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Copyright © 2015 Ö. Eskidere and A. Gürhanlı.This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

TheMel Frequency Cepstral Coefficients (MFCCs) are widely used in order to extract essential information from a voice signal and
became a popular feature extractor used in audio processing. However, MFCC features are usually calculated from a single window
(taper) characterized by large variance. This study shows investigations on reducing variance for the classification of two different
voice qualities (normal voice and disordered voice) using multitaper MFCC features. We also compare their performance by newly
proposedwindowing techniques and conventional single-taper technique.The results demonstrate that adaptedweightedThomson
multitaper method could distinguish between normal voice and disordered voice better than the results done by the conventional
single-taper (Hamming window) technique and two newly proposed windowing methods. The multitaper MFCC features may be
helpful in identifying voices at risk for a real pathology that has to be proven later.

1. Introduction

Disordered voice quality could be a symptom of a disease
related to laryngeal disorders. In clinical practice, the primary
approach to assess voice quality is the auditory-perceptual
evaluation. For this approach, the severity (degree) and
quality of dysphonia are evaluated by a tool such as GRBAS
(Grade, Roughness, Breathiness, Asthenia, and Strain) scale
[1]. Auditory-perceptual evaluation offers a standardized
procedure for assessment of abnormal voice quality. For
this approach, voice evaluation is performed subjectively by
the clinician’s direct audition. Auditory-perceptual evalua-
tion of voice quality is subjective because of the variability
between listeners [2]. Moreover, this subjective evaluation
can cause inconsistency on judging pathological voice quality
[3]. Alternatively, laryngoscopic techniques such as direct
laryngoscopy, indirect laryngoscopy, and telescopic video
laryngoscopy are invasive tools which allow the observation
of vocal folds [4]. These techniques, which are commonly
used for monitoring the larynx, make the diagnosis of many
laryngeal disorders possible [1]. On the other hand, these

monitoring techniques may cause discomfort to the patient
and become costly [5].

Apart from the above-mentionedmethods, acoustic anal-
ysis of voice samples is generally applied as a complemen-
tary technique to aid ear, nose, and throat clinicians [6–
10]. This analysis technique is an effective and noninvasive
approach for the assessment of voice quality. For clinical
application, acoustic analysis of disordered voices enables
doctors to document quantitatively the degree of different
voice qualities and the automatic screening of voice disorders.
This technique can also be performed for the evaluation of
surgical and pharmacological treatments and rehabilitation
processes such as monitoring the patient’s progress over
the course of voice therapy [11, 12]. Furthermore, in voice
clinics, various commercial acoustic analysis computer pro-
grams are run to aid the clinician in rating voice quality
[13, 14]. Apparently, clinicians and speech therapists com-
monly combine auditory-perceptual evaluation techniques,
laryngoscopic techniques, and acoustic analysis methods to
evaluate voice quality.
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Recently, many researchers have been working on dif-
ferentiating between two levels of voice quality, normal and
pathological, using acoustic analysis methods [3, 15, 16]. For
this aim, the raw voice samples are converted into features
which have more useful and compact representations of
voice. In the literature, the features such as measures of
acoustic perturbation (jitter and shimmer), the harmonics to
noise ratio, and the glottal to noise excitation ratio have been
applied for assessment of vocal quality [17, 18]. Moreover,
nonlinear dynamic methods, including Lyapunov exponents
and correlation dimension, have been applied to various
kinds of classification tasks for disordered voice samples [19–
21]. The recent studies show that these nonlinear methods
may bemore appropriate for aperiodic voices than traditional
perturbation methods [6]. On the other hand, in comparison
with perturbation analysis, the drawback of these nonlinear
methods is the fact that they are more complex andmay need
longer computation time [22].

The well-knownMFCC feature extraction has been com-
monly used in automatic classification between healthy and
impaired voices [15]. This technique can be considered as
an approach of the structure of human auditory perception
[23]. Usually MFCC parameters are computed from a win-
dowed periodogram using short time frames of speech via
discrete Fourier transform algorithm. In this case, windowing
attempts to reduce bias but large variance is still a problem.
The large variance for spectrum estimation can be reduced
by replacing the Hamming-windowed power spectrum with
multiple time domain windows. This is usually called the
multitaper spectral estimation method [24–26]. The idea in
the multitaper spectral estimation method is to analyze the
speech frame using a number 𝑁 of spectrum estimators,
each having a different taper, and then to compute the final
spectrum as a weighted mean of each subspectrum. In [25],
it is shown that multiple window spectral estimates have
smaller variance than single windowed spectrum estimates
by a factor that approaches 1/𝑁.

For a long time, multitaper spectrum estimation has been
used in geographical applications [27] and has demonstrated
good results. But little attention has been paid to multita-
per spectrum estimation in the field of speech processing.
Recently researchers have started to employ the method
in speech processing as well [24]. This study demonstrated
first time that multitaper MFCC features could be used for
speaker verification systems. Then, this method was applied
to the speech recognition [28], emotion recognition [29],
and language identification [30] and was shown to result in
better performance than the single windowedmethod. In this
study, our goal is to investigate the usage ofmultitaperMFCC
features in the automatic discrimination of two levels of voice
quality (healthy and pathological voices). So as to evaluate
the usefulness of the proposed method, an automatic classi-
fication system is employed. To our knowledge, there were
no previous studies in the existing literature using multitaper
MFCC features for this problem.The second objective of this
study is to apply different multitaper techniques including
multipeak method [31], SWCE (sinusoidal weighted cep-
strum estimator) method [32], andThomson method [33] to
MFCC and compare their performance to novel proposed

windowing techniques [34, 35] and single-taper technique.
In addition, the number of tapers affecting the classification
performance and the issues of weight selection in the Thom-
son method are investigated. Experimental results indicate
that, with a suitable configuration, the multitaper method
outperformed these windowing techniques.

Theoutline of the paper is as follows.Multitaper spectrum
estimation method and novel windowing techniques are
given in Section 2. Section 3 evaluates the efficiency of the
multitaper spectrum estimation for the classification of voice
qualities. Discussion is presented in Section 4 and then
conclusion is given in Section 5.

2. Methods

2.1. Multitaper Spectrum Estimation. In MFCC feature
extraction process, the power spectrum is computed from
a windowed periodogram. The short-time power spectrum
estimate 𝑆(𝑓) is given by

𝑆 (𝑓) =
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where 𝑥 = [𝑥(0), 𝑥(1), 𝑥(2), . . . , 𝑥(𝐿 − 1)] is a frame of
utterance with length 𝐿, 𝑓 ∈ {0, 1, 2, . . . , 𝐿 − 1} is frequency
bin index, 𝑖 is the imaginary unit, and𝑤(𝑡) denotes a window
function. For MFCC application, Hamming window is the
most popular window and we choose this window; it is given
by

𝑤 (𝑡) = 0.54 − 0.46 cos(2𝜋𝑡
𝐿
) . (2)

A single taper (e.g., Hamming window) reduces the
bias of the spectrum which is the difference between the
estimated spectrum 𝑆(𝑓) and the actual spectrum 𝑆(𝑓) but
the estimated spectrum has higher variance. This problem
can be reduced by multitaper spectrum estimator [25]. The
multitaper spectrum estimator can be expressed as

𝑆MT (𝑓) =
𝑁
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where𝑁 is the number of the tapers,𝑤
𝑚
is the𝑚th data taper

(𝑚 = 1, 2, . . . , 𝑁), and 𝜆(𝑚) is the weight of the𝑚th taper. In
this method, spectrum estimation is obtained from a series
of spectra which are weighted and averaged in frequency
domain. The block diagram of MFCC extraction from the
single-taper andmultitaper spectrum estimation is presented
in Figure 1. As a special case, if 𝑚 = 𝑁 = 1 and 𝜆(𝑚) = 1,
(3) simply degrades to (1) and in this case a single windowed
power spectrum is obtained.

Some of the multitaper methods in the literature are
Thomsonmultitaper,multipeakmultitaper, and SWCE (sinu-
soidal weighted cepstrum estimator) multitaper, which are
based on the Slepian tapers [17], peak matched multiple
tapers, and sine tapers, respectively. These multitapers and
Hamming taper are demonstrated in Figure 2. One goal of
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Figure 1: Block diagram of single-taper and multitaper spectrum estimation based on MFCC feature extraction.

this study is to evaluate the effect of these tapers and compare
their performances for a voice disorder classification system.
Details of these tapers may be found in [31–33].

To make a visual comparison, samples from normal and
pathologically affected voices for vowel /a/ and their esti-
mated spectra by the Hamming windowed DFT spectrum as
a reference and Thomson, multipeak, and SWCE multitaper
methods are given in Figures 3 and 4. The number of tapers
used for the multitaper methods is 3, 9, and 15, with a frame
length of 30msec and the sampling frequency is 16 kHz.

In Figures 3 and 4, it is shown that each multitaper
method has a different spectrum. For the same value of
𝑁, multipeak spectrum estimation has sharper peaks than
Thomson and SWCE methods. Additionally, the single-
taper spectrum includes more details comparing it with
these multitaper methods and it can be expected that this
multitaper spectral estimation has smaller variance. As these
techniques generate different spectrum on the same voice
frame, the results cause different cepstrum coefficients [25].

In estimating the spectrum by multitapering, the first
taper attributes more weight to the center of the short-term
signal than to its ends, while higher order tapers attribute
increasingly more weight to the ends of the frame. For the
SWCE multitaper method weights can be found from

𝜆 (𝑚) =
cos (2𝜋 (𝑚 − 1) / (𝑁/2)) + 1
∑
𝑁

𝑚=1
(cos (2𝜋 (𝑚 − 1) / (𝑁/2)) + 1)

,

(𝑚 = 1, 2, . . . , 𝑁) .

(4)

Multipeak multitaper method weights can be defined as

𝜆 (𝑚) =
V
𝑚

∑
𝑁

𝑚=1
V
𝑚

, (𝑚 = 1, 2, . . . , 𝑁) , (5)

where V
𝑚
is the eigenvalues of the multiple windows.

Usually, the three different approaches can be used for
weighting schemes in the Thomson multitaper. These are
uniform weights, where 𝜆(𝑚) = 1/𝑁 (𝑁 is the number of
the Slepian tapers), eigenvalue weights, where 𝜆(𝑚) = V𝑚 (V
is the eigenvalues of the Slepian tapers), and adaptive weights,
where (𝑚) = 1/∑𝑚

𝑖=1
V𝑖. Figures 5 and 6 show a comparison

of these weighting schemes used in the Thomson multitaper
for normal and pathological voice samples (/a/, /i/, and /u/).
In speaker verification experiments, uniform weights are
used to obtain MFCC multitaper features [24–26]. In [36],
adaptive weights give higher accuracy than the uniform and
eigenvalue weighting schemes. Therefore, it may not be clear
which weighting technique in the Thomson multitaper is
suitable for modeling voice signal. For this reason, we also
investigated optimum weighting techniques in the Thomson
multitaper for voice disorder classification task.

2.2. The Novel Window Methods. Recently, apart from the
multitaper method, the novel windowing techniques are
presented for signal analysis. In 2011, Mottaghi-Kashtiban
and Shayesteh [34] proposed a new efficient window function
and compared main lobe width and peak side lobe amplitude
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Figure 2: Single taper and different multitapers used for spectrum estimation: (a) Hamming window, (b) the sine tapers, (c) the multipeak
tapers, and (d) the Thomson tapers. Window length is 480;𝑚 is the taper number.

to theHammingwindow.Theproposedwindow function can
be expressed as

𝑤
𝑘 (𝑡) = 𝑎0 − 𝑎1 cos(

2𝜋𝑡

𝐿
) − 𝑎
3
cos(6𝜋𝑡
𝐿
) , (6)

where 𝑎
0
= 0.5363 − 0.14/𝐿, 𝑎

1
= 0.996 − 𝑎

0
, and 𝑎

3
=

0.04. This new window function was obtained by the third
harmonic of the cosine function in (2). Also they found the
suitable amplitudes of DC term to minimize the peak side
lobe amplitude [34].

In 2013, Sahidullah and Saha [35] presented a novel family
of windowing method to calculate MFCC features. The basic
idea of the proposed method is to use a simple time domain
processing of signal after it ismultipliedwith a single window.
The new window function can be expressed as

𝑤
𝑠 (𝑡) = 𝑡

𝜏
𝑤 (𝑡) , 𝜏 = 1, 2, . . . . (7)

In the case where 𝜏 = 0, the window function is equal to
𝑤(𝑡) such as Hamming window. Figure 7 shows these novel
windowing functions and Hamming window as a reference

in the time domain. For window 𝑤
𝑠
, first-order and second-

order (𝜏 = 1 and 𝜏 = 2) window functions are used and
amplitude of all the windows is normalized to 1 for visual
clarity. In this study, we investigate the effects of these
windowing techniques and compared them to the multitaper
methods to categorize normal voice quality from disordered
voice quality.

3. Experiments

The performance of the proposed multitaper MFCC features
is evaluated on an open database, namely, SaarbrueckenVoice
(SV) database, developed by Putzer [37, 38]. This database
consists of pathological and healthy voices at different pitches
(low, normal, and high) from more than 2000 speakers. SV
database includes simultaneous voice and electroglottogra-
phy (EGG) recordings of sustained vowels /a/, /i/, and /u/
for each case. The files have averages of around 1 and 3 s for
sustained vowels and voice samples were sampled at 50 kHz
with 16 bits of resolution.
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Figure 3: (a) Normal voice and (b), (c), and (d) its estimated spectrum by the single taper (Hamming) andThomson, multipeak, and SWCE
multitaper methods for𝑁 = 3 tapers, for𝑁 = 9 tapers, and for𝑁 = 15 tapers, respectively.

In this study, voice samples of sustained vowels /a/, /i/,
and /u/ produced at the subjects’ normal pitch were used
from SV database. Each voice signal resampled at 16 kHz was
considered. For this work, 650 normal subjects and a group
of 650 subjects with functional and organic dysphonia voice
pathologies were chosen from SV database. The details of
voice samples used in the study can be seen in Table 1.

In the experiments, the voice samples were segmented
into frames of 30ms lengths and the frame shift is 15ms.
Afterwards, each frame was weighted by a single window
or multitaper method. To generate SWCE, multipeak, and
Thomson tapers, the multitaper functions were utilized as
described by Kinnunen et al. [25]. Afterwards, 29-channel
Mel frequency filter bank was applied on the short-time
spectrum. Then, the logarithmically compressed filter bank
outputs were calculated and the DCT was applied on the
filter bank outputs.Thefirst 12 cepstral coefficientswere taken
as features excluding energy coefficient 𝑐

0
and these features

were normalized to the range of 0-1.
For evaluation, we have used Gaussian Mixture Model

(GMM) to represent each class. In this approach, voice
samples were modeled as a weighted sum of multivariate

Table 1: Details of voice samples used in the study.

Diagnosis Number of samples
Cyst 6
Functional dysphonia 76
Hyperfunctional dysphonia 68
Hypofunctional dysphonia 16
Laryngitis 102
Leukoplakia 41
Normal 650
Paralysis 196
Reinke’s edema 66
Vocal fold cancer 22
Vocal fold polyp 41
Vocal nodule 16

Gaussian probability density functions. In the GMM param-
eter estimation, the distribution of features is modeled by the
mean vectors 𝜇⃗

𝑖
, covariancematrices∑

𝑖
, andmixture weights

𝑐
𝑖
which is denoted by the notation Θ = {𝑐

𝑖
, 𝜇
𝑖
, ∑
𝑖
}, 𝑖 =

1, 2, . . . , 𝐾, where 𝐾 is the number of mixture components
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Figure 4: (a) Pathological voice and (b), (c), and (d) its estimated spectrum by the single taper (Hamming) and Thomson, multipeak, and
SWCE multitaper methods for𝑁 = 3 tapers, for𝑁 = 9 tapers, and for𝑁 = 15 tapers, respectively.

[39].These model parameters (Θ) are commonly determined
using expectation maximization (EM) algorithm. Finding
these parameters, this procedure iteratively updates the
parameters by maximizing the expected log-likelihood of
the data, and it guarantees a monotonic increase in the
model’s log-likelihood value [40, 41]. The classification of
a sequence test feature vector is based on the calculation
of a simple set of likelihood functions using the test voice.
In other words, a test frame is classified with a normal or
pathological class label, the result of which is the largest
likelihood function, indicating the most likely class. In the
proposed system, we have used 16 mixture components with
diagonal covariance matrices for GMM classifier. We have
used half of the features for training and the rest for testing
randomly and all the experiments are repeated 20 times.
Finally, the system performance was computed by averaging
the results obtained from each experiment.

4. Results

We first evaluated the multitaper spectrum estimation tech-
nique described in Figure 1 for different numbers of tapers.

In the previous multitaper applications, different numbers of
tapers were applied to speech recognition [28] and speaker
verification problems [24, 25, 36]. The dataset that was used
previously is different from the voice quality classification
experiments. Therefore, the previous conclusion that the
optimal number of tapers, 𝑁, was found from 4 to 8 is no
longer suitable to our task. For sustained vowels /a/, /i/, and
/u/, the best value of 𝑁 in our case should be rediscovered.
Moreover, we compare the classification accuracies of the
SWCE, Thomson (using uniform weights), and multipeak
systems and illustrate the conventionalHammingwindowing
method as a reference in Figure 8.

In Figure 8, it can be seen that the multitaper methods
outperform the baseline Hamming method depending on
the number of tapers. In the case of vowel /a/, the Thomson
multitaper method performs relatively better for 6 ≤ 𝑁 ≤
8 taper values than the other methods. For /i/ and /u/
vowels, it is observed that themultitapermethods outperform
Hamming method in nearly all cases and this is because the
exact setting is not very critical for these vowels.

We next compared the weights of the Thomson mul-
titaper: uniform, eigenvalue, and adaptive weights. In the
experiments, we use the number of tapers as 𝑁 = 8, 12, and
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Figure 5: (a), (c), and (e) Sustained vowels /a/, /i/, and /u/ from normal subjects and (b), (d), and (f) their Thomson multitaper spectral
estimates using uniform weights, eigenvalues as the weights, and adaptive weights.

16 for eachmultitapermethod, respectively.The classification
performance results are demonstrated in Figure 9.

When comparing the performances of the weights of the
Thomson multitaper method, all three weighting techniques
outperformed the baselineHammingmethod. For vowels /a/,
/i/, and /u/, the highest accuracies are obtained using𝑁 = 16
with adaptive weights.

Additionally, the classification task applied to the novel
proposed weighting schemas in [34, 35] compared with base-
line Hamming method offers interesting results. As shown
in Figure 10, our classification experiment on SV database
yields the highest accuracies of 95% (vowel /a/) for window
𝑤
𝑘
system and 94.78% (vowel /i/) and 91.42% (vowel /u/)

using window 𝑤
𝑠
(𝜏 = 2) system.

Table 2 summarizes the classification results of all win-
dowing methods and the multitaper systems. The baseline
results on the test set were obtained by using Hamming

windowed MFCCs on the vowels /a/, /i/, and /u/. In the
multitaper experiments, the number of tapers was set to 16
and adaptive weights were used in the Thomson method.
Additionally, we fix 𝜏 = 2 for window 𝑤

𝑠
.

As seen in Table 2, Thomson multitaper method with
adaptive weighting was observed as the highest accuracy
improvement of 4.8% for vowel /a/, 9.7% for vowel /i/,
and 13.29% for vowel /u/, respectively. When comparing all
multitaper methods together over the baseline, we observe
that the Thomson method is preferable.

5. Discussion

In this paper, we have compared the performance of different
windowing techniques using MFCC in order to investigate
how to discriminate voice disorders from healthy controls.
This classification problem has attracted interest in recent



8 Computational and Mathematical Methods in Medicine

0 100 200 300 400 500

0

0.5

Samples

A
m

pl
itu

de

/a/

−0.5

(a)

0 2000 4000 6000 8000

0

50

Frequency

(d
B)

/a/

−50

−100

Hamming
Adaptive

Uniform
Eigenvalues

(b)

0 100 200 300 400 500

0

0.5

Samples

A
m

pl
itu

de

/i/

−0.5

(c)

(d
B)

0 2000 4000 6000 8000

0

50

Frequency

/i/

−50

−100

Hamming
Adaptive

Uniform
Eigenvalues

(d)

0 100 200 300 400 500

0

0.5

Samples

A
m

pl
itu

de

/u/

−0.5

(e)

(d
B)

0 2000 4000 6000 8000

0

50

Frequency

/u/

−50

−100

Hamming
Adaptive

Uniform
Eigenvalues

(f)

Figure 6: (a), (c), and (e) Sustained vowels /a/, /i/, and /u/ from pathological subjects and (b), (d), and (f) theirThomson multitaper spectral
estimates using uniform weights, eigenvalues as the weights, and adaptive weights.
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Figure 8: Classification accuracies (%) using different number of tapers for (a) sustained vowel /a/, (b) sustained vowel /i/, and (c) sustained
vowel /u/.

years, with the best results reporting approximately 79%
recognition accuracy [42] on SV database. In [38], 76.4%
accuracy was obtained using a new parameterization of voice
quality properties in the voice signal. Here, we indicated
that we can achieve almost 99% accuracy using multitaper
MFCCs. Compared to previous studies in this application,
we have used recently proposed windowing techniques and
multitaper spectrum estimation methods which have not
been previously used in voice quality classification task.

Moreover, we discussed the effect of chosen multitaper
parameters such as the number of tapers, type of taper, and
the weights of theThomsonmultitaper method. In this work,
the optimum number of tapers is 6 for vowel /a/, 15 for
vowel /i/, and 16 for vowel /u/ (see Figure 8). The optimum
number of tapers changes application and dataset [25–30]. In
[24], the bias, variance, andMSE (squared bias plus variance)
of the MFCC estimator were investigated using a set of 50
different recordings of the phonemes /a/ and /l/. Sandberg
et al. found that multitapers (multipeak, SWCE, and Thom-
son) with 𝑁 between 8 and 16 indicate a good tradeoff
between bias and variance for most MFCCs. In this paper,

we obtained similar results usingmultitaperMFCCs for voice
quality classification issues and it is clearly seen that the
number of tapers is an important parameter. Moreover, the
optimum weight of the Thomson multitaper method was
found to be adaptive weights for the phonemes /a/, /i/, and
/u/.

As can be seen from Table 2, the proposed multita-
per method provides better classification results than other
newly proposed windowing methods in [34, 35] and popular
Hamming window. For voice quality classification problems,
it is found that the Thomson multitaper method can be
chosen as the optimal tapering method which is designed for
smooth spectrum especially white noise [24].This is expected
because the disordered voice samples contain more noise
compared to the healthy voices and the spectrum of these
voice samples is estimated better by using the multitaper
method than by using the single-taper method. In other
words, the single-taper spectrum comprisesmore details for a
voice frame, while the multitaper spectra contain a smoother
voice frame and this situation can be seen in Figures 3 and 4.
Thus, averaging spectral estimates with this method helps to
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Figure 9: Voice quality classification accuracies (for /a/, /i/, and /u/) using the weights ofThomsonmultitapermethod andHammingwindow
with (a) 𝑁 = 8, (b) 𝑁 = 12, and (c) 𝑁 = 16.

reduce large variance especially for the Thomson multitaper
method (see Figures 5 and 6) comparable to the single-
tapered spectrum estimate. For this reason, in differentiating
pathological voices from the healthy ones,multitaperMFCCs
give better performance.

6. Conclusion

In the present study, we have investigated multitaper MFCC
systems for a voice quality classification task. The Thomson,
SWCE, and multipeak MFCC systems and GMM based
modeling techniques were employed for this task.The system
was tested using sustained vowels (/a/, /i/, and /u/) from
650 normal and 650 pathological subjects. The experimental

results showed that the Thomson method (using adaptive
weights and𝑁 = 16) outperformed the SWCE andmultipeak
MFCC systems as well as the baseline Hamming window
system. Moreover, it was found that the important param-
eters such as the number of tapers used for the multitaper
methods and the type of the weights in theThomsonmethod
could affect the voice quality classification performance.
Furthermore, it was found that the multitaper based features
performed slightly better in terms of accuracy than the novel
proposed windowing based features in most cases. These
results confirm that multitaper methods (specifically the
adaptive weighted Thomson multitaper MFCC) can be an
alternative to the traditionalMFCCwhich uses theHamming
window for automatic classification of voice quality. As
a result, acoustic assessment techniques (e.g., multitaper
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Table 2: Average relative improvement in SV database obtained by
the novel window functions and the multitaper systems over the
baseline Hamming window system.

Vowel Baseline acc. (%) Method Acc. (%) Impr. (%)

/a/ 94.83

Window 𝑤
𝑘

95.00 0.18
Window 𝑤

𝑠
93.65 −1.24

SWCE 91.56 −3.45
Multipeak 91.83 −3.16
Thomson 99.38 4.8

/i/ 91.03

Window 𝑤
𝑘

92.45 1.56
Window 𝑤

𝑠
94.78 4.12

SWCE 98.45 8.15
Multipeak 97.37 6.96
Thomson 99.86 9.7

/u/ 87.86

Window 𝑤
𝑘

87.31 −0.63
Window 𝑤

𝑠
91.42 4.05

SWCE 93.08 5.94
Multipeak 92.26 5.01
Thomson 99.54 13.29

Acc., accuracy; Impr., improvement; window 𝑤𝑘, a new window function
proposed in [34]; window 𝑤𝑠, a new window function proposed in [35];
SWCE, sinusoidal weighted cepstrum estimator.

MFCC) by no means need to replace auditory-perceptual
techniques or laryngoscopic techniques, but they could help
improve the voice quality analysis tools available to the
clinician.
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