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����������
�������

Citation: Sorokin, M.; Raevskiy, M.;

Zottel, A.; Šamec, N.; Skoblar Vidmar,
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Simple Summary: Most glioblastoma patients succumb to the disease within 12 to 18 months,
and only 9% are alive 2 years after diagnosis. Even with extensive research, the life expectancy
of glioblastoma patients has not changed in decades. We aimed to identify differences in the
transcriptomic profiles of glioblastoma patients with long and short survival. With large-scale
transcriptomic analysis, we examined information from publicly available datasets (TCGA and
CGGA) in combination with FFPE patient tissue samples. We identified one gene, the long noncoding
RNA CRNDE, whose overexpression is directly correlated with poor patient survival. Therefore,
we suggest its further confirmation as a negative prognostic glioblastoma biomarker. Glioblastoma
management still lacks suitable diagnostic, predictive, and prognostic biomarkers for early disease
diagnosis, and treatment follow-up. We believe our findings can serve as the basis for identification
of new and potential suitable disease biomarkers by looking beyond the classical molecules (DNA,
RNA, and proteins) into the noncoding genome.

Abstract: Glioblastoma is the most common and malignant brain malignancy worldwide, with
a 10-year survival of only 0.7%. Aggressive multimodal treatment is not enough to increase life
expectancy and provide good quality of life for glioblastoma patients. In addition, despite decades of
research, there are no established biomarkers for early disease diagnosis and monitoring of patient
response to treatment. High throughput sequencing technologies allow for the identification of
unique molecules from large clinically annotated datasets. Thus, the aim of our study was to identify
significant molecular changes between short- and long-term glioblastoma survivors by transcriptome
RNA sequencing profiling, followed by differential pathway-activation-level analysis. We used data
from the publicly available repositories The Cancer Genome Atlas (TCGA; number of annotated
cases = 135) and Chinese Glioma Genome Atlas (CGGA; number of annotated cases = 218), and
experimental clinically annotated glioblastoma tissue samples from the Institute of Pathology, Faculty
of Medicine in Ljubljana corresponding to 2–58 months overall survival (n = 16). We found one
differential gene for long noncoding RNA CRNDE whose overexpression showed correlation to poor
patient OS. Moreover, we identified overlapping sets of congruently regulated differential genes
involved in cell growth, division, and migration, structure and dynamics of extracellular matrix,
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DNA methylation, and regulation through noncoding RNAs. Gene ontology analysis can provide
additional information about the function of protein- and nonprotein-coding genes of interest and
the processes in which they are involved. In the future, this can shape the design of more targeted
therapeutic approaches.

Keywords: glioblastoma; noncoding RNA; CRNDE; RNA sequencing; long-term survival

1. Introduction

Glioma incidence has been steadily rising over recent decades, and the mortality
curve follows the same trend [1]. World Health Organization (WHO) grade IV astrocytoma
otherwise known as glioblastoma is the most common and accounts for 60–70% of all
glioma cases [2]. Because of unspecific symptoms such as headache, confusion, and
hearing or vision problems, glioblastoma is usually diagnosed in advanced stage.

Clinical presentation is typically short and ranges from 3 to 6 months before diagno-
sis [3]. The most widely accepted standard of care is the Stupp protocol that consists of
maximal surgical resection, 6 weeks radiation and daily oral temozolomide chemotherapy
followed by six subsequent cycles of adjuvant temozolomide [4]. Such aggressive treatment
prolongs patient survival up to 12–18 months after diagnosis [5]. As low as 9% of patients
are alive 2 years after diagnosis [6], while only 0.7% of all glioblastoma patients survive
more than 10 years after diagnosis [7].

Glioblastomas are divided into two main groups primary or isocitrate dehydroge-
nase (IDH) wild-type and secondary or IDH mutant [8,9]. The Cancer Genome Atlas
(TCGA) project provided the first comprehensive analysis of the molecular profile of
glioblastoma [10]. Later, by molecular profiling, three main glioblastoma subtypes were
defined [11]. Moreover, glioblastoma presents with a whole spectrum of genetic and epige-
netic changes as well as whole or partial chromosome gains or losses, and transcriptional
interference [12].

