the perturbation signal was 5 mV with the frequency of 1000, 2000 and 3000 Hz. Electrochemical impedance spectroscopy (EIS) measurements were performed in dark at open-circuit voltage of 5 mV with AC amplitude in the frequencies range of 0.01 Hz to 10⁵ Hz. For CV experiments, the cyclic voltammograms were measured at a sweep rate at 100 mV s⁻¹ and with voltage sweeps between 0 and -1.50 V.

2.3 Adsorption experiment

A stock solution of uranyl nitrate was prepared by dissolving appropriate amounts of UO₂(NO₃)₂ 6H₂O in a suitable amount of nitric acid solution. The aqueous solutions of UO₂²⁺ with different concentrations were obtained by diluting the stock ions solution with the proper amount of ultra-pure water unless otherwise indicated. The pH levels of the solutions were adjusted by HNO₃ or NaOH aqueous solution. The concentrations of UO₂²⁺ during all the experiments were detected by inductively coupled plasma mass spectrometry (ICP-MS) for extra low concentrations. All adsorb experiments were carried out using 40 mL glass bottles at ambient temperature in air.

In general procedure, to obtain the uranium adsorption isotherms, 5 mg material was added into 35 mL solution of UO_2^{2+} with different concentrations in a bottle, respectively. The mixture was sonication for 30 seconds and shaken for 24 h at ambient temperature to achieve sorption equilibrium fully. Then the solid sorbent was filtered through a 0.22 μ m membrane filter, followed by measuring the remaining uranium concentration using ICP-MS. The adsorbed amount at equilibrium (q_e , mg g⁻¹) was calculated by

$$q_e = \frac{(C_0 - C_e) \times V}{m} \tag{1}$$

where V is the volume of the treated solution (L), m is the amount of used adsorbent (g), and C_0 and C_e are the initial concentration and the final equilibrium concentration of uranium, respectively.

The equation of the Langmuir isotherm model was represented as following:

$$\frac{C_e}{q_e} = \frac{1}{q_m + k_L} + \frac{C_e}{q_m} \tag{2}$$

where q_m is the maximum adsorption when the adsorption reaches equilibrium, and k_L is a constant characterized by the affinity of the adsorbate with the adsorbent. The value of C_e/q_e as the function of C_e were plotted and fitted with a linear equation from which the q_m and k_L could be calculated according to the slope and intercept.

The Freundlich model is appropriate for multilayer sorption, which can be described as:

$$q_e = K_F C_e^n \tag{3}$$

where K_F (mg¹⁻ⁿ Lⁿ/g) denotes the Freundlich sorption coefficient, and n expresses how favorable the sorption process is. K_F and n are empirical coefficients.

In the kinetics studies, 5 mg of the sorbent was added into a 35 mL solution containing 600 ppm uranium and used 0.1M HNO₃ to adjust the pH of the solution to 4.0. The mixture was stirred for a series of contact times, and the filtrate was collected at different contact time. The adsorption capacity of uranium as a function of contact time was obtained to determine the kinetics curve.

Pseudo-first-order kinetic model was described as the following function:

$$\ln(q_e - q_t) = \ln q_e - k_f t \tag{4}$$

where q_e represents the amount of U on the adsorbent under equilibrium, and k_f (min⁻¹) is pseudo-first-order adsorption rate constant.

Pseudo-second-order kinetic model was described as the following function:

$$\frac{t}{q_t} = \frac{1}{k_s + q_e^2} + \frac{1}{q_e} t \tag{5}$$

where q_e represents the amount of U on the adsorbent under equilibrium, and k_s (g mg⁻¹ min⁻¹) is pseudo-second-order adsorption rate constant.

The anti-interference performance test of UO_2^{2+} adsorption from aqueous solution containing various metal ions was carried out at pH 4.0, the initial concentration of all competitive metal ions is 10 times of UO_2^{2+} and the residual concentration in the supernatant of metal ions was determined inductively coupled plasma mass spectrometry (ICP-MS).

2.4 Recyclability test

After one run of adsorption, the adsorbents were regenerated by treatment with the elution solution of 0.1 M HNO₃ solution and reused for another adsorption experiment. For 5 mg adsorbents, a certain amount of elution solution was used to elute the binding uranium at room temperature. The elution efficiency (E, %) was determined by using Equation:

$$E = \frac{c_e \times V_e}{(c_0 - c_t) \times V_t} \times 100\% \tag{6}$$

in where C_e (mg L⁻¹) is the uranium concentration in elution solution, V_e (L) is the volume elution solution, C_t (mg L⁻¹) is the uranium concentration in the simulated nuclear industry wastewater after uranium adsorption, C_0 (mg L⁻¹) is the initial uranium concentration of the simulated nuclear industry wastewater, V_t (L) is the volume of simulated nuclear industry wastewater used for adsorption. The resulting suspension was filtered and washed with ultra-pure water till the supernatant became neutral. After being dried under vacuum, the resultant material was used for another adsorption experiment. It was found that after five consecutive cycles still showed excellent uranium removal rate.

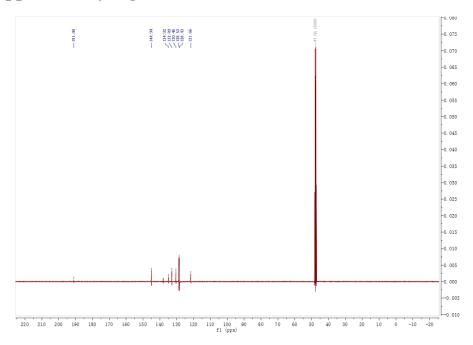
2.5 Antibacterial activity assay

Pseudomonas aeruginosa strain CICC 10205 (*P. aeruginosa*), Staphylococcus aureus strain CICC 10001 (*S. aureus*), Vibrio alginolyticus strain CICC 21664 (*V. alginolyticus*) were used to test the antimicrobial spectrum of the adsorbents. The exponential growth bacteria and the adsorbents were transferred into fresh LB broth at a ratio of 1% (V/V) and 0.05% (m/V), respectively. After cultivated at 37 °C for 4 h with moderate shaking (180 rpm), the viability of the bacterium was determined. The dilution plate counting method was used according to the Chinese standard GB/T20944 to determine the viability of the adsorbents treated bacterial cultures. In brief, sterilized LB solid medium was poured into the aseptic plates to prepare sterile plate count agar plates under aseptic conditions and bacterial cultures were spread onto the plate after gradient dilution. After cultivating overnight at 37 °C, the number of viable bacterial cells was determined by counting the bacterial clones formed on the plate. The bacterial cultures without treating by adsorbent were used as control. The inhibition rate was calculated using the Equation:

$$IR = (1 - \frac{C_a}{C_i}) \times 100\% \tag{7}$$

in where C_a (CFU/mL) indicates the concentration of bacterial cultures treated with adsorbent and C_i (CFU/mL) indicates the concentration of bacterial cultures without treatment. The simulated sunlight with a light density of 1 kW m⁻² was used

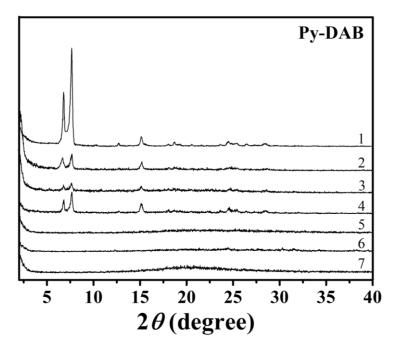
to illuminate the adsorbents.

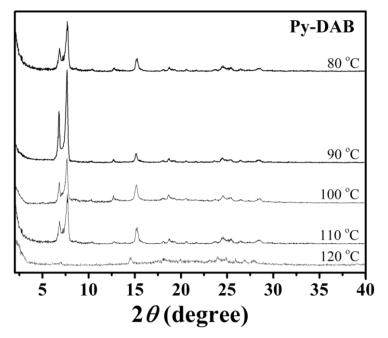

2.6 DFT calculations

The ground state geometry is optimized using DFT. All calculations are performed with the Gaussian 16 package (Rev. C.01) using the hybrid B3LYP functional and the 6-311G(d)/SDD basis set. Grimme's D3BJ dispersion correction was used to improve calculation accuracy. The D index formula for measuring the distance between holes and the center of mass of electrons:

$$D_{\rm x} = |X_{\rm ele} - X_{\rm hole}| \quad D_{\rm y} = |Y_{\rm ele} - Y_{\rm hole}| \quad D_{\rm z} = |Z_{\rm ele} - Z_{\rm hole}|$$
 (8)

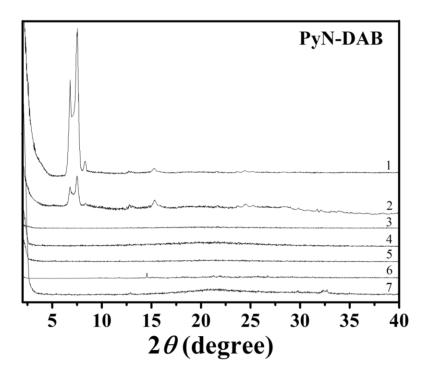
$$D \text{ index} = \sqrt{(D_X)^2 + (D_y)^2 + (D_z)^2}$$
(9)

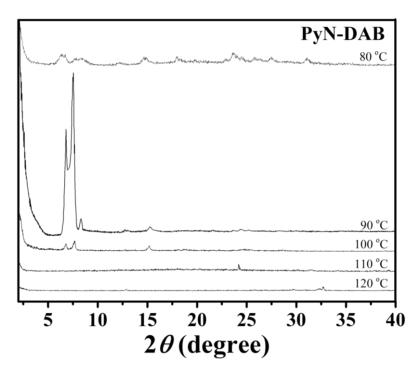

3. Supplementary Figures and Tables.


Supplementary Fig. 1 | 13 C NMR spectrum of 1,3-diphenyl-2-propenone recorded in CD₃OD.

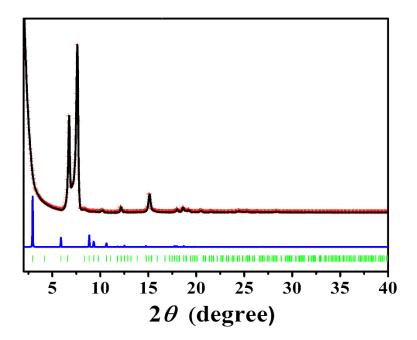
Supplementary Table 1 | Synthesis of the Py-DAB under variable conditions.

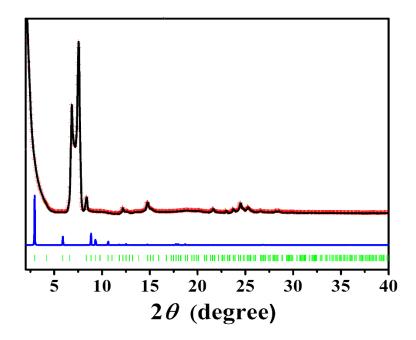
Scheme	Solvent	Temp	Reaction Times	degree of crystallinity
1	1, 4-dioxane/KOH	90°C	3d	High
2	1, 4-dioxane /mesitylene/NaOH	120°C	3d	Medium
3	O-DCB/n- BuOH/KOH	150°C	3d	Low
4	1, 4-dioxane/95% ethanol/NaOH	120°C	3d	Medium
5	mesitylene/TFA/1, 4-dioxane/acetonitrile	150°C	3d	No
6	O-DCB/n- BuOH/EtONa	120°C	3d	No
7	methanol/EtONa/ O-DCB	40/90/ 110°C	6/48/24h	No
8	O-DCB/DBU	90°C	3d	No product
9	dimethylamine(THF) /O-DCB/DMF	180°C	3d	No product
10	piperidine/DMF	180°C	3d	No product


Supplementary Fig. 2 | PXRD patterns of attempts to synthesize Py-DAB under above experimental scheme.


Supplementary Fig. 3 | PXRD patterns of attempts to synthesize Py-DAB under the condition of scheme 1 with temperature optimization.

Supplementary Table 2 | Synthesis of the PyN-DAB under variable conditions.


Scheme	Solvent	Temp	Reaction Times	degree of crystallinity
1	1, 4-dioxane/KOH	90°C	3d	High
2	1, 4-dioxane /mesitylene/NaOH	120°C	3d	Low
3	O-DCB/n- BuOH/KOH	150°C	3d	No
4	1, 4-dioxane/95% ethanol/NaOH	120°C	3d	No
5	mesitylene/TFA/1, 4-dioxane/acetonitrile	150°C	3d	No
6	O-DCB/n- BuOH/EtONa	120°C	3d	No
7	methanol/EtONa/ O-DCB	40/90/ 110°C	6/48/24h	No
8	O-DCB/DBU	90°C	3d	No product
9	dimethylamine(THF) /O-DCB/DMF	180°C	3d	No product
10	piperidine/DMF	180°C	3d	No product


Supplementary Fig. 4 | PXRD patterns of attempts to synthesize PyN-DAB under above experimental scheme.

Supplementary Fig. 5 | PXRD patterns of attempts to synthesize PyN-DAB under the condition of scheme 1 with temperature optimization.

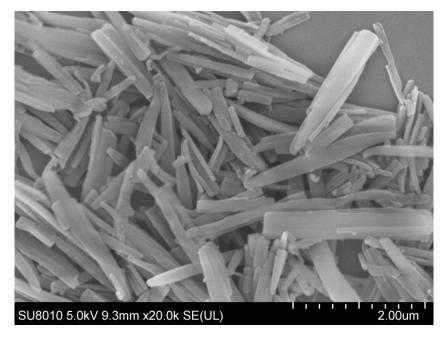
Supplementary Fig. 6 | PXRD patterns of Py-DAB with the experimental (red cross) and Pawley refined (black line) profiles, the refinement difference (orange line), the eclipsed AA stacking model (blue line) and the Bragg position (green bar).

Supplementary Fig. 7 | PXRD patterns of PyN-DAB with the experimental (red cross) and Pawley refined (black line) profiles, the refinement difference (orange line), the eclipsed AA stacking model (blue line) and the Bragg position (green bar).

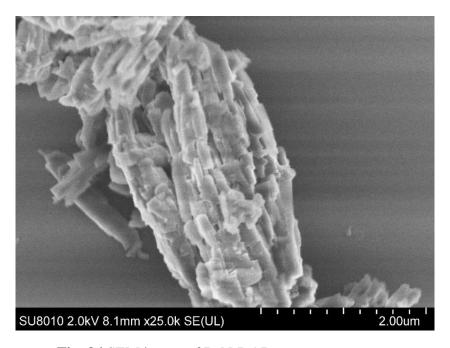
Supplementary Table 3 | Fractional atomic coordinates for the eclipsed AB-stacking unit cell of Py-DAB.

Py-DAB (P1)								
	a=26.2038 Å, b=26.3714 Å, c=13.0242 Å							
Atom	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
C1	0.59689	0.40877	0.46118	C107	0.0035	0.93298	0.96539	
C2	0.61032	0.46044	0.46126	C107	0.0033	0.93298	0.96359	
C3	0.61032	0.49714	0.45452	C109	0.0412	0.89402	0.95942	
C4								
	0.51898	0.48206	0.4631	C110	0.91466	0.95984	0.95862	
C5	0.50643	0.43013	0.46782	C111	0.92892	0.01117	0.96591	
C6	0.54563	0.3934	0.45982	C112	0.98108	0.02328	0.9728	
C7	1.4549	0.41626	0.4795	C113	0.08357	0.04815	0.97494	
C8	1.4167	0.4528	0.48492	C114	0.0473	0.08381	1.00481	
С9	1.42822	-0.49511	0.47903	C115	0.99627	0.07445	0.98167	
C10	1.47959	-0.48063	0.46489	C116	0.96086	0.11442	0.96207	
C11	0.58044	-0.45146	0.43983	C117	0.90856	0.10118	0.95766	
C12	0.54352	-0.41665	0.43767	C118	0.8924	0.05063	0.96619	
C13	1.49199	-0.42901	0.45031	C119	0.83735	0.03915	0.97633	
C14	1.45321	-0.39188	0.44615	C120	0.97724	0.16773	0.93069	
C15	1.40251	-0.40624	0.4665	C121	0.16178	0.96913	1.03333	
C16	1.38973	-0.45728	0.48515	C122	0.02737	0.84116	0.94379	
C17	1.33626	-0.47086	0.51123	C123	0.0245	0.1772	0.88182	
C18	1.46553	-0.33845	0.41895	C124	0.03798	0.22523	0.84595	
C19	0.66478	0.47462	0.48151	C125	0.00438	0.26609	0.85731	
C20	0.53311	0.3392	0.44498	C126	0.95707	0.25773	0.90556	
C21	0.49354	-0.32814	0.3295	C127	0.94398	0.20942	0.94227	
C22	0.5127	-0.2797	0.3108	C128	0.82055	1.01139	1.06184	
C23	0.50295	-0.23988	0.37935	C129	0.77198	0.98964	1.06227	
C24	1.47273	-0.24952	0.46684	C130	0.7389	0.99752	0.97947	
C25	1.45419	-0.29852	0.48633	C131	0.75388	0.02916	0.8981	
C26	1.32606	0.5019	0.60162	C132	0.80317	0.04978	0.89633	
C27	1.27848	0.47907	0.61652	C133	0.03164	0.80427	1.02088	
C28	1.23953	0.48542	0.54392	C134	0.01022	0.75611	1.00647	
C29	1.24837	-0.48376	0.45748	C135	0.98399	0.74462	0.91512	
C30	1.29657	-0.46217	0.4411	C136	0.98176	0.78094	0.83665	
C31	0.54281	0.30349	0.5223	C137	1.00411	0.82852	0.85022	

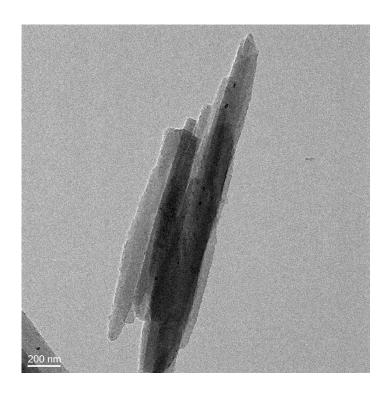
C32	0.5227	0.25436	0.51456	C138	0.20285	0.9368	1.00875
C33	1.49253	0.24076	0.42939	C139	0.25165	0.94487	1.05003
C34	1.48494	0.276	0.35034	C140	0.26075	0.98584	1.1167
C35	1.50557	0.32463	0.35746	C141	0.22044	0.01838	1.14154
C36	0.69024	0.45408	0.56718	C142	0.17196	0.01007	1.1004
C37	0.73924	0.4709	0.59434	C143	0.69231	0.96689	0.9721
C38	0.76334	0.50892	0.53636	C144	0.64571	-0.01256	0.97165
C39	0.73858	-0.47166	0.44983	C145	0.60004	0.95489	0.96343
C40	0.69077	-0.48926	0.42173	C146	0.55023	0.96892	1.01001
C41	1.19203	0.45574	0.55491	O147	0.60363	0.91493	0.91679
C42	1.14606	-0.52576	0.53051	C148	0.02139	0.31671	0.8215
C43	1.09968	0.44271	0.53926	C149	1.00437	0.36078	0.86011
C44	1.04884	0.46529	0.56067	C150	0.02746	0.40982	0.83002
O45	1.1034	0.39699	0.5272	C151	0.00501	0.4591	0.86132
C46	0.52813	-0.19035	0.36039	O152	0.06693	0.40998	0.78022
C47	1.51154	-0.1459	0.39802	C153	0.50615	0.94158	0.98307
C48	0.53861	-0.09765	0.37604	C154	0.45902	0.95279	1.02804
C49	0.51648	-0.04721	0.40197	C155	0.4548	0.99178	1.10137
O50	0.5806	-0.09925	0.33548	C156	0.49912	0.01853	1.12952
C51	1.00431	0.43735	0.54026	C157	0.54626	0.00734	1.08454
C52	0.95606	0.45754	0.56183	C158	0.03661	0.50199	0.86799
C53	0.9513	0.50612	0.60583	C159	0.01628	0.54964	0.89098
C54	0.996	-0.46616	0.62659	C160	0.96355	0.55548	0.90808
C55	1.04412	-0.48623	0.60454	C161	0.93196	0.51241	0.90249
C56	0.54831	-0.00427	0.40427	C162	0.95242	0.46469	0.87956
C57	0.52831	0.04402	0.42319	C163	0.95508	0.69699	0.90272
C58	1.47573	0.05053	0.44103	C164	0.9713	0.6524	0.93935
C59	1.44398	0.00755	0.43952	C165	0.94028	0.60618	0.92564
C60	1.46392	-0.04064	0.41975	O166	0.89393	0.61017	0.92755
C61	1.46458	0.19224	0.42486	C167	0.31177	-0.00312	1.1597
C62	1.48316	0.14845	0.461	C168	0.35546	0.98864	1.1087
C63	1.45247	0.10156	0.45472	C169	0.40539	0.00436	1.15168
O64	1.40612	0.10521	0.45958	O170	0.406	0.02944	1.23049
C65	0.81217	-0.46815	0.56821	H171	0.11946	0.87678	0.99297
C66	0.85185	0.5047	0.6024	H172	0.93747	0.88289	0.95631
C67	0.90077	-0.47023	0.62737	H173	0.8751	0.94853	0.95163
O68	0.89955	-0.42782	0.66483	H174	0.12346	0.05818	0.96149
Н69	0.62685	0.38048	0.45988	H175	0.05749	0.12208	1.02951

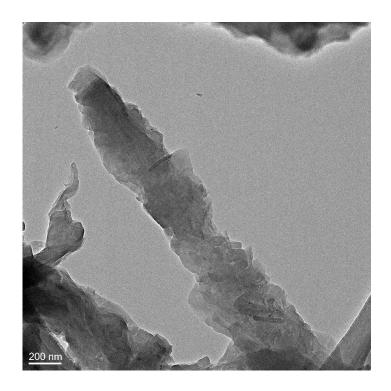

H70	1.44352	0.37695	0.48588	H176	0.8798	0.12981	0.94564
H71	1.37789	0.4394	0.49239	H177	0.05562	0.14771	0.89689
H72	0.61702	-0.43574	0.41235	H178	0.07608	0.14771	0.81535
H73	0.56116	-0.43374	0.41233	H179	0.07008	0.28819	0.81333
H74	1.37295	-0.37755	0.46701	H180	0.90817	0.20531	0.98223
H75	0.50535	-0.35915	0.28017	H181	0.84711	1.00311	1.1236
H76	1.46622	-0.22042	0.52368	H182	0.76097	0.96486	1.12496
H77	1.43389	-0.30609	0.55709	H183	0.72882	0.03486	0.83295
H78	1.35667	0.49487	0.65591	H184	0.81587	0.07105	0.82985
H79	1.21911	-0.47908	0.3995	H185	0.04915	0.81375	1.09374
H80	1.30388	-0.44146	0.37078	H186	0.01149	0.72905	1.069
H81	0.56365	0.31455	0.59061	H187	0.96159	0.77293	0.76582
H82	0.52813	0.22817	0.57766	H188	1.0008	0.85677	0.79
H83	1.49795	0.35203	0.29724	H189	0.19765	0.90587	0.95545
H84	0.67111	0.42673	0.61559	H190	0.28205	0.91911	1.02964
H85	0.75693	0.45629	0.66321	H191	0.22758	0.05232	1.18674
H86	0.67364	-0.47101	0.35683	H192	0.14381	0.04311	1.0944
H87	1.19474	0.41753	0.58605	H193	0.6966	0.92587	0.97056
H88	1.14221	-0.48689	0.50513	H194	0.64125	0.02809	0.97884
H89	0.56163	-0.19063	0.31118	H195	0.05218	0.31749	0.76561
H90	1.47773	-0.14497	0.44517	H196	0.97557	0.36094	0.91941
H91	1.00721	0.39977	0.50683	H197	0.5086	0.91097	0.9275
H92	0.92286	0.43502	0.54298	H198	0.42644	0.92992	1.00684
Н93	0.99345	-0.42864	0.66031	H199	0.49704	0.0481	1.18723
H94	1.07751	-0.46412	0.62398	H200	0.57958	0.0281	1.10994
Н95	0.58889	-0.00837	0.38995	H201	0.07719	0.49837	0.8534
Н96	0.55408	0.07602	0.42126	H202	0.04187	0.58183	0.8923
H97	1.40303	0.01189	0.44911	H203	0.89102	0.51632	0.91364
H98	1.43755	-0.07209	0.4146	H204	0.92677	0.43267	0.87284
Н99	1.4275	0.19224	0.38721	H205	0.91971	0.69828	0.85897
H100	0.52104	0.14698	0.49373	H206	0.00776	0.64968	0.97787
H101	0.81652	-0.42761	0.55652	H207	0.31299	0.01621	1.23325
H102	0.84873	0.46394	0.60769	H208	0.35398	0.97292	1.03217
C103	0.09234	0.90727	0.98382	H209	0.27254	1.45503	0.68308
C104	0.10828	0.95825	0.99384	H210	0.46184	1.26631	0.2841
C105	0.07079	0.99679	0.97904	H211	0.53756	1.72566	0.24527
C106	0.01847	0.98415	0.97326	H212	0.75521	1.55801	0.40352
		l					

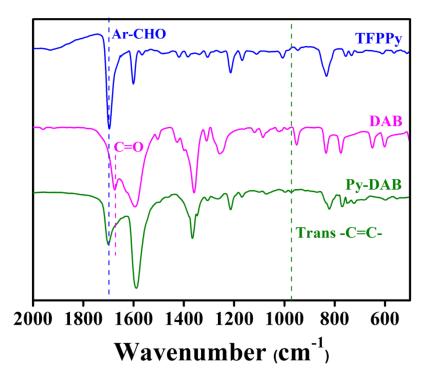
Supplementary Table 4 | Fractional atomic coordinates for the eclipsed AB-stacking unit cell of PyN-DAB.

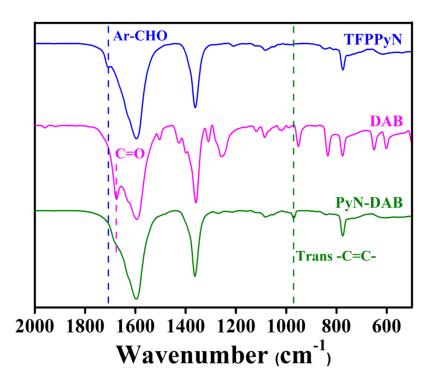

	PyN-DAB (P1)							
a=26.1833 Å, b=26.3842 Å, c=13.0745 Å α=90°, β=90°, γ=90 °								
Atom								
C1	0.59677	0.40874	0.46062	C105	0.07106	0.99684	0.97714	
C2	0.61028	0.46037	0.46081	C106	0.01864	0.98414	0.97303	
C3	0.57073	0.49714	0.45459	C107	0.00368	0.93296	0.96722	
C4	0.51892	0.4821	0.46287	C108	0.04146	0.89467	0.96698	
C5	0.50627	0.43019	0.46712	C109	0.95123	0.92142	0.96275	
C6	0.54546	0.39343	0.45927	C110	0.91468	0.95966	0.96173	
C7	1.45468	0.41639	0.47839	C111	0.92891	0.01105	0.96708	
C8	1.41652	0.45297	0.48414	C112	0.98117	0.02322	0.97253	
С9	1.42816	-0.49498	0.47858	C113	0.08374	0.04812	0.97094	
C10	1.47957	-0.48055	0.46477	C114	0.0477	0.08374	1.00185	
C11	0.58054	-0.45143	0.4407	C115	0.99645	0.07437	0.98032	
C12	0.54367	-0.41657	0.43885	C116	0.96095	0.11432	0.96147	
C13	1.49206	-0.42894	0.45074	C117	0.90855	0.10111	0.95811	
C14	1.45329	-0.39179	0.44618	C118	0.89233	0.05054	0.96694	
C15	1.40252	-0.4061	0.46609	C119	0.8371	0.03906	0.97542	
C16	1.38972	-0.45711	0.48474	C120	0.97736	0.16766	0.93023	
C17	1.3362	-0.47062	0.51046	C121	0.16228	0.9697	1.03189	
C18	1.46566	-0.33842	0.41891	C122	0.02768	0.84121	0.9468	
C19	0.66484	0.47437	0.48041	C123	0.02437	0.17713	0.88039	
C20	0.53301	0.3392	0.44486	C124	0.03808	0.22528	0.84582	
C21	0.49393	-0.32819	0.33013	C125	0.00485	0.26632	0.85892	
N22	0.51305	-0.27978	0.31138	C126	0.95777	0.25797	0.90812	
C23	0.5026	-0.23978	0.3788	C127	0.94452	0.20952	0.94377	
C24	1.47217	-0.24936	0.46568	C128	0.81926	1.01218	1.06096	
C25	1.45397	-0.29841	0.48552	C129	0.77045	0.99077	1.0604	
C26	1.32581	0.50257	0.60097	C130	0.7383	0.99782	0.97616	
N27	1.27799	0.48023	0.6163	C131	0.75428	0.02848	0.89446	
C28	1.23921	0.48604	0.54339	C132	0.80372	0.04886	0.89385	
C29	1.2484	-0.48394	0.45626	C133	0.03127	0.80446	1.02393	
C30	1.29666	-0.46236	0.44003	C134	0.0098	0.75632	1.00921	
C31	0.54279	0.30362	0.52202	C135	0.98449	0.74473	0.91712	

C32	0.52324	0.2543	0.51405	C136	0.98316	0.78087	0.83868
C33	1.49359	0.24031	0.42872	C137	1.00521	0.82849	0.85282
N34	1.48592	0.27545	0.34985	C138	0.20325	0.93673	1.00993
C35	1.50603	0.32429	0.35719	C139	0.25185	0.94474	1.05212
C36	0.69063	0.45347	0.565	C140	0.26099	0.98641	1.11668
C37	0.73967	0.47032	0.5918	C141	0.2209	0.01978	1.13831
C38	0.76348	0.50868	0.53446	C142	0.17254	0.01143	1.09657
N39	0.73855	-0.47185	0.44856	C143	0.69177	0.96719	0.96785
C40	0.69068	-0.48943	0.42087	C144	0.64511	-0.01242	0.96998
C41	1.19165	0.45647	0.55502	C145	0.5995	0.95496	0.96195
C42	1.14567	-0.52561	0.52886	C146	0.55005	0.96821	1.01088
C43	1.09942	0.44274	0.53943	O147	0.60285	0.9156	0.91341
C44	1.04855	0.46519	0.56157	C148	0.02219	0.31702	0.82398
O45	1.10332	0.39699	0.52859	C149	1.00374	0.3612	0.85921
C46	0.52744	-0.19018	0.35936	C150	0.02706	0.41017	0.82962
C47	1.51103	-0.14584	0.39746	C151	0.0042	0.45946	0.85931
C48	0.53786	-0.09759	0.37483	O152	0.06724	0.41029	0.78218
C49	0.51616	-0.04733	0.40286	C153	0.50618	0.93987	0.98692
O50	0.57931	-0.099	0.33207	C154	0.45929	0.95066	1.03317
C51	1.00402	0.43651	0.5455	C155	0.45508	0.99026	1.10481
C52	0.95579	0.45681	0.56696	C156	0.49925	0.01782	1.13055
C53	0.95106	0.50625	0.60661	C157	0.54619	0.007	1.08437
C54	0.99576	-0.46542	0.62379	C158	0.03593	0.50211	0.86817
C55	1.04384	-0.48559	0.60171	C159	0.01561	0.54973	0.89086
C56	0.54833	-0.00466	0.40586	C160	0.96271	0.55585	0.90551
C57	0.52868	0.04361	0.42592	C161	0.93086	0.51304	0.8972
C58	1.47615	0.05036	0.44421	C162	0.95133	0.46528	0.8745
C59	1.4441	0.0076	0.44261	C163	0.9552	0.69742	0.90402
C60	1.46368	-0.04058	0.42162	C164	0.97096	0.65251	0.93947
C61	1.46592	0.19162	0.42425	C165	0.93968	0.6066	0.92354
C62	1.48412	0.1482	0.4626	O166	0.89332	0.61091	0.92376
C63	1.45319	0.10147	0.45777	C167	0.31183	-0.00283	1.1608
O64	1.40685	0.10538	0.46324	C168	0.35579	0.98743	1.11198
C65	0.81223	-0.46818	0.5662	C169	0.40575	0.0028	1.15527
C66	0.85164	0.50496	0.60237	O170	0.40647	0.02761	1.23411
C67	0.90053	-0.46985	0.62697	H171	0.11982	0.87702	0.99515
O68	0.89928	-0.4271	0.66264	H172	0.93774	0.88269	0.96114

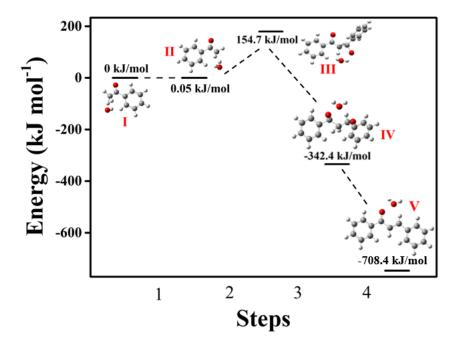

Н69	0.62673	0.38042	0.45938	H173	0.87507	0.94819	0.95642
H70	1.44321	0.37711	0.48424	H174	0.12356	0.05813	0.95628
H71	1.37763	0.4397	0.49169	H175	0.05816	0.12195	1.0262
H72	0.61716	-0.43569	0.41347	H176	0.87976	0.12984	0.94666
H73	0.56137	-0.38195	0.42078	H177	0.05547	0.14747	0.89402
H74	1.37291	-0.37741	0.46627	H178	0.0761	0.2313	0.81462
H75	0.50594	-0.35923	0.28139	H179	0.931	0.28854	0.91961
H76	1.46507	-0.22014	0.52174	H180	0.90895	0.20544	0.98453
H77	1.43365	-0.30593	0.55592	H181	0.84514	1.00436	1.12387
H78	1.3564	0.49557	0.65519	H182	0.75855	0.9668	1.12346
H79	1.2194	-0.47994	0.39781	H183	0.72983	0.0336	0.8284
H80	1.30415	-0.44203	0.36955	H184	0.81716	0.06928	0.82716
H81	0.5632	0.31491	0.59046	H185	0.04812	0.81408	1.09714
H82	0.52873	0.22822	0.57699	H186	0.01025	0.7294	1.07171
Н83	1.49848	0.35156	0.29698	H187	0.96382	0.77272	0.76721
H84	0.67174	0.42588	0.61302	H188	1.00228	0.85671	0.79279
H85	0.75763	0.45543	0.65987	H189	0.19809	0.90512	0.95844
H86	0.67333	-0.47104	0.35665	H190	0.28207	0.91837	1.03415
H87	1.19436	0.41882	0.58859	H191	0.2281	0.05415	1.18182
H88	1.14174	-0.48721	0.50097	H192	0.14443	0.04449	1.08907
H89	0.56061	-0.19023	0.30939	H193	0.69624	0.92625	0.96388
H90	1.47762	-0.14487	0.44558	H194	0.64066	0.02811	0.97913
H91	1.00684	0.39824	0.51548	H195	0.05424	0.31783	0.7711
H92	0.92257	0.43372	0.55121	H196	0.97346	0.36168	0.91528
Н93	0.99322	-0.42727	0.65425	H197	0.50858	0.90883	0.93258
H94	1.07723	-0.4628	0.61775	H198	0.42687	0.92712	1.0141
Н95	0.58887	-0.00894	0.39092	H199	0.49718	0.04787	1.18699
Н96	0.55467	0.07544	0.42439	H200	0.5794	0.0285	1.10778
Н97	1.40316	0.01212	0.45264	H201	0.07673	0.49834	0.85593
Н98	1.43709	-0.07183	0.41589	H202	0.04142	0.58167	0.89416
Н99	1.42912	0.19127	0.38562	H203	0.88975	0.51716	0.90608
H100	0.52179	0.14687	0.49624	H204	0.9256	0.43345	0.86559
H101	0.81672	-0.42778	0.55298	H205	0.91988	0.69927	0.86029
H102	0.84835	0.46427	0.60937	H206	0.00736	0.6493	0.97795
C103	0.0927	0.90746	0.98508	H207	0.3128	0.01735	1.23311
C104	0.10869	0.95851	0.99297	H208	0.3546	0.97085	1.03649


Supplementary Fig. 8 | SEM image of Py-DAB.

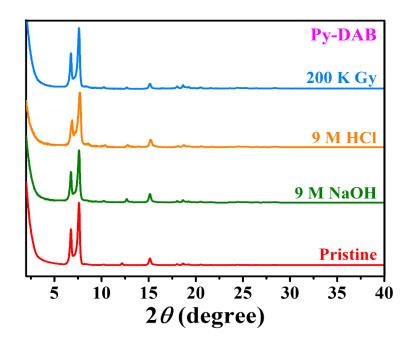

Supplementary Fig. 9 | SEM image of PyN-DAB.


Supplementary Fig. 10 | HR-TEM image of Py-DAB.

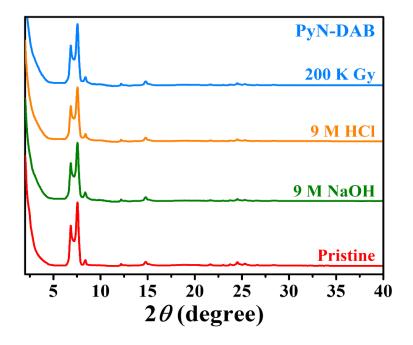
Supplementary Fig. 11 | HR-TEM image of PyN-DAB.



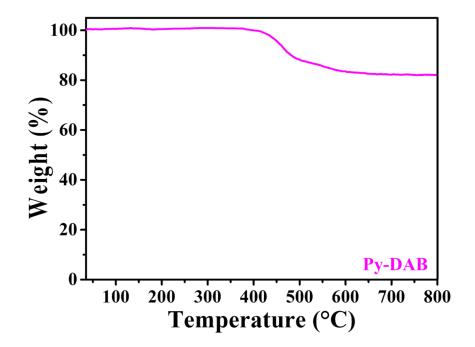
Supplementary Fig. 12 | FT-IR spectra of TFPPy, DAB, and Py-DAB.

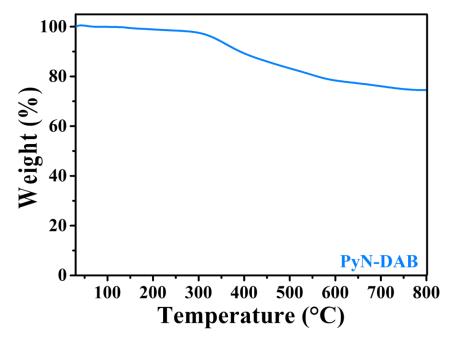

Supplementary Fig. 13 | FT-IR spectra of TFPPyN, DAB, and PyN-DAB.

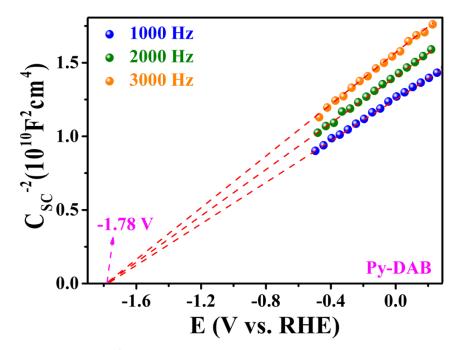
Supplementary Fig. 14 | Scheme of proposed mechanism of the trans C=C formation of model reaction using Claisen-Schmidt reaction under catalyst of NaOH.

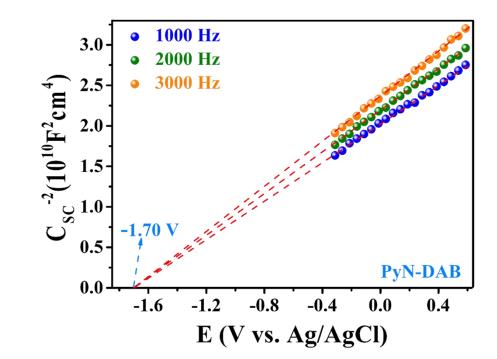


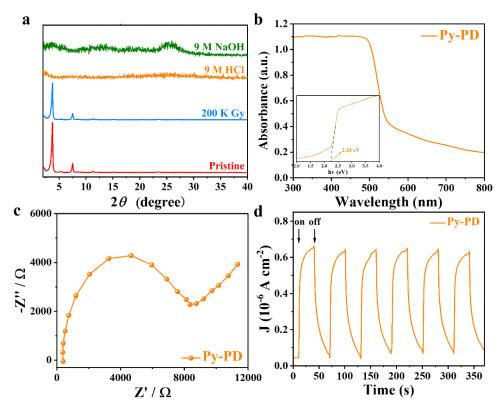
Supplementary Fig. 15 | DFT calculated molecular conformation and energy profiles of the suggested Claisen-Schmidt leading to the trans -C=C- bond under catalysis of NaOH.

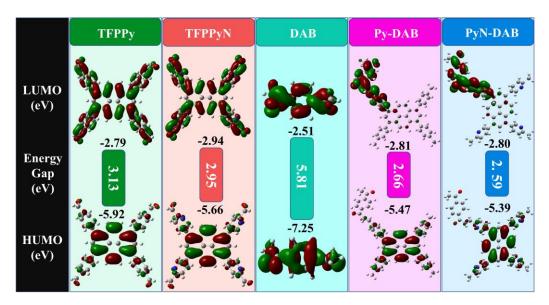

In step 1, the 1,4-diacetophenone I tends to be easily deprotonated by OH⁻ to form the relatively low energy carbon anion species II (E=0.05 kJ/mol). Afterward, the carbanion species II attacks the aldehyde to yield the intermediate III (E=154.7 kJ/mol). Subsequent formation of an intermediate IV (E=-342.4 kJ/mol) due to thermodynamic advantages and the irreversible elimination of stable result in the trans-vinylene (E=-708.4 kJ/mol).

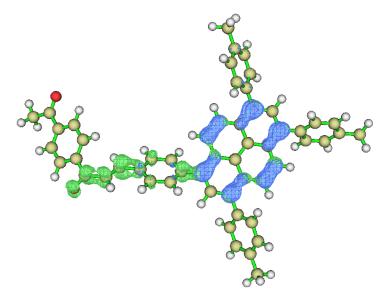

Supplementary Fig. 16 | PXRD spectra of Py-DAB treated for 24 h under different conditions, included in NaOH (9.0 M), HCl (9.0 M) and 200K Gy.

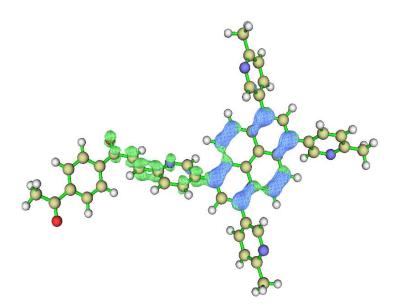

Supplementary Fig. 17 | PXRD spectra of PyN-DAB treated for 24 h under different conditions, included in NaOH (9.0 M), HCl (9.0 M) and 200K Gy.

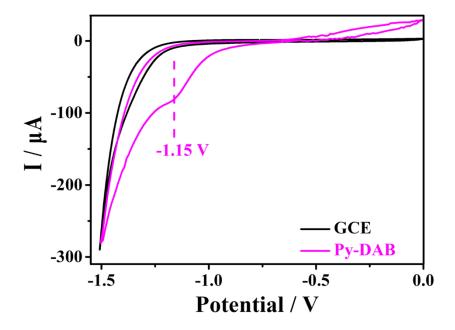

Supplementary Fig. 18 | TGA data indicates that Py-DAB is thermally stable up to ca.425 °C.

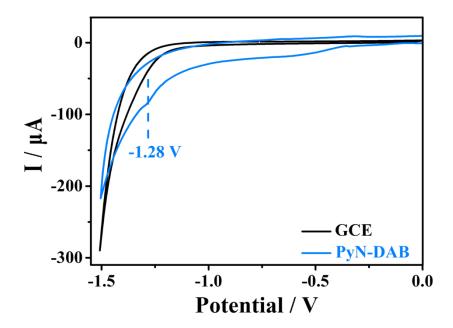

Supplementary Fig. 19 | TGA data indicates that PyN-DAB is thermally stable up to $ca. 325 \, \, \mathbb{C}$.


Supplementary Fig. 20 | The relative band positions of Py-DAB can be determined as -1.78 V according to the Mott-Schottky results.

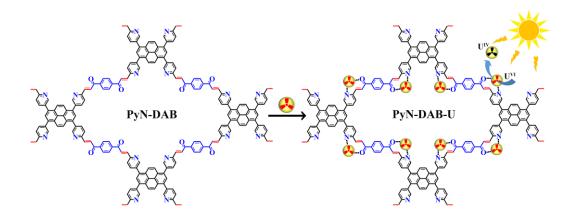

Supplementary Fig. 21 | The relative band positions of PyN-DAB can be determined as -1.70 V according to the Mott-Schottky results.

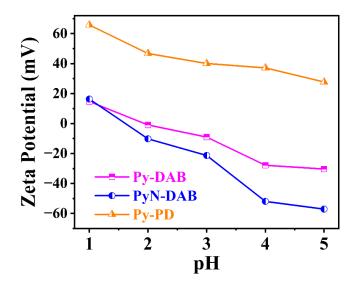

Supplementary Fig. 22 | **a** PXRD spectra of Py-PD treated for 24 h under different conditions, included in NaOH (9.0 M), HCl (9.0 M) and 200 K Gy. **b** UV-vis diffuse reflection spectrum of Py-PD (Inset: the optical band gaps). **c** EIS curves of Py-PD. **d** Photocurrent generation test spectrum of Py-PD.


Supplementary Fig. 23 | Calculated spatial distributions of HOMO and LUMO in the model of Py-DAB, PyN-DAB and involved monomers based on the optimized ground-state geometric structures.

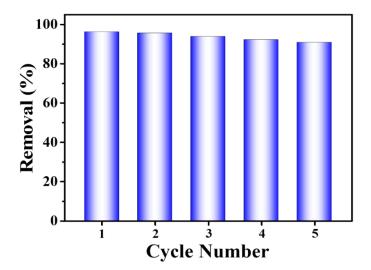

Supplementary Fig. 24 | Theoretical calculations of the separation situation of the electron from the hole in Py-DAB (blocky areas of green represents electrons cloud, blue represents holes), and the distance between the electrons and the holes centroid is 2.526 Å according to the calculation result of D index formula.

Supplementary Fig. 25 | Theoretical calculations of the separation situation of the electron from the hole in PyN-DAB (blocky areas of green represents electrons cloud, blue represents holes), and the distance between the electrons and the holes centroid is 1.998 Å according to the calculation result of D index formula.

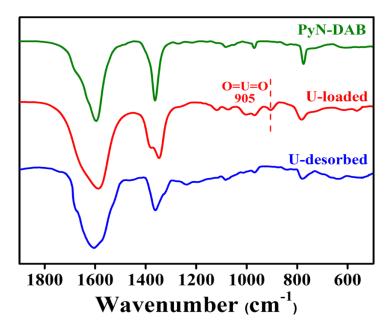

Supplementary Fig. 26 | Corresponding CVs of GCE and Py-DAB.


Supplementary Fig. 27 | Corresponding CVs of GCE and PyN-DAB.

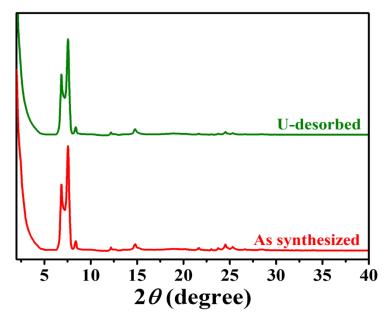
Supplementary Fig. 28 | CV curve of Py-PD.


Supplementary Fig. 29 | Process diagram of PyN-DAB for photocatalytic reduction of ${\rm UO_2}^{2+}.$

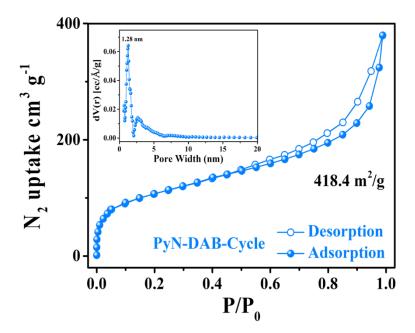
Supplementary Fig. 30 | The Zeta potential of Py DAB, PyN DAB and Py-PD.


Supplementary Table 5 | Comparison of the UO_2^{2+} sorption capacity of PyN-DAB with other sorbents.

Absorbents	Adsorption capacity (mg g ⁻¹)	Ref.
Mesoporous Carbon Materials	97.0	1
MIL-125-P@TiO ₂	614.8	2
GO-pDA-PEI	530.6	3
Fe ₃ O ₄ @ZIF-8	523.5	4
MOF-76	298	5
PPAFs	147.6	6
CMPAO	251.9	7
COF-TpDb-AO	408	8
PyN-DAB	1436.4	This work



Supplementary Fig. 31 | Recycle use of PyN-DAB for removal of UO_2^{2+} in simulated nuclear industry wastewater.


After treating with the 0.1M HNO₃ aqueous solution,⁹ PyN-DAB was easily recovered and could be repeatedly used, a little decrease in uranium removal rate may be attributed to a part of uranium combined closely with PyN-DAB was not eluted thoroughly. The elution mechanism is that the concentration of H⁺ in the elution solution is much higher than the adsorption experiment, a large amount of H⁺ will occupy the binding sites of uranyl on COF during the desorption process, resulting in the successful desorption of uranyl from COF.

Supplementary Fig. 32 | FTIR spectra of PyN-DAB before, U-loaded and U-desorbed.

Supplementary Fig. 33 | PXRD spectra of PyN-DAB and U-desorbed.

Supplementary Fig. 34 | N_2 sorption isotherms of PyN-DAB after U-desorption (Insets: pore size distributions centered at 1.28 nm), which was barely changed than as-synthesized PyN-DAB (about 456.3 m² g⁻¹).

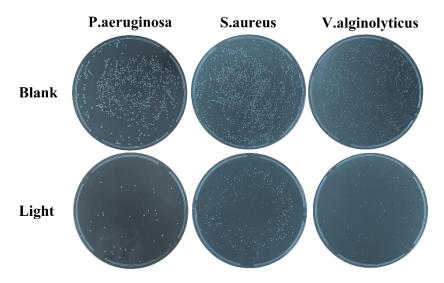
Supplementary Table 6 | Ion composition and concentration in Iranian nuclear industry wastewater.

Component	Concentration (mg L ⁻¹)
U	28.76
Ni	22.12
Cu	12.63
Fe	0.01
Mn	0.02
Pb	0.05
Ca	2.74
Mg	0.02

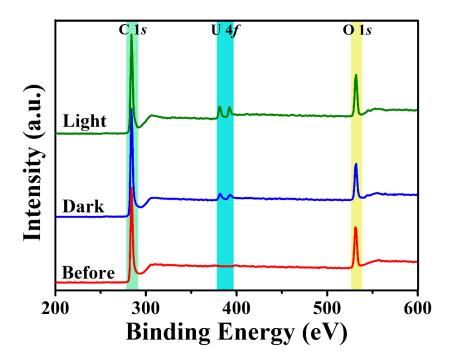
Supplementary Table 7 | Ion composition and concentration of Sample 1 in uranium mine wastewater.

Component of Sample 1	Concentration (pH=1.7)
U	0.421 mg L ⁻¹
Cd	0.00023 mg L ⁻¹
Pb	0.00057 mg L ⁻¹
²²⁶ Ra	0.131 Bq L ⁻¹
²¹⁰ Po	0.014 Bq L ⁻¹
²¹⁰ Pb	0.03 Bq L ⁻¹

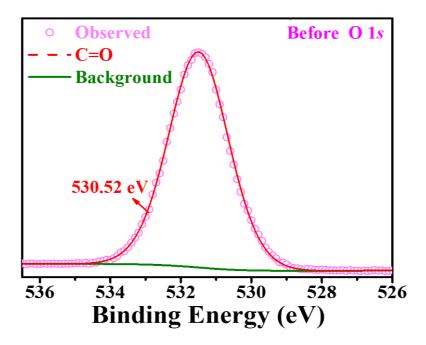
Supplementary Table 8 | Ion composition and concentration of Sample 2 in uranium mine wastewater.

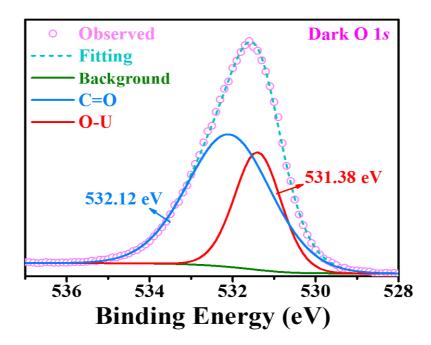

Component of Sample 2	Concentration (pH=1.6)
U	0.0256 mg L ⁻¹
Cd	0.00072 mg L ⁻¹
Pb	0.00096 mg L ⁻¹
Mn	0.647 mg L ⁻¹
²²⁶ Ra	0.031 Bq L ⁻¹
²¹⁰ Po	0.003 Bq L ⁻¹

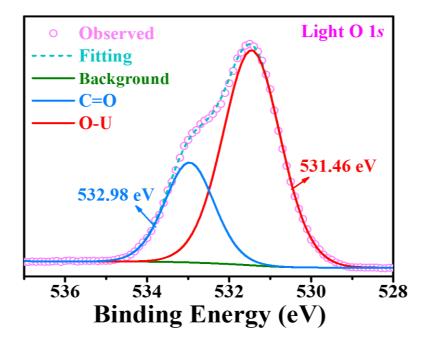
Supplementary Table 9 | Ion composition and concentration of Sample 3 in uranium mine wastewater.

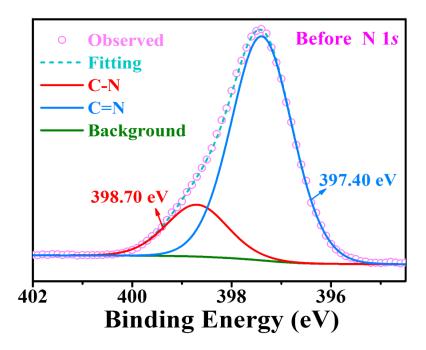

Component of Sample 3	Concentration (pH=3.1)
U	0.878 mg L ⁻¹
Cd	0.297 mg L ⁻¹
Zn	3.460 mg L ⁻¹
As	0.003 mg L ⁻¹
Ni	1.65 mg L ⁻¹
²²⁶ Ra	0.269 Bq L ⁻¹
²¹⁰ Po	0.004 Bq L ⁻¹

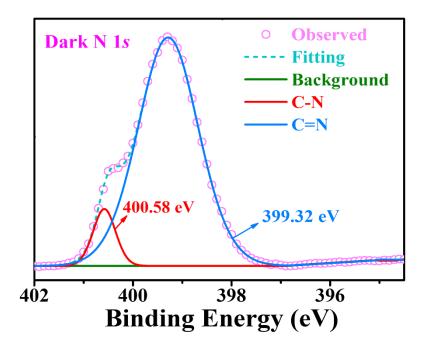
Supplementary Table 10 | Ion composition and concentration of Sample 4 in uranium mine wastewater.

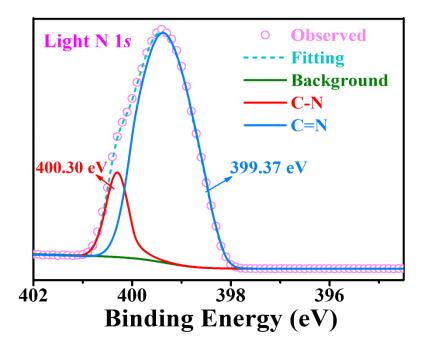

Component of Sample 4	Concentration (pH=8.0)
U	0.237 mg L ⁻¹
Cd	0.00396 mg L ⁻¹
Pb	0.00037 mg L ⁻¹
²²⁶ Ra	0.118 Bq L ⁻¹
²¹⁰ Po	0.005 Bq L ⁻¹

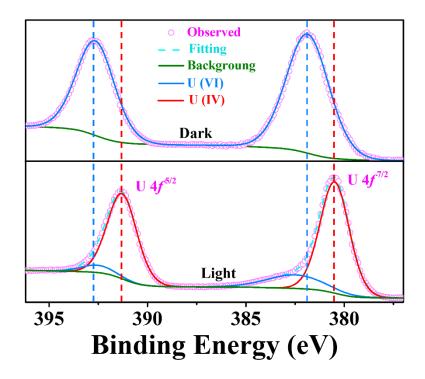

Supplementary Fig. 35 | Antibacterial activity of PyN-DAB under the presence of *P. aeruginosa*, *S. aureus* and *V. alginolyticus*.

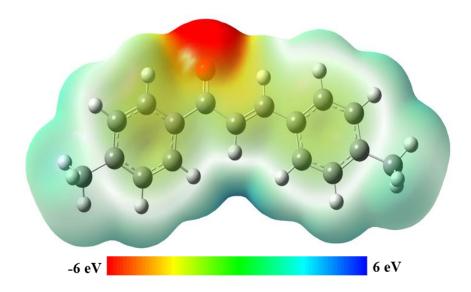

Supplementary Fig. 36 | XPS survey spectra of Py-DAB measured before and after loaded with uranium in the dark or under visible light irradiation.

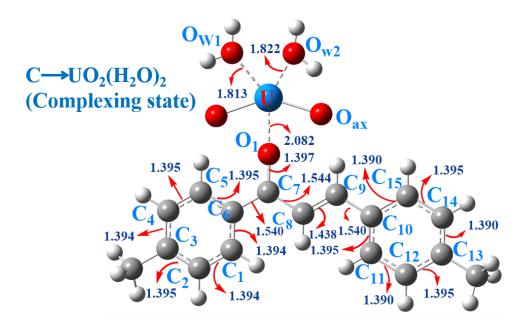

Supplementary Fig. 37 | High-resolution XPS spectra of O 1*s* for Py-DAB, the peaks of 530.52 eV belonged to C=O.


Supplementary Fig. 38 | High-resolution XPS spectra of O 1*s* for Py-DAB loaded with uranium in the dark, the peaks of 531.38 eV and 532.12 eV belonged to O-U and C=O, respectively.


Supplementary Fig. 39 | High-resolution XPS spectra of O 1*s* for Py-DAB loaded with uranium in the light, the peaks of 531.46 eV and 532.98 eV belonged to O-U and C=O, respectively.


Supplementary Fig. 40 | High-resolution XPS spectra of N 1s for PyN-DAB, the peaks of 397.40 eV and 398.70 eV belonged to C=N and C-N, respectively.


Supplementary Fig. 41 | High-resolution XPS spectra of N 1*s* for PyN-DAB loaded with uranium in the dark, the peaks of 399.32 eV and 400.58 eV belonged to C=N and C-N, respectively.


Supplementary Fig. 42 | High-resolution XPS spectra of N 1*s* for PyN-DAB loaded with uranium under visible light irradiation, the peaks of 399.37 eV and 400.30 eV belonged to C=N and C-N, respectively.

Supplementary Fig. 43 | U 4f high-resolution spectra of Py-DAB loaded with uranium in the dark or under visible light irradiation.

Supplementary Fig. 44 | Corresponding electrostatic surface potential distribution of C.

Supplementary Fig. 45 | The optimized structures for the complexing state of uranium with C, and the corresponding energy is -107.4 kJ mol⁻¹.

4. Supplementary References.

- [1] Carboni, M., Abney, C. W., Taylor-Pashow, K. M. L., Vivero-Escoto, J. L. & Lin, W. Uranium sorption with functionalized mesoporous carbon materials. *Ind. Eng. Chem. Res.* 52, 15187-15197 (2013).
- [2] Xu, C. et al. Synthesis of NH₂-MIL-125/NH₂-MIL-125-P@TiO₂ and its adsorption to uranyl ions. *ChemistrySelect* **4**, 12801-12806 (2019).
- [3] Li, S. et al. Graphene oxide based dopamine mussel-like cross-linked polyethylene imine nanocomposite coating with enhanced hexavalent uranium adsorption. *J, Mater, Chem, A* 7, 16902-16911 (2019).
- [4] Min, X. et al. Fe₃O₄@ZIF-8: a magnetic nanocomposite for highly efficient UO₂²⁺ adsorption and selective UO₂²⁺/Ln³⁺ separation. *Chem. Commun.* **53**, 4199-4202 (2017).
- [5] Yang, W. et al. MOF-76: from a luminescent probe to highly efficient U(VI) sorption material. *Chem. Commun.* **49**, 10415-10417 (2013).
- [6] Wang, T., Xu, M., Han, X., Yang, S. & Hua, D. Petroleum pitch-based porous aromatic frameworks with phosphonate ligand for efficient separation of uranium from radioactive effluents. J. Hazard. Mater. 368, 214-220 (2019).
- [7] Xu, M. et al. Highly fluorescent conjugated microporous polymers for concurrent adsorption and detection of uranium. *J. Mater, Chem, A* **7**, 11214-11222 (2019).
- [8] Sun, Q. et al. Covalent organic frameworks as a decorating platform for utilization and affinity enhancement of chelating sites for radionuclide sequestration. *Adv. Mater.* **30**, 1705479 (2018).
- [9] Cui, W.-R. et al. Low band gap benzoxazole-linked covalent organic frameworks for photo-enhanced targeted uranium recovery. *Small* **17**, 2006882 (2021).