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Abstract: The process of bone remodeling is the result of the regulated balance between bone
cell populations, namely bone-forming osteoblasts, bone-resorbing osteoclasts, and the osteocyte,
the mechanosensory cell type. Osteoclasts derived from the hematopoietic stem cell lineage are
the principal cells involved in bone resorption. In osteolytic diseases such as rheumatoid arthritis,
periodontitis, and osteoporosis, the balance is lost and changes in favor of bone resorption. Therefore, it is
vital to elucidate the mechanisms of osteoclast formation and bone resorption. It has been reported
that osteocytes express Receptor activator of nuclear factor κB ligand (RANKL), an essential factor for
osteoclast formation. RANKL secreted by osteocytes is the most important factor for physiologically
supported osteoclast formation in the developing skeleton and in pathological bone resorption such
as experimental periodontal bone loss. TNF-α directly enhances RANKL expression in osteocytes and
promotes osteoclast formation. Moreover, TNF-α enhances sclerostin expression in osteocytes, which also
increases osteoclast formation. These findings suggest that osteocyte-related cytokines act directly to
enhance osteoclast formation and bone resorption. In this review, we outline the most recent knowledge
concerning bone resorption-related cytokines and discuss the osteocyte as the master regulator of bone
resorption and effector in osteoclast formation.
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1. Introduction

Bone is a dynamically changing tissue that is continuously degraded and built via the process of
bone remodeling, the process in which bone cell populations achieve a balance between resorption
and deposition episodes [1]. The process of bone remodeling is the result of the regulated balance
between bone-forming osteoblasts, bone-resorbing osteoclasts, and the osteocyte, the mechanosensory
cell type [2].

Osteoclasts derived from the hematopoietic stem cell lineage are the principal cells responsible
for bone resorption [3]. The balance in osteolytic diseases, such as rheumatoid arthritis, periodontitis,
and osteoporosis is lost, favoring bone resorption [4]. Molecular signals act together with cellular
components to regulate bone resorption. Macrophage colony-stimulating factor (M-CSF) is the first
essential cytokine that induces osteoclast formation by binding to the c-fms receptor and promotes
osteoclast precursor differentiation and maturation [5]. Receptor activator of nuclear factor-κB ligand
(RANKL) is a member of the tumor necrosis factor superfamily, which is secreted by osteoblasts,
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bone marrow stromal cells [6], and lymphocytes [7]. RANKL interacts with the RANK receptor on the
surface of osteoclast precursors and promotes their differentiation into bone-resorbing osteoclasts.

Osteocytes get embedded in the osteoblast-secreted matrix during their differentiation from an
osteoblast to osteocyte [8]. Osteocytes reside within lacunae and they comprise 90% of the bone cell
population. Osteocytes communicate with each other and other cell types through dendrites extending
to the bone surface [9]. The human body has about 42 billion osteocytes with an average half-life of
25 years [10].

Osteocytes have been shown to function as regulators of mineral metabolism and perilacunar
matrix remodeling and as mechanosensory cells [11]. It has been established that osteocytes express
RANKL, and osteocyte-secreted RANKL is the most important for physiologically supported osteoclast
formation in the developing skeleton [12,13]. An osteoporotic phenotype becomes increasingly
apparent in osteocyte-specific RANKL-deficient mice postnatally. This result suggests that RANKL
secreted by osteocytes plays a critical role postnatally. Furthermore, osteocytes induce osteoclast
formation in cocultures with bone marrow cells upon addition of prostaglandin E2 (PGE2) and vitamin
D (1,25(OH)2D3) [12]. Osteocyte-specific RANKL-deficient mice subjected to unloading of mechanical
force do not experience bone loss, as observed in wildtype mice, and are protected against such bone
loss [13]. It has also been reported that experimental periodontal bone loss is attenuated in mice
with osteocyte-deficient RANKL [14]. Deletion of osteocyte RANKL confers an increase in cancellous
bone mass in osteogenesis imperfecta mice [15]. These results suggest that osteocyte RANKL affects
bone resorption in both healthy and diseased individuals. In our recent study, we found that tumor
necrosis factor-α (TNF-α) directly enhances osteocyte RANKL expression and promotes osteoclast
formation [16] and that mechanical force induces TNF-α, which leads to sclerostin expression in
osteocytes and sclerostin subsequently enhances osteoclast formation [17]. These results suggest that
osteocyte-related cytokines affect osteoclast formation and bone resorption.

Apart from the classic pathway of bone resorption which utilizes the action of osteoclasts,
osteocytes have been described as capable of bone resorption and expanding their lacuno-canalicular
housing. This concept has been termed osteocytic osteolysis, which has been observed in a number
of settings: in lactating mice [18] and high calcium demands [19], through sclerostin signaling [20],
through calciotropic hormones signaling such as 1,25(OH)2D3 [21] and parathyroid hormone [22],
and in the absence of physiologic loading [23]. Osteocytic osteolysis could be of importance for the
maintenance of the osteocyte perilacunar space, adaptation to different loading situations, and it might
contribute to global calcium homeostasis; however, the importance of this process is still enigmatic,
and its relative importance to direct osteoclastic bone resorption is a subject of study.

Osteocytes control bone formation through sclerostin regulation, which inhibits the Wnt/β-catenin
pathway, a major osteoblastogensis mediator. Loss of sclerostin causes a high bone mass phenotype
such as in sclerosteosis and Van Buchem’s disease [24]. Sclerostin is a crucial link between osteoblasts
and the mechanosensory ability of osteocytes, as absence of loading leads to increased sclerostin
expression and bone loss, which is evident in mice that do not gain bone mass with loading due
to their inability to downregulate sclerostin [25]. Osteocytes also control osteogenesis through the
fine tuning of their oxygen sensing apparatus prolyl hydroxylase 2 (PHD 2), in which silencing
of PHD 2 causes an increase in bone mass and strength and protects against bone loss caused by
estrogen deficiency and absence of mechanical loading, through decreased expression of sclerostin [26].
Parathyroid hormone is also a regulator of sclerostin expression in osteocytes and acts as an anabolic
agent when administered intermittently [27]. Anti-sclerostin antibody may be a promising bone
anabolic agent, and further studies should elucidate the mechanism by which precise targeting of
sclerostin could mediate bone anabolism.

In this review, we outline the recent knowledge concerning bone resorption-related cytokines
and discuss the osteocyte as the master regulator of bone resorption and effector in osteoclast
formation. We further discuss the possible mechanisms by which osteocyte-related cytokines regulate
bone resorption.
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2. Osteoclast Regulatory Cytokines

2.1. Osteoclastogenic Cytokines

Osteoclasts are responsible for bone resorption in physiological bone remodeling and pathological
bone destruction that accompanies osteolytic inflammatory diseases. Inflammation is a hallmark of
various pathological conditions such as those confined locally to the bone, including rheumatoid
arthritis [28] and periodontitis [29]. Moreover, systemic inflammation is involved in a myriad of
conditions such as kidney disease [30], inflammatory bowel disease [31], chronic skin inflammation [32],
bacterial infection [33], cancer [34], acute injury [35], metabolic syndrome in obese patients [36],
and diabetes [37]. Proinflammatory cytokines secreted in the bone vicinity enter blood circulation
easily and travel to distant organs, causing systemic effects. Many inflammatory cytokines have
osteoclastogenic effects on bone. In vivo immune and inflammatory responses are regulated by a
complex network of cytokines. In rheumatoid arthritis, TNF-α, Interleukin (IL)-1, IL-6, and IL-17
produced by synovial macrophages and T cells act on osteoblasts to promote RANKL expression [38].
There are many reports on osteoclastogenesis-promoting cytokines including IL-1 [39], IL-6 [40],
IL-7 [41], IL-8 [42], IL-11 [43], IL-15 [44], IL-17 [45], IL-23 [46], IL-34 [47], and transforming growth
factor-β [48].

2.2. Anti-Osteoclastogenic Cytokines

Numerous cytokines have anti-osteoclastogenic and anti-resorptive effects on bone. IL-3 inhibits
osteoclast formation and bone resorption via inhibition of c-fos [49]. IL-4 attenuates RANKL-induced
osteoclast formation by inhibiting NFATc1 via NF-κB inactivation activation [50,51] and TNF-α-induced
osteoclast formation in vitro and in vivo [52,53]. IL-10 inhibits osteoclast formation directly by
inhibition of NFATc1 [54]. IL-12 [55–58] and IL-18 [59–61] also inhibit osteoclast formation and
bone resorption. They act in synergy to induce apoptosis of osteoclast precursors and inhibit
TNF-α-mediated osteoclastogenesis in myeloid cells. TNF-α induces Fas expression, while IL-12 and
IL-18 induce FasL expression, leading to apoptosis of osteoclast precursors [57,58,60,61]. IL-12 also
inhibits lipopolysaccharide (LPS)-induced osteoclast formation in vivo and induces apoptosis of
osteoclasts [62]. IL-13 [63] and IL-27 inhibit RANKL-induced osteoclast formation by STAT1-dependent
inhibition of c-Fos [64]. IL-33 attenuates RANKL-induced osteoclast formation by modulation of
BLIMP1 and interferon regulatory factor 8 expression and inhibition of IκB phosphorylation and
NF-κB nuclear translocation [65], as well as mechanical loading-induced osteoclast formation [66].
Interferon (IFN)-α [67], IFN-β [68], and IFN-γ [48,69] also inhibit osteoclastogenesis. IFN-γ inhibits
LPS-induced osteoclast formation by inhibition of RANK and c-fos in osteoclast precursors via the
TLR signaling pathway [70]. Furthermore, when IFN-γ is introduced into TNF-α-induced osteoclast
formation from bone marrow cells, TNF-α induces Fas expression, and IFN-γ induces FasL expression
to induce apoptosis of osteoclast precursors [71].

3. Osteocyte-Related Cytokines

The osteocyte secretes a diverse array of cytokines and signaling molecules including sclerostin,
RANKL, osteoprotegerin (OPG), TNF-α, IL-1β, IL-6, fibroblast growth factor (FGF) 23, and insulin-like
growth factor (IGF)-1 [11,28,72]. These molecules exert their effects on the osteocyte itself, other bone
cells and cells of the immune system harboring in bone, and distant organs, functioning in autocrine,
paracrine, and endocrine fashions, respectively. Inflammation both locally and systemically has
been reported to affect osteocyte survival and activity. Apoptotic osteocytes signal to nearby
osteocytes and macrophages to secrete proinflammatory molecules and growth factors such as RANKL,
TNF-α, IL-1β, IL-6, IL-8, and vascular endothelial growth factor (VEGF) [28,73]. Osteocytes respond
to physiological levels of proinflammatory cytokines, maintaining their survival and functions.
However, inflation of inflammatory secretion regulates osteocyte-derived molecules and cytokines
in a way that contributes to bone and non-bone-related pathologies. Osteocytes respond to single
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or multiple cytokines acting synergistically. Osteocytes secrete inflammatory cytokines that regulate
osteocyte functions and other bone cells, and amplify inflammation at a distance [28]. This property
grants the osteocyte the status of a true endocrine cell type.

3.1. RANKL and OPG

RANKL-RANK signaling activates osteoclast differentiation and functions, and inhibits osteoclast
apoptosis. As a result, this dynamic induces bone resorption. However, OPG, which is a RANKL
decoy receptor, prevents RANKL-RANK binding [74]. Osteocytes are a significant source of RANKL
that induces osteoclastogenesis and bone resorption [12,13]. Osteocytes also express OPG that is
downregulated significantly in osteocyte-specific β-catenin-deficient mice. Osteocyte OPG-deficient
mice show a low bone mass phenotype, suggesting that osteocyte specific OPG plays an important
role in bone mass regulation [75]. Osteocytes participate in the development of periodontitis
and periodontitis-induced alveolar bone loss by upregulating proinflammatory cytokine secretion.
Osteocyte-derived RANKL is elevated in diabetic rats with periodontitis, which correlates well with a
high osteoclast number, osteoclast activity, and bone resorption [14,76]. Another osteocyte-secreted
molecule, sclerostin, increases the RANKL/OPG ratio in periodontitis via ERK1/2-MAPK in alveolar
bone [77]. Osteocyte-RANKL expression is also governed by Cx43, a protein that allows the formation of
gap junctions between osteocytes forming a connected network of cells. Cx43 expression in osteocytes
decreases with age [78]. In mice lacking Cx43, osteocyte apoptosis increases [79]. These results
suggest that channeling through Cx43 controls osteocyte survival [79]. Decreased Cx43 expression
reduces prosurvival microRNA-21 and promotes osteocyte apoptosis. Therefore, deletion of Cx43
increases osteocyte RANKL and osteoclast formation [80]. Multiple myeloma, a plasma cell malignancy,
is characterized by increased bone resorption. Multiple myeloma cells induce osteocyte apoptosis that
increases osteocyte-derived sclerostin and the RANKL/OPG ratio, resulting in osteoclast formation and
bone resorption [81]. It has been reported that zoledronic acid and plumbagin-loaded nanoparticles
target osteocytes to release plumbagin, decreasing osteocyte RANKL expression. The particles attenuate
tumorigenesis and osteoclast formation in a breast cancer bone metastasis model by inhibiting RANKL
and sclerostin expression in osteocytes [82]. One of the common comorbidities in inflammatory bowel
disease is bone loss, leading to an elevated fracture risk [83]. Inflammatory bowel disease induced
by an enema of 2,4,6-trinitrobenzenesulfonic acid in mice induces systemic inflammation and alters
secretion of proteins from osteocytes, such as RANKL and OPG, increasing the RANKL/OPG ratio and
bone resorption [31]. Spinal cord injury patients have 40–70% lower bone mass in cancellous-rich bone
sites and 25–35% lower bone mass in cortical sites such as the shafts of the tibia [84]. Rodent models of
spinal cord injury show similar bone loss [85]. Spinal cord injury in a rat model induces RANKL and
OPG expression in osteocytes, altering the RANKL/OPG ratio in osteocytes [86]. Microcracks of the
bone in knee injury remodel via RANKL expressed in osteocytes [87]. Serum RANKL also increased
in rodent thermal injury model compared to that of sham burn with bone mineral density as well as
weight bearing capacity being negatively influenced acutely and several weeks after the injury [88].
Optimal mechanical loading induces osteocyte functions and survival. However, excessive force on
bone induces osteocyte apoptosis and expression of RANKL in osteocytes, which induces osteoclast
formation and bone resorption [89]. It is apparent that osteocyte RANKL expression is induced via
local and systemic routes, which in turn also functions locally, affecting nearby cells or systemically
in models of systemic inflammatory diseases. RANKL is expressed as a membrane-bound protein
(mRANKL) that can be cleaved and shed into the circulation as soluble RANKL (sRANKL); elevated
sRANKL has been linked to local [90] and systemic inflammatory conditions [91,92] as well as cancer
cohorts [93]. Both mRANKL and sRANKL are important for osteoclast formation. This is evident in
mice lacking sRANKL, in which osteoclast number was reduced and cancellous bone volume increased
with increased age, but it was indistinguishable from that of wildtype mice at a younger age; despite
sRANKL’s contribution to physiologic bone resorption, sRANKL had no protective effect on reduced
bone mass in ovariectomized sRANKL-lacking mice, as those mice experienced similar bone loss to
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wildtype ovariectomized mice [94]. Cultures of osteoclast precursor cells in an osteocyte conditioned
medium failed to produce osteoclasts, highlighting the importance of mRANKL for osteoclastogenesis
in culture conditions [12]. Conversely, conflicting evidence of coculture of bone marrow cells with a
conditioned medium of mechanically damaged MLO-Y4 that produce sRANKL and soluble M-CSF
were able to mediate osteoclastogenesis [95]. While the role of mRANKL is clear and documented,
further studies are needed to clarify the mechanism and significance of RANKL shedding in osteocytes.

3.2. TNF-α

TNF-α is a potent proinflammatory cytokine that is secreted by various cell types, such as
mononuclear phagocytes, in which it activates cytocidal functions, playing a major role in host
defense. TNF-α is central to the pathogenesis of disorders involving inflammation [96], such as obesity,
which is characterized by chronic inflammation possibly via upregulation of TNF-α that activates the
inflammatory cascade and affects various organ functions [36,97]. Furthermore, obesity is linked to
decreased bone formation and increased bone resorption through TNF-α-induced upregulation of
osteocyte-derived sclerostin and RANKL [98]. TNF-α upregulates sclerostin expression in the MLO-Y4
cell line, a murine osteocyte-like cell line. This effect is inhibited by suppression of NF-κB signaling
using NF-κB p65 siRNA [98]. These results suggest that TNF-α upregulates sclerostin expression
via NF-κB signaling activation, contributing to bone loss. It is well known that TNF-α is expressed
during periodontitis [99]. Patients suffering from obesity in addition to periodontitis have a higher
level of TNF-α expression than patients with periodontitis only [100]. Infliximab, which is a TNF-α
antagonist, inhibits sclerostin and RANKL expression in osteocytes and attenuates alveolar bone loss
in periodontitis rats with diabetes [76]. Under chronic hyperglycemic conditions, mRNA and protein
levels of sclerostin, reactive oxygen species, and TNF-α expression levels increase in MLO-Y4 cells.
N-Acetylcysteine treatment or knockdown of TNF-α inhibits this high glucose-induced sclerostin
expression. These results suggest that hyperglycemia increases sclerostin expression by inducing
reactive oxygen species and TNF-α expression and that regulation of TNF-α and oxidative stress levels
may be a valuable therapeutic strategy for alveolar bone complications in chronically hyperglycemic
patients [101]. High mobility group box 1 protein released from damaged MLO-Y4 cells induces
RANKL, TNF-α, and IL-6 from other stromal cells and macrophages [73,102]. These results suggest
that osteoclast formation and bone resorption are induced around apoptotic osteocyte regions.
Rheumatoid arthritis is a chronic autoimmune disease with local joint inflammation characterized
by joint space narrowing, local bone erosion, and extra-articular manifestation. Serum and synovial
fluid of patients with rheumatoid arthritis have high amounts of proinflammatory cytokines such as
TNF-α, IL-1β, and IL-6 [103]. Human osteocyte-enriched cells were cultured with serum of active
rheumatoid arthritis patients ex vivo, which increased IL-1β, TNF-α, SOST, and DKK1 gene expression
levels [28]. These results highlight the role of the osteocyte as a new therapeutic target to inhibit bone
destruction in rheumatoid arthritis patients. In our recent study, we evaluated the direct effects of
TNF-α on osteocytes. In the study, we used highly purified primary osteocytes that were isolated by cell
sorting from neonatal calvariae of DMP1-Topaz mice expressing green fluorescent protein under the
control of the dentin matrix protein 1 promoter [16]. Primary osteocytes cultured with TNF-α showed
significantly higher RANKL mRNA expression. Additional in vivo experiments of TNF-α injected
into the mouse calvaria showed increases in the osteoclast number and RANKL-positive osteocytes.
Furthermore, osteocytes cultured with TNF-α showed upregulation of ERK1/2, P38, and JNK MAPK
phosphorylation measured by western blotting. Inhibition of ERK1/2, p38, and JNK MAPKs via their
respective inhibitors (U0126, SB203580, and SP600125) in osteocytes cultured with TNF-α suppressed
RANKL mRNA expression to baseline levels compared with untreated cells. We also found that
TNF-α activates the NF-κB pathway in osteocytes measured by p65 subunit nuclear translocation [16].
Activated AKT also acts as an anti-apoptotic signal, and TNF-α stimulates the AKT pathway in a
cell-type-specific manner [104]. We found a trend of activated AKT phosphorylation to levels that did
not reach statistical significance [16]. The results of the study supported the role of osteocytes in their
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potential contribution to bone destruction by increasing RANKL expression via the direct action of
TNF-α. Osteocytes may be a therapeutic target when inflammation is central to a disease pathology.

3.3. IL-1β

IL-1β is an important proinflammatory cytokine that is normally produced by dendritic cells,
monocytes, T cells, and macrophages [105]. IL-1β enhances osteoclast formation and bone resorption
in rheumatoid arthritis, periodontal diseases, and osteoporosis [106–108]. Treatment with exogenous
cytokines, such as IL-1β and TNF-α, and in combination of IL-6, upregulates IL-1β expression in
human osteocytes [28]. It has been reported that IL-1β enhances RANKL expression and inhibits
OPG expression in MLO-Y4 cells. IL-1β-treated osteocytes increase the formation of osteoclasts.
However, conditioned medium from mechanically loaded osteocytes via pulsatile fluid flow and
treated with IL-1β prevents osteoclast formation. Thus, mechanical loading of osteocytes abolishes
IL-1b-induced osteoclast formation [109]. In diabetic rats with periodontitis, bone destruction
correlates with elevated osteocyte-derived IL-1β expression [14,76,110]. Lenalidomide is a drug that
has shown potential in anti-cancer and anti-inflammatory treatments. Lenalidomide treatment rescues
IL-1β-induced osteocyte apoptosis and inhibits IL-1β-induced RANKL and Sclerostin expression in
MLO-Y4 osteocytes. Conditioned medium from lenalidomide-treated osteocytes inhibits osteoclast
formation and bone resorption in vitro. Furthermore, IL-1β-induced IκB degradation is remarkably
downregulated by lenalidomide in MLO-Y4 osteocytes. These results show that lenalidomide regulates
NF-κB signaling in MLO-Y4 osteocytes. In vivo analysis of MLO-Y4 osteocyte apoptosis and osteoclast
formation in an osteoarthritis mouse model showed that lenalidomide inhibits osteocyte apoptosis
and RANKL-induced osteoclast formation [111]. These results reveal the importance of IL-1β/NF-κB
signaling in osteocytes to attenuate osteoclast formation in vitro and in vivo.

3.4. IL-6

IL-6 is a pleotropic cytokine functioning as a proinflammatory cytokine and in regulation of
the immune system. IL-6 has important roles in inflammation, autoimmunity, injury, hematopoiesis,
diabetes, atherosclerosis, rheumatoid arthritis, and cancer [112–114]. It is synthesized by a wide
variety of cell types including monocytes, macrophages, T cells, B cells, fibroblasts, keratinocytes,
endothelial cells, mesangial cells, adipocytes, and some tumor cells [115,116]. IL-6 exerts an indirect
effect on osteoclasts, promoting osteoclast activity and bone resorption by inducing RANKL expression
in osteoblasts [117]. IL-6-overexpressing transgenic mice show osteopenia with increases in the
osteoclast number and activity [118]. Furthermore, IL-6-neutralizing antibodies inhibit TNF-α and
IL-1β-stimulated osteoclast formation [119]. Therefore, it is recognized that IL-6 is a promoter of
osteoclastic bone resorption and centrally involved in the pathogenesis of bone loss in chronic
and acute inflammation [118], periodontitis [120], rheumatoid arthritis, and osteoporosis [121].
It has been reported that treatment with exogenous proinflammatory cytokines, such as IL-1β
and TNF-α, as well as combinations of IL-1β, TNF-α, and IL-6, upregulates IL-6 expression in a
human osteocyte-rich cell fraction [28]. Brucellosis caused by Brucella abortus infection results in bone
loss [122]. MLO-Y4 osteocytes infected with B. abortus upregulate expression of IL-6. The culture
supernatants of these B. abortus-infected osteocytes induce osteoclast formation [33]. LPS is a bacterial
toxin that causes inflammation and significantly increases the production of proinflammatory cytokines
including IL-6 [123]. IL-6 expression in MLO-Y4 osteocytes is increased by LPS via activation of the
ERK1/2 signaling pathway [123]. IL-6 enhances osteocyte-mediated osteoclast formation through
upregulation of RANKL and JAK2 activities [124]. In diabetics and elderly patients, high glucose
levels and advanced glycation end products are associated with disrupted functions of bone cells and
deterioration of bone mass, inducing osteoporosis. Advanced glycation end products activate MAPKs
ERK1/2 and P38 and STAT3 signaling through upregulation of osteocyte-derived IL-6 and VEGF-A
secretion [125] as well as osteocyte apoptosis [125,126]. IL-6 is also one the cytokines secreted by



Int. J. Mol. Sci. 2020, 21, 5169 7 of 24

apoptotic osteocytes, which signals near osteocytes and macrophages to release other proinflammatory
cytokines and growth factors [73].

3.5. FGF23

FGF23 is considered as a hormone belonging to the FGF family of proteins. There are 22 FGF family
members in humans, which are categorized into three subfamilies according to their mode of action,
autocrine, paracrine, or endocrine. FGF23 belongs to a subfamily together with FGF19 and FGF21
that exert their functions in an endocrine manner [127]. FGF23 is produced in bone by osteoblasts,
but mainly by osteocytes [128]. The principal documented actions of FGF23 in mineral homeostasis are
the reduction of serum phosphate and 1,25(OH)2D3 as well as parathyroid hormone levels [129,130].
Fgf23 was identified as the gene responsible for autosomal dominant hypophosphatemic rickets [131].
Fgf23 knockout mice were established to study the physiological actions of FGF23. These mice
show hyperphosphatemia with enhanced proximal tubular phosphate reabsorption and a high
1,25(OH)2D3 level [132]. An increase in the FGF23 level is recognized in the pathogenesis of secondary
hyperparathyroidism with low 1,25(OH)2D3, hyperphosphatemia, and hypocalcemia in patients
with advanced chronic kidney diseases [133]. Osteocyte production of FGF23 is the main route for
mineral and phosphate homeostasis. Other highly expressed osteocytic genes, such as PHEX [134],
Dmp1 [135], and MEPE [136], participate in the regulation of mineral and phosphate homeostasis
either directly or by regulating FGF23 signaling. Loss of the functions of either Dmp1 or PHEX
dramatically increases FGF23 production that increases phosphate excretion, resulting in osteomalacia
and rickets [135]. However, the mechanism by which PHEX regulates FGF23 levels is not fully
understood since FGF23 is not a direct substrate for PHEX, suggesting that another substrate or other
indirect downstream pathways link PHEX with FGF23 levels. PHEX has been shown to alter the
expression but not the degradation of FGF23 [137]. MEPE-null mice have increased bone mass due
to loss of the action of the acidic serine aspartate-rich MEPE-associated motif (ASARM), a potent
inhibitor of mineralization [136,138]. MEPE binds to PHEX, which prevents the release of ASARM
and prevents the downregulation of FGF23. If ASARM is released, it binds to PHEX and prevents
the enzymatic activity of PHEX leading to upregulation of FGF23, which may also provide another
mechanism by which PHEX controls FGF23 levels [138,139]. The direct effect of FGF23 on osteoclasts
has been described as biphasic. FGF23 inhibits osteoclast differentiation in the early stages of in vitro
culture of monocytes together with RANKL and M-CSF. However, this effect diminishes when FGF23
is added at a later stage of culture and when monocytes are treated with a pan-FGF receptor inhibitor.
In contrast, FGF23 increases osteoclast activity as measured by the degree of resorption area per well
or per osteoclast. This effect is only evident with low doses of FGF23 in vitro [140]. The effect of FGF23
on osteoclasts is reported to be independent of klotho, which is an FGF23 and FGFRc1 binding protein,
but this does not rule out that klotho might be involved in FGF23 effects on osteoclasts, because klotho is
both a transmembrane protein and soluble protein in circulation [140]. Other studies have reported that
FGF23 has no effect on osteoclast formation in wildtype bