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Abstract: In order to synthesize a promising material for developing a novel peptide/protein
delivery system, guanidinylation of chitooligosaccharides with 1-amidinopyrazole hydrochloride was
investigated herein. The production of guanidinylated chitooligosaccharides was demonstrated by
infrared spectroscopy (IR), nuclear magnetic resonance (NMR), and elemental analyses. Interestingly,
we found that the reducing end in the guanidinylated chitooligosaccharides was converted to a cyclic
guanidine structure (2-[(aminoiminomethyl)amino]-2-deoxy-d-glucose structure). This reaction was
carefully proven by the guanidinylation of d-glucosamine. Although this is not the first report on
the synthesis of the 2-[(aminoiminomethyl)amino]-2-deoxy-d-glucose, it has provided a rational
synthetic route using the high reactivity of the reducing end. Furthermore, we found that the
interaction between chitooligosaccharides and bovine serum albumin is weak when in a neutral
pH environment; however, it is significantly improved by guanidinylation. The guanidinylated
chitooligosaccharides are useful not only for the development of a novel drug delivery system but
also as a chitinase/chitosanase inhibitor and an antibacterial agent.

Keywords: chitooligosaccharide; guanidinylation; 1-amidinopyrazole hydrochloride; reducing end;
bovine serum albumin; cyclic guanidine

1. Introduction

Chitosan (CS) is an amino polysaccharide, composed of β-d-glucosamine (>60%) and
β-d-N-acetylglucosamine linking through a β-1,4-linkage and obtained by the deacetylation of
chitin [1]. Chitosans with degree of polymerization (DP) < 20 and that have an average molecular
weight of up to 3900 Da are called chitooligosaccharides (COSs) [2]. Although common chitosans
are insoluble in a neutral water, COSs are highly soluble. In addition, COSs are reported to possess
remarkable biological properties [3,4], undoubtedly making them attractive materials for developing
novel pharmaceuticals.
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Improvement of the low biomembrane permeability of peptide/protein drugs is a key aspect
of pharmaceutical sciences [5]. Cell-penetrating peptide (CPP) has attracted great attention as a
promising material for delivering such drugs into cells [6]. However, their cytotoxicity and the innate
immune response problem has limited their applications in clinics [7]. In addition, in the case of oral
administration, CPPs consisting of L-amino acids are often unable to realize their potential because
they are digested in the digestive tract [8].

We reported facile preparation of guanidinylated chitosan with 1-amidinopyrazole hydrochloride
(AP) [9] because the guanidinylation of chitosan would enhance the biomembrane permeability of
peptide/protein drugs, similar to the effect of arginine-rich CPPs [5,6,10,11], and the lower acidity
of the protonated guanidino group (pKa = 12.5) would enhance the electrostatic interaction with
protein/peptide drugs in a neutral pH environment [12]. Besides that, we confirmed enhanced
interaction between the guanidinylated chitosan and protein at acidic and neutral pHs. Application
of this method to COSs would provide guanidinylated COS (GCOS), a promising material for
developing a novel peptide/protein delivery system. In addition, GCOS would have lower toxicity
and an indigestibility suitable for oral administration because COSs have good biocompatibility
and indigestibility.

On the other hand, protection-free synthesis for making carbohydrate-related compounds has
attracted great attention as it allows us to be released from the laborious protection–deprotection
routes. The reducing end showing high reactivity is an attractive target to achieve a protection-free
synthesis of valuable building blocks. The production of glycosyl amines [13], glycosyl azides [14],
and glycosyl donors [15–17], and the immobilization of carbohydrate building block via reductive
amination [18], by virtue of the high reactivity of the reducing end, are widely employed
in carbohydrate chemistry. The development of protection-free synthesis for making building
blocks that still require the protection–deprotection process is effective for developing medicines,
agrochemicals, and functional materials. 2-[(Aminoiminomethyl)amino]-2-deoxy-d-glucose, having a
cyclic guanidine structure on the reducing end, was expected as a catalytic cofactor analogue for the
glmS ribozyme [19]. It is expected to have inhibitory activity toward chitinase/chitosanase because of
the structural similarity to chitin/chitosan. However, there are no synthetic routes that do not involve
protection–deprotection procedures.

Herein, we investigated the guanidinylation of a COS with AP (Scheme 1). Interestingly, we
found that GCOS has a cyclic guanidine structure on the reducing end. In addition, the effects of the
guanidinylation on protein binding ability were investigated with fluorescence analysis using bovine
serum albumin (BSA) as a model protein drug.
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Scheme 1. Guanidinylation of chitooligosaccharides (COS) with 1-amidinopyrazole
hydrochloride (AP).

2. Materials and Methods

2.1. Materials

COS hydrochloride with an undeacetylated 4.7% fraction (elemental analysis) (monomer 0.3%,
dimer 12.8%, trimer 25.3%, tetramer 27.1%, pentamer 24.2%, hexamer 5.9%, heptamer 2.1%, and
octamer 1.0% in weight) was supplied from Koyo Chemical (Tottori, Japan). 1-Amidinopyrazole
hydrochloride (AP), d-glucosamine hydrochloride, acetic anhydride, and pyridine were purchased
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from Tokyo Chemical Industry (Tokyo, Japan). Bovine serum albumin (BSA) (>98%) was purchased
from the Sigma-Aldrich (St. Louis, MO, USA). Other reagents were used as received.

2.2. Instruments

Nuclear magnetic resonance (NMR) spectra were recorded on a JNM-ECP500 (JEOL, Tokyo, Japan)
or an Avance II600 (Bruker, Billerica, MA, USA). Infrared (IR) spectra of the samples were measured
using a Spectrum 65 (Perkin-Elmer Japan, Tokyo, Japan) equipped with an attenuated total reflection
(ATR) attachment. Elemental analysis data were measured on a Perkin Elmer 2400 II CHNS/O (Perkin
Elmer, Franklin Lakes, NJ, USA). Mass spectra were measured using an ExactiveTM plus Orbitrap MASS
spectrometer (Thermo Fischer Scientific, Waltham, MA, USA). Fluorescence spectra were recorded on
an RF-6000 (Shimadzu, Kyoto, Japan).

2.3. Preparation of Guanidinylated Chitooligosaccharides

Chitooligosaccharides (COS) hydrochloride (1.00 g), AP (2.70 g, 18.4 mmol), and trimethylamine
(3.34 g, 33.0 mmol) were dissolved in water, and the mixture was stirred for seven days at room
temperature. The reaction mixture was poured into a large volume of isopropanol. The precipitated
product was collected by filtration, followed by washing with methanol. The product was dried under
reduced pressure. The yield (product (g)/theoretical maximum yield (g) × 100) was 26.8% (0.275 g).

2.4. Preparation of Guanidinylated Chitooligosaccharides Sulfate Salt

Chitooligosaccharides (COS) hydrochloride (1.00 g), AP (2.70 g, 18.4 mmol), and trimethylamine
(3.34 g, 33.0 mmol) were dissolved in water, and the mixture was stirred for seven days at room
temperature. The reaction mixture was poured into a large volume of isopropanol, and the precipitated
product was collected by filtration. The precipitate was dissolved in a 1.0 M H2SO4 aqueous solution
(2 mL). The solution was poured into a large volume of methanol, and the precipitated COS sulfate
salt was collected by filtration and then washed with methanol. This operation for producing sulfate
salt was repeated. The product was dried under reduced pressure. The yield was 50.2% (0.575 g).
Elemental analysis: C/H/N/S = 30.70:5.99:11.24:6.11.

2.5. Guanidinylation and Subsequent Acetylation of d-Glucosamine

Glucosamine hydrochloride (1.00 g, 4.64 mmol), AP (0.67 g, 4.64 mmol), and trimethylamine
(1.28 g, 9.20 mmol) were added to water, and the mixture was stirred for one day at room temperature.
The reaction mixture was lyophilized and the lyophilized material was added to pyridine (10 mL).
Acetic anhydride (9.40 g, 92.1 mmol) was added to the solution, and the mixture was stirred for one
day. The reaction solution was poured into 1.0 M HCl aqueous solution. The acetylated product was
extracted with chloroform. The chloroform layer was washed with a 1.0 M HCl aqueous solution
three times and then dried with Na2SO4. After the chloroform layer was evaporated, the residue was
purified by silica gel chromatography (hexane/ethyl acetate = 2:1).

2.6. Fluorescence Analysis on Interaction between Guanidinylated Chitooligosaccharides and Bovine
Serum Albumin

The quenching constant K (M−1), between COS or GCOS and BSA, was calculated from a
Stern–Volmer plot [20]:

F0

F
= K[Total unit] + 1, (1)

where F and F0 is the maximum fluorescence intensity of the BSA solution in the presence and absence
of COS or GCOS, respectively.
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3. Results and Discussion

3.1. Preparation of Guanidinylated Chitooligosaccharides

Guanidinylation was performed with 3.8 equivalents (equiv) of AP toward an amino group in
COS at room temperature for seven days [9]. The product was isolated as a methanol-insoluble fraction
at a 26.8% yield. Figure 1 shows the IR spectrum of the product. In the spectrum, the characteristic
absorption peaks, attributed to the C=N stretching vibration and the NH bending vibration of guanidino
groups [9], were observed at around 1725 cm−1 and 1590 cm−1, respectively. Figure 2 shows the
13C NMR spectrum of the product. In the spectrum, the signals, due to the quaternary carbon in
the guanidino groups, are shown at around 159.3 ppm [9,21,22]. These results clearly indicate the
production of GCOS. The degree of guanidinylation (guanidinylated units (mol)/total units (mol) ×
100) was 66.3%, as estimated by elemental analysis (C/N = 4.22).
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Figure 1. Infrared (IR) spectrum of guanidinylated chitooligosaccharide (GCOS).
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Figure 2. 13C NMR spectrum of GCOS in D2O. This spectrum was measured in the presence of
methanol as an internal standard. The signal due to methanol was adjusted to 49.5 ppm [23].
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In the 1H NMR spectrum, an unexpected signal was observed at 6.74 ppm (Figure 3). In addition,
the signal attributed to the anomeric proton on the reducing end (α-isomer), observed at 5.37 ppm in
the spectrum of COS hydrochloride (Figure S9), was hardly observed. These results suggest that the
newly appeared signal was attributable to the anomeric proton on the reducing end. We conjectured
that efficient internal cyclization of the guanidino group via Schiff base production [18] (Scheme 2) had
occurred, leading to formation of a cyclic guanidino moiety. Indeed, the chemical shift of the signal
attributed to the anomeric proton on the reducing end (Figure 3) was consistent with that of its reported
analog (2-[(aminoiminomethyl)amino]-2-deoxy-d-glucose-6-phosphate prepared via multistep organic
synthesis) [19]. The signal attributed to the proton of the 2-position on the reducing end was observed
at around 4.6 ppm on the H–H COSY spectra (Figure S2). This chemical shift also agreed with that
of its reported analog [19]. In addition, in the electrospray ionization-mass spectrometry (ESI-MS)
spectrum, the detected molecular ion peaks showed good agreement with dehydrated GCOS (Figure
S1). These results strongly suggested the production of a cyclic guanidine structure. Note that the
low resolution of the 1H NMR spectrum (Figure 3) is probably due to strong aggregation of GCOS by
the guanidinylation.
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In order to prove that a cyclic guanidine structure was produced, the guanidinylation
of d-glucosamine (GlcN) was investigated (Scheme 3). Guanidinylation was carried out with
1.0 equiv of AP at room temperature for 24 h (Figure S4). The ESI–MS analysis of the
lyophilized reaction mixture showed a molecular ion peak (m/z = 204.098) corresponding to
protonated 2-[(aminoiminomethyl)amino]-2-deoxy-d-glucose (calc. C7H14N3O4

+ = 204.10) (Figure S5).
The lyophilized mixture was acetylated and purified by silica gel chromatography. The 1H NMR and
ESI–MS analysis showed the production of 2-[(aminoiminomethyl)amino]-2-deoxy-d-glucose and/or
its isomers after guanidinylation (Figures S6–S8). Note that although the cyclic guanidine structure on
the reducing end is described herein as an acetal isomer, we suppose that it presents as a ring-opening
isomer because the signal attributed to the anomeric proton was detected in the olefin region, as shown
in Figure 3, and had not disappeared under acidic or basic conditions (1.0 M DCl or NaOD solution,
respectively) (Figure S3).

Biomolecules 2019, 9, x FOR PEER REVIEW 6 of 9 

MS analysis showed the production of 2-[(aminoiminomethyl)amino]-2-deoxy-D-glucose and/or its 
isomers after guanidinylation (Figures S6–S8). Note that although the cyclic guanidine structure on 
the reducing end is described herein as an acetal isomer, we suppose that it presents as a ring-opening 
isomer because the signal attributed to the anomeric proton was detected in the olefin region, as 
shown in Figure 3, and had not disappeared under acidic or basic conditions (1.0 M DCl or NaOD 
solution, respectively) (Figure S3). 

 
Scheme 3. Guanidinylation and subsequent acetylation of GlcN. 

The low yield of GCOS, isolated as the methanol-insoluble fraction, was attributable to the high 
solubility of GCOS in methanol, i.e., a large quantity of GCOS was removed, along with impurities, 
during the purification process. In order to overcome the low yield, GCOS was isolated as sulfate salt 
by precipitation with methanol, where the yield was up to 50.2%. The structure of GCOS sulfate salt 
was confirmed by the IR and 1H NMR analyses (Figures S10 and S11, respectively). The degree of 
guanidinylation of GCOS sulfate salt was 54.0%, which was lower than that of the GCOS as described 
before. This is probably due to the difference in the solubility of GCOS depending on the degree of 
guanidinylation, i.e., highly guanidinylated GCOS showed lower solubility in methanol. Indeed, 
desalted COS, used here, is soluble in methanol. Namely, GCOS, having a lower degree of 
guanidinylation, could be collected by being sulfate salt, leading to the higher yield. 

3.2. Fluorescence Analysis on Interaction between Guanidinylated Chitooligosaccharides and Bovine Serum 
Albumin 

Comparison of the protein binding ability between GCOS and COS was investigated with 
fluorescence analysis using BSA, where the interaction between GCOS or COS and BSA can be 
estimated from the quenching behavior of fluorescence owing to Trp, Tyr, and Phe residues [24–27]. 
Figure 4a and b shows the fluorescence spectra of 0.42 mg/mL BSA in the presence of 0–0.67 mg/mL 
of either GCOS or COS in a neutral pH, respectively. In the case of GCOS, fluorescence emission 
peaks gradually quenched by increasing the quantity of GCOS [28]. By contrast, fluorescence 
emission peaks were not changed when COS increased, suggesting the interaction between COS and 
BSA was very weak. This result clearly indicates the interaction between GCOS and BSA was 
remarkably enhanced by the guanidinylation. The quenching constant between GCOS and BSA 
estimated from the slope of the Stern–Volmer plots (Figure 4c) was 318 M–1. This is comparable to 
that of chitosan in acidic conditions [9]. 
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The low yield of GCOS, isolated as the methanol-insoluble fraction, was attributable to the high
solubility of GCOS in methanol, i.e., a large quantity of GCOS was removed, along with impurities,
during the purification process. In order to overcome the low yield, GCOS was isolated as sulfate
salt by precipitation with methanol, where the yield was up to 50.2%. The structure of GCOS sulfate
salt was confirmed by the IR and 1H NMR analyses (Figures S10 and S11, respectively). The degree
of guanidinylation of GCOS sulfate salt was 54.0%, which was lower than that of the GCOS as
described before. This is probably due to the difference in the solubility of GCOS depending on the
degree of guanidinylation, i.e., highly guanidinylated GCOS showed lower solubility in methanol.
Indeed, desalted COS, used here, is soluble in methanol. Namely, GCOS, having a lower degree of
guanidinylation, could be collected by being sulfate salt, leading to the higher yield.

3.2. Fluorescence Analysis on Interaction between Guanidinylated Chitooligosaccharides and Bovine Serum
Albumin

Comparison of the protein binding ability between GCOS and COS was investigated with
fluorescence analysis using BSA, where the interaction between GCOS or COS and BSA can be
estimated from the quenching behavior of fluorescence owing to Trp, Tyr, and Phe residues [24–27].
Figure 4a and b shows the fluorescence spectra of 0.42 mg/mL BSA in the presence of 0–0.67 mg/mL of
either GCOS or COS in a neutral pH, respectively. In the case of GCOS, fluorescence emission peaks
gradually quenched by increasing the quantity of GCOS [28]. By contrast, fluorescence emission peaks
were not changed when COS increased, suggesting the interaction between COS and BSA was very
weak. This result clearly indicates the interaction between GCOS and BSA was remarkably enhanced
by the guanidinylation. The quenching constant between GCOS and BSA estimated from the slope
of the Stern–Volmer plots (Figure 4c) was 318 M–1. This is comparable to that of chitosan in acidic
conditions [9].
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Figure 4. Fluorescence spectra (excitation wavelength: 275 nm) of 0.42 mg/mL BSA in the presence
of 0, 0.16, 0.33, 0.67 mg/mL GCOS (0, 0.79, 1.64, 3.32 × 10−3 M, respectively) or COS (0, 0.81, 1.67,
3.39 × 10−3 M, respectively) in a 0.1 M Tris–HCl buffer (pH 7.4) (a or b, respectively) and their
Stern–Volmer plots (c).

4. Conclusions

In conclusion, GCOS was prepared by the guanidinylation of COS with AP. Interestingly, the
cyclic guanidino moiety was produced on the reducing end during the reaction. Although this is not
the first report on the synthesis of the 2-[(aminoiminomethyl)amino]-2-deoxy-d-glucose structure, it
has provided a rational synthetic route using the high reactivity of the reducing end. In addition,
GCOS could be isolated in moderate yield as the GCOS sulfate salt. Besides that, we investigated the
effect of guanidino groups on the protein binding ability in a neutral pH with fluorescence analysis
using BSA. Fluorescence quenching was not observed by increasing the quantity of COS, while the
fluorescence was gradually quenched with GCOS increases, clearly indicating remarkable enhancement
of the protein binding ability by guanidinylation. Evaluation of the cytotoxicity and biomembrane
permeability of GCOS is now in progress. The GCOS is useful not only for the development of a novel
drug delivery system but also as a chitinase/chitosanase inhibitor [29] and an antibacterial agent [21,30].
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lyophilized mixture in D2O , Figure S5: ESI–MS spectrum obtained on the positive mode of the lyophilized
mixture, Figure S6: ESI–MS spectrum obtained on the positive mode of the acetylated product, Figure S7: 1H
NMR spectra of the acetylated product in CDCl3, Figure S8: 1H NMR spectrum of COS hydrochloride, Figure S10:
IR NMR spectrum of the GCOS sulfate salt, Figure S11. 1H NMR spectrum of the GCOS sulfate salt.
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