Currently there are no available biomarkers for diagnosing glioblastoma in early
disease stages or for monitoring patient performance [13]. In recent years, several different
molecules have been proposed as putative imaging or molecular biomarkers [14–19].
So far, only two predictive biomarkers have been identified, namely O6-methylguanine
DNA methyltransferase (MGMT) promoter methylation [20,21] and chromosome 1p/19q
codeletion [22,23], that predict positive response to therapy and longer survival in elderly
patients. Dismal patient prognosis means new methods need to be applied for identification
of promising molecular biomarkers for diagnosis and prediction of treatment response.

In this study, we performed large-scale transcriptomic profiling to identify differences
between glioblastoma patients with relatively short- and long-term overall and progression-
free survival (OS and PFS, respectively). We found the long noncoding RNA CRNDE
as differentially expressed i.e., overexpressed in all investigated glioblastoma datasets.
Because the overexpression of CRNDE was significantly associated with poor OS and
PFS, we conclude it shows the potential to be used as a negative prognostic biomarker for
glioblastoma. Still, its possible implication in clinical practice as a prognostic biomarker
needs to be further experimentally elaborated.

2. Materials and Methods
2.1. Ethics Statement

This study was carried out in accordance with The Code of Ethics of the World
Medical Association (Declaration of Helsinki) for experiments involving human samples.
The manuscript is in line with the Recommendations for the Conduct, Reporting, Edit-
ing and Publication of Scholarly Work in Medical Journals and aim for the inclusion of
representative human populations (sex, age and ethnicity) as per those recommendations.
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The use of biological tissue samples in the study was approved by the National
Medical Ethics Committee of the Republic of Slovenia approval numbers 0120-196/2017/7,
0120-190/2018/4 and 0120-190/2018/11. All patients signed written informed consent.
Samples used in this study are anonymous.

2.2. Biosamples

In this study, we used 16 formalin-fixed, paraffin-embedded (FFPE) primary tumor
tissue samples from glioblastoma patients. FFPE samples were obtained from the Institute
of Pathology, Faculty of medicine, University of Ljubljana. FFPE samples contained from
50% (1 sample), 70% (3 samples), 80% (5 samples) and 90% (7 samples) cancer cells in the
specimens. Patients were treated at the Institute of Oncology, Ljubljana. Samples were
collected retrospectively from patients admitted between the years 2012 and 2017. The
patient’s age at diagnosis ranged from 22 to 70 years old, 11 (68.75%) of patients were
man, 5 (31.25%) were women. The patient’s PFS defined as the time from first diagnosis
to glioblastoma recurrence varied in the range of 2–37 months, OS varied between 2 and
58 months. More detailed clinicopathological information is shown in Table 1.

2.3. RNA Isolation and Sequencing

RNA libraries were generated, sequenced, and processed as previously described [24].
RNA extraction was performed using RecoverAll™ Total Nucleic Acid Isolation Kit (Invit-
rogen, New York, NY, USA), and RNA Integrity Number (RIN) was measured with Agilent
2100 bioanalyzer (Agilent Technologies, Inc., Santa Clara, CA, USA). RNA concentrations
were measured using Qubit RNA Assay Kit (Life Technologies Limited, Paisley, UK), and
ribosomal RNA was depleted using RNA Hyper Kit with RiboErase (KAPA Biosystem,
Roche, Cape Town, South Africa). Processed library concentrations and length distributions
were measured using Qubit ds DNA HS Assay kit (Life Technologies Limited, Paisley, UK)
and Agilent Tapestation (Agilent Technologies, Inc., Santa Clara, CA, USA), respectively.
The samples were sequenced using Illumina HiSeq 3000 engine (Illumina Inc., Hayward,
CA, USA) for single end sequencing, 50 bp read length, for approximately 30 million raw
reads per sample. Data quality check was conducted using Illumina SAV. De-multiplexing
was performed using Illumina Bcl2fastq2 v 2.17 software.

2.4. RNA Sequencing Data Collection and Processing

Non-experimental RNA sequencing profiles of primary glioblastoma specimens an-
notated with known overall survival (OS) and progression-free survival (PFS) time were
collected from TCGA [25] and CGGA [26] databases. In total we took 135 samples from
TCGA and 218 samples from CGGA database. Data from TCGA, CGGA, and current
experimental dataset were used in raw gene counts format. Totally, expression levels
were established for 36,596 annotated human genes in TCGA, 23,271 genes in CGGA and
37,002 genes in the experimental dataset. Raw gene counts were normalized using quantile
normalization method [27] and log10-transformed for further analyses.

2.5. Quantization of Molecular Pathway Activation

Pathway activation levels (PALs) were established using Oncobox pathway analysis
method [28] for 1611 molecular pathways containing 10 or more gene products extracted
from the public databases [29] using the original software [29]. For PAL calculations, each
sample expression profile was normalized on mean geometrical levels of gene expression
for all samples in the dataset under investigation.
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Table 1. Clinicopathological information about experimental glioblastoma patients involved in this study.

Sample ID Gender Age at Diagnosis KPS WHO Grade Recurrent Tumor OS (Months) IDH1 R132H Mutation ATRX Loss p53 MGMT Methylation GTR Therapy Adjuvant Therapy TTP (Months)

NB-00131/12 M 42 90 IV No 13 Negative Not performed Negative No No 60 Gy radiotherapy + TMZ Adjuvant TMZ /

NB-00094/13 M 47 90 IV No 16 Negative Not performed Positive Yes Yes 60 Gy radiotherapy + TMZ Adjuvant TMZ 10

17-H-21518 M 64 100 IV No 16 Negative No Negative No Yes 60 Gy radiotherapy + TMZ Adjuvant TMZ 8

NB-00233/12 F 42 100 IV No 18 Negative Not performed Negative No Yes 60 Gy radiotherapy + TMZ No (TMZ side effects) 6

NB-00464/12 M 62 90 IV No 19 Not performed Not performed Not performed No No 30 Gy radiotherapy + TMZ Adjuvant TMZ 14

NB-00079/14 M 43 90 IV No 20 Positive Not performed Positive No Yes 60 Gy radiotherapy + TMZ Adjuvant TMZ 15

17-H-05191 M 68 100 IV No 21 Negative No Positive No Yes 60 Gy radiotherapy + TMZ Adjuvant TMZ 12

16-H-17976 M 66 70 IV No 23 Negative No Negative Yes Yes 60 Gy radiotherapy + TMZ Adjuvant TMZ 16

NB-00173/14 M 55 90 IV No 26 Negative Not performed Negative Yes Yes 60 Gy radiotherapy + TMZ Adjuvant TMZ 21

NB-00369/13 F 62 90 IV No 31 Negative Not performed Positive No Yes 60 Gy radiotherapy + TMZ Adjuvant TMZ 26

NB-00450/12 F 58 80 IV No 50 Negative Not performed Negative Yes No 60 Gy radiotherapy + TMZ Adjuvant TMZ 37

NB-00038/13 F 61 80 IV No 58 Negative Not performed Positive No Yes 60 Gy radiotherapy + TMZ Adjuvant TMZ 14

NB-00339/13 M 22 100 IV No 91 Negative Not performed Negative No Yes 60 Gy radiotherapy + TMZ Adjuvant TMZ 90 *

NB-00046/12 M 62 80 IV No 2 Negative Not performed Negative Yes No 34 Gy radiotherapy + TMZ No 2

NB-00003/15 F 68 70 IV No 2 Negative Yes Negative No No 30 Gy radiotherapy / 2

17-H-31914 M 70 50 IV No 2 Negative No Negative Yes No None None 2

KPS: Karnofsky performance scale; WHO: World Health Organization; IDH1: Isocitrate dehydrogenase 1; R: Arginine; H: Histidine; ATRX: ATP-dependent helicase ATRX, X-linked helicase II; p53: Tumor protein
p53; MGMT: O6-methylguanine DNA methyltransferase promoter methylation status; GTR: Gross total resection; TTP: Time to progression; OS: overall survival; TMZ: Temozolomide; *: Patient presented with
progression after the analysis was performed.



Cancers 2021, 13, 3419 5 of 18

2.6. Survival Analysis

Each gene and molecular pathway were assessed separately to interrogate their pos-
sible impact on PFS and OS. For the analysis of each database, we included patients of
the following two groups based on their gene expression or PAL: (i) group with gene
expression or PAL higher than 66th-percentile, (ii) group with gene expression or PAL
lower than 33rd-percentile.

Cox survival analysis for OS and PFS was performed between those two groups using
R packages survival [30] and survminer [31]. Then log-rank p-value and hazard ratio
p-value were calculated. Genes and molecular pathways with both p-values below 0.05
threshold were selected for further analyses.

2.7. Plots and Visualizations

Principal component analysis (PCA) and visualization were done for log-transformed
quantile normalized gene counts using prcomp and pca2d R (v.3.6.0) functions. Venn dia-
grams were drawn using R package venn (v.1.10) [32]. Kaplan–Meier plots were drawn
using ggsurvplot (survminer package v.0.4.9) R function [31], tables with hazard ratio, con-
fidence intervals and p-values were drawn using ggforest (survminer package v.0.4.9) R
function [32,33]. Volcano plots for hazard ratio were visualized using R package Enhanced-
Volcano (v. 1.10.0) [34].

2.8. Testing of Intersections Significance

To test whether a given number of common differential genes or pathways between the
two of three intersecting datasets is significant, 1000 random intersections were performed
according to [33]. In every case, two/three random samples from two/three correspond-
ing gene sets of the respective datasets were taken. Then these random samples were
intersected for each iteration and 1000 numbers of random common genes were obtained.
p-value of intersection significance was calculated as a fraction of random numbers equal
or higher than the experimentally observed number of common genes.

2.9. Data and Code Availability

Sequencing data were deposited in NCBI Sequencing Read Archive (SRA) under
accession ID PRJNA742887. Code for the data analysis can be found on Gitlab [35].

3. Results
3.1. RNA Sequencing of Experimental Glioblastoma Samples

In this study, samples from 16 glioblastoma patients (Table 1) were enrolled to ob-
tain experimental RNA sequencing profiles annotated with survival data. In this group
there were 11 males, 5 females, age range was 22–70 y.o., mean age was 55.75 y.o. The
minimal Karnofsky Performance Status (KPS) at the time of diagnosis in this group was
50, median KPS was 90. Overall survival (OS) data were available for 15 patients (range
2–58 months, mean OS 21.1 months) after diagnosis i.e., the date of the surgical resection.
Progression-free survival (PFS) data were available for 14 patients (range 2–37 months,
mean PFS 13.2 months). The tumor samples were formalin-fixed, paraffin-embedded
tumor tissue blocks with at least 50% of tumor cells. We then profiled gene expression
in these biosamples by RNA sequencing (RNAseq) and obtained 26.36–38.99 million raw
reads per library (mean 32.68 million reads). A range of 5.53–11.09 million reads (mean
7.29) was uniquely mapped to Ensembl genes using STAR aligner (Table 2). Two samples,
NB-00339/13 and NB-00046/12, were not of enough quality.
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Table 2. RNA sequencing statistics.

Sample ID Library ID Uniquely Mapped Reads Total Reads

NB-00369/13 GB_1 6.57 38.16
17-H-21518 GB_2 6.56 32.52

NB-00464/12 GB_3 11.09 36.74
NB-00079/14 GB_4 5.85 28.14
17-H-05191 GB_5 7.18 38.79
16-H-17976 GB_6 6.19 34.93

NB-00173/14 GB_7 5.80 38.31
NB-00131/12 GB_8 10.55 38.99
NB-00450/12 GB_10 8.36 28.62
NB-00450/12 GB_11 5.84 26.36
NB-00233/12 GB_12 6.97 30.42
NB-00003/15 GB_16 5.53 28.93
17-H-31914 GB_17 7.10 28.03

NB-00094/13 GB_18 8.52 28.62

3.2. Primary Comparison of RNAseq Profiles among the Experimental and Literature Datasets

To overall characterize the data obtained, we compared by principal component
analysis (PCA) distributions of RNAseq profiles among the experimental dataset (n = 16)
and publicly available datasets from The Cancer Genome Atlas (TCGA) project database;
number of annotated cases = 135, and from Chinese Glioma Genome Atlas (CGGA) project
database; n = 218. TCGA profiles were annotated with OS and PFS data, and CGGA profiles
with only OS data.

PCA was performed in the space of log10 transformed quantile normalized gene
counts. We found that CGGA-derived samples formed two overall distinct clusters that
corresponded to two different batches with different biomaterial treatment and sequencing
protocols (Figure 1A). TCGA and experimental (termed as “Slovenia”) samples also formed
distinct clusters according to each experimental platform (Figure 1A).
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We then built PCA plot based on 1611 molecular pathway activation profiles [29],
where pathway activation level (PAL) of a pathway is calculated using transcriptomic data
(Figure 1B). PAL can take positive or negative values in the case of pathway up- or down-
regulation, respectively, and positively reflects the extent of a pathway activation, and thus
can be used as the quantitative characteristic of the interactome under study [36].

On the 1611-pathway PCA plot, we observed the same trend as on the gene-based
figure, thus demonstrating that CGGA-derived samples from different batches (CGGA_325
and CGGA_693) should be regarded as two separate datasets (Figure 1B).

3.3. Survival-Linked Differential Gene Analysis

For each dataset under investigation we performed Cox survival analysis and ex-
tracted relevant differential genes [37]. To this end, for every gene we identified two
respective patient groups by this gene expression levels: (i) patients with the expression
level higher than 66th-percentile among all patients (in the top third), and (ii) patients with
the expression level less than 33rd-percentile (in the bottom third). We then performed Cox-
regression analysis for OS and PFS data between these groups according to the previous
protocol [38,39].

For each gene, log-rank p-value and hazard ratio (HR) p-value were obtained and then
genes with both p-values less than 0.05 were considered differential [40] (Figures 2 and 3
and Supplementary Table S1). The differential genes obtained were then intersected
between the TCGA, CGGA (separately CGGA_325 and CGGA_693 batches), and the
experimental (Slovenia) datasets.
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Figure 3. Distribution of differential genes by log-rank p-value and log hazard ratio for progression-free survival (PFS) data
across: (A) TCGA and (B) Slovenia glioblastoma datasets.

The genes that were statistically significantly positively (HR > 0), and negatively
(HR < 0) associated with OS (termed plus and minus genes, respectively) were considered
separately. Totally, we found 1003 plus/413 minus genes for the TCGA, 1331/1670 genes for
the CGGA, and 502/377 genes for the experimental datasets, respectively. We then inter-
sected the gene sets obtained and found only one common gene that was differentially reg-
ulated (overexpressed) in all four datasets (Figures 4 and 5, Supplementary Table S2). This
was the gene for noncoding RNA CRNDE (ColoRectal Neoplasia Differentially Expressed)
that was previously associated with many cancers [41,42] including glioblastoma [43,44].
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Figure 4. Intersections of differential (A) plus (hazard ratio > 0) and (B) minus (hazard ratio < 0) genes for overall survival
(OS) analysis between CGGA_325, CGGA_693, TCGA and the experimental (Slovenia) glioblastoma samples; p-values for
intersection significance that are less than 0.05 are highlighted in bold.

To test if a given number of common differential genes or pathways between in-
tersecting datasets is statistically significant, perturbation test for randomness was per-
formed according to [33] (see Materials and Methods). Briefly, we selected random sets of
genes/pathways from all available genes/pathways and repeated this operation 1000 times.
The percentile of the observed intersection in the distribution of random intersections was
considered to be a measure of statistical significance. For OS data, we found that the
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intersections of the plus genes in TCGA vs. CGGA comparison, and in CGGA vs. Slovenia
dataset comparison were non-random, because they returned statistically significantly
greater number of intersecting genes as for the random intersection model (Figure 4 and
Supplementary Table S2).
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We then investigated these non-random intersecting gene sets using Gene Ontology
(GO) terms analysis [45] and identified enriched biological processes associated with these
gene sets (Figure 6). For statistical estimates, we used Benjamini–Hochberg method for
false discovery rate (FDR) correction [46] and p-value threshold 0.05 [40].

For plus genes that were in statistically significant intersection of TCGA, CGGA_325,
and CGGA_693 datasets, the most strongly enriched GO terms were linked with endoplas-
mic reticulum lumen and structure of extracellular matrix (Figure 6A and Supplementary
Table S3). In turn, for the statistically significant intersection of CGGA_325, CGGA_693 and
Slovenia plus genes, the most strongly enriched terms dealt with the processes of meiosis
and chromosomal segregation, DNA demethylation, fibroblast growth factor receptor
signaling, and tRNA transport from the nucleus (Figure 6B and Supplementary Table S4).

We then assessed associations of gene expression biomarkers with progression-free
survival (PFS) data. PFS was annotated only for the TCGA and Slovenia datasets, but no
information could be extracted for both CGGA batches. Similar to OS expression biomarker
analysis, we screened for differentially regulated genes (Figures 3 and 5) using the same
analytic approaches and settings. However, for both plus and minus genes, the intersections
observed did not pass the randomness permutation test, as reflected by high p-values
(Figure 5).

3.4. Differential Pathway Activation Analysis

When performing differential pathway-activation-level (PAL) analysis for the same
three datasets and overlapping the results with the same settings as for the individual
genes, we identified non-random intersection pattern only for the plus pathways between
CGGA and TCGA datasets (p = 0.042; Figure 7A, Supplementary Tables S2, S4 and S5).
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Figure 6. Gene Ontology analysis of differential plus genes (linked with hazard ratio > 0 in overall survival analysis) that
were statistically significantly intersected between (A) CGGA_325, CGGA_693, and TCGA; (B) CGGA_325, CGGA_693, and
Slovenia datasets.

We totally identified 47 (CGGA, TCGA) common differential plus pathways
(Supplementary Table S2). In good agreement with the results of individual gene-level
analysis (Figure 4), they were mostly dealing with the regulation of extracellular matrix
maintenance (Supplementary Table S5). However, there were no triple intersections, and
we could not identify consensus biomarker molecular pathway(s) for OS in glioblastoma
patients. There were also no minus pathways that would pass the randomness permutation
test (Figure 7B and Supplementary Table S2).

When screening for the PFS biomarkers, we also could not identify statistically signifi-
cant interactions, for both plus and minus pathways (Figure 8).
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3.5. CRNDE Overexpression Is Associated with Poor Patient Overall Survival

Thus, we identified that CRNDE was the unique consensus OS expression biomarker
among the glioblastoma datasets tested; however, for PFS no common expression biomark-
ers were identified. We then separately analyzed the impact of CRNDE expression on
glioblastoma patient OS using the clinical information from the same annotated expression
datasets (Figure 9). High CRNDE expression was significantly associated with poor OS in
CGGA_693, TCGA, and Slovenia datasets (Figure 9B–D). The same trend was observed for
CGGA_325 dataset; however, the survival difference did not reach p-value threshold of
0.05 (Figure 9A).
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Figure 9. Kaplan–Meier plot and hazard ratio for CRNDE expression in glioblastoma samples across (A) CGGA_325,
(B) CGGA_693, (C) TCGA and (D) Slovenia datasets for overall survival (OS) analysis. These results demonstrate that in
there out of four tested datasets with available overall survival data (CGGA_693, TCGA, Slovenia), glioblastoma patients
with overexpressed CRNDE had significantly lower overall survival (p = 0.013–0.046).

We observed a similar trend of CRNDE expression being positively associated with
poor survival also for the PFS (Figures 3 and 10). Log-rank p-values were good enough
for both TCGA (p = 0.0016) and experimental (Slovenia; p = 0.027) datasets (Figure 10).
Hazard ratio p-value was good for the TCGA (p = 0.002) but borderline (p = 0.059) for the
experimental dataset (Figure 10).

Thus, we conclude that increased CRNDE expression can be indicative of poor OS and
PFS in glioblastoma.
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4. Discussion

In years of life lost, primary glioblastomas are ranked first among cancer types—on
average 20.1 years compared to 11.8 years for lung cancer and 6.8 years for prostate
cancer [12]. This is partially because of the lack of molecular biomarkers for early disease
diagnosis and treatment follow-up. Because of the high mortality rate, discovery of
molecular biomarkers for glioblastoma is one of the priorities in neuro-oncology research.
With our study we aimed to exploit the potential of high throughput in silico tools to
identify putative biomarkers to clinically manage glioblastoma.

To obtain more information about the molecular differences between glioblastoma pa-
tients with relatively long- and short-term survival, we performed transcriptomic analysis.
We combined data already available from public repositories of TCGA and CGGA projects
with the original data obtained for clinically annotated experimental FFPE tissue samples
from glioblastoma patients. As shown on Table 1, the patients that were included in this
study had represented both short- and long-term survival glioblastoma groups. We could
identify one gene, CRNDE, which expression has the potential to be used as a negative
prognostic biomarker of patient survival, for both OS and PFS. Specifically, Kaplan–Meier
analysis revealed that patients who had increased CRNDE expression levels generally had
shorter survival times. Moreover, Gene Ontology and pathway-activation-level analy-
sis revealed cell migration, reshaping of extracellular matrix, meiosis, and chromosomal
segregation, FGFR signaling, tRNA/noncoding RNA transfer from nucleus, and DNA
demethylation as the major differential processes between the long and poor survivors
in glioblastoma.

CRNDE

Colorectal neoplasia differentially expressed (CRNDE) was discovered first as overex-
pressed gene in colorectal adenomas and adenocarcinomas [47]. Since that it was associated
with different human malignancies [48] including glioblastoma [49,50]. CRNDE is located
on chromosome 16 [41] and is transcribed to form multiple RNA transcripts, some of which
function as noncoding regulatory RNAs. Among them CRNDE-a, -b, -d, -e, -f, -h and -j
are thought to be major transcripts in different cancers [42]. These noncoding RNAs can
regulate gene expression [51,52].

Most of the transcribed human genome is noncoding and contains small (sRNAs)
and long noncoding RNAs (lncRNAs) [53]. lncRNAs vary in length from 200 bp to over
100 kb [54]. In humans, almost 40% of lncRNAs are specific to the brain [55,56] that
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most probably reflects its regulatory complexity [57]. Many brain-specific lncRNAs are
evolutionary conserved, and are believed to have important functions in brain develop-
ment and functioning [58]. A correlation between glioblastoma and various lncRNAs
has been established in attempts for better glioma sub-classification [58–62] with relation
to tumor initiation [61,63], progression [56,58,61,62] or treatment resistance [64–68] on
multiple occasions.

Because of their tissue specificity lncRNAs are excellent candidates for the design and
development of targeted therapeutics. However, in order to achieve this one has to identify
disease-relevant signaling pathways and their druggable targets, and then to find a way to
genetically manipulate them as well as to find an effective delivery system [69].

Other studies have also established a correlation between CRNDE and glioblastoma.
For example, by analyzing a cohort of previously published glioma gene expression profiles
from the Gene Expression Omnibus (GEO) Zhang et al. [70] showed that expression of
lncRNAs CRNDE and HOTAIR increases with ascending glioma malignancy grade. A
small scale preliminary study by Kiang et al. [71] showed that different transcript variants
of CRNDE have clinical impact in glioblastoma. Although the authors did not show a direct
link between a specific CRNDE transcript variant and patient survival, they observed a
trend between the ratio of two variants and patient survival.

By analyzing 19 astrocytomas, of which 5 were low grade and 14 were high grade
tumors, Kiang et al. [72] showed that CRNDE is strongly up-regulated in gliomas and
positively correlates with epidermal growth factor receptor (EGFR) amplification. More-
over, the authors showed that CRNDE knockdown suppresses glioma cell growth in vitro
and in vivo, and is associated with decreased Bcl2/Bax ratio. Its potential to be used as a
predictive marker was published by Jing et al. [73] in a retrospective study. The authors
performed qRT-PCR to examine CRNDE expression and established association between
high CRNDE expression and clinicopathological features such as larger tumor size, higher
WHO grade, and recurrence.

In gliomas, CRNDE can affect proliferation, apoptosis, inflammation, invasion and
migration [41]. In particular, its overexpression promotes proliferation, migration and
invasion, and inhibits apoptosis [43,74]. Still, the functional roles of lncRNAs, and especially
CRNDE for glioblastoma, must be experimentally validated. There are some indications
that CRNDE can promote glioma malignancy through activation of EGFR signaling [72] and
miR-384/PIWIL4/STAT3 axis [74], by preventing miR-136-5p-mediated down-regulation
of Bcl-2 and Wnt2 [75] and mTOR [76] pathways, and can also trigger inflammation through
the TLR3-NF-κB-cytokine signaling pathway [77]. In addition, Zheng et al. [43] showed
that CRNDE positively regulates X-linked inhibitor of apoptosis (XIAP) and serine/threonine
protein kinase PAK 7 (PAK7) through miR-186 in glioblastoma stem cells. Although the
mechanism of action remains to be determined, lncRNAs are a source for identification of
novel biomarkers for glioblastoma diagnosis or therapy-guidance.

It is clear now that lncRNAs play critical roles in many pathologies and they are the
forefront molecules for translational research. Because of its obvious overexpression in
tumors, CRNDE is one of the most extensively investigated lncRNAs in cancer research.
The major novelty of our study is that we performed RNA sequencing profiling instead of
the most commonly used microarray gene expression analysis. Additionally, we used a
combination of data from previous repositories and from the experimental cohort consisting
of short- and long-term glioblastoma survivors. Our methodology proved successful in
the identification of the lncRNA CRNDE as a negative prognostic biomarker. Although
other studies linked CRNDE with increased malignancy grade, we confirmed here for
the first time that CRNDE overexpression directly correlates with shorter patient survival
times. Thus, we propose its further detailed investigation as a prognostic biomarker for life
expectancy of glioblastoma patients.
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5. Limitations

The relatively small number (n = 16) of experimental clinically annotated samples we
used in our study can be considered to be a limitation. Our initial aim was to collect samples
from long-term glioblastoma survivors. Because of the low incidence of glioblastoma and
poor patient survival it is difficult to obtain large number of such samples in countries
with small population. Still, to provide more scientifically solid results, the experimental
data were complemented by publicly available transcriptomic data. The results may
vary between the databases due to different patient ethnicities and/or countries’ clinical
guidelines for diagnosis and therapy.

Another limitation is that we did not include other potential prognostic factors such
as extent of the surgical resection in our analysis. Therefore, we reason it is crucial to addi-
tionally investigate the role of CRNDE in respect to other prognostic factors in glioblastoma
before determining its potential clinical application.

6. Conclusions

Despite decades of extensive research and implementation of unconventional thera-
peutic approaches, long-term survival is not common for glioblastoma patients. Identifica-
tion of diagnostic as well as prognostic and predictive therapeutic biomarkers is therefore
crucial. This can be initially achieved by large-scale profiling combined with extensive
bioinformatics analysis, and further confirmed experimentally before it reaches clinical
settings. As shown in our study, transcriptome profiling by RNA sequencing is an appro-
priate method for identification of biomarkers with potential clinical utility. We analyzed
pathway activation levels of intersecting genes between TCGA, CCGA, and experimental
dataset to determine their possible impact on OS and PFS. Using Cox survival analysis and
intersection of positive and negative differential genes between datasets, we identified only
one common gene, CRNDE, that was negatively correlated with OS. With Kaplan–Meier
analysis we confirmed that overexpression of CRNDE can be used as an indication of poor
OS and PFS. As suggested, lncRNA CRNDE can be used as a negative prognostic marker
for glioblastoma patients.
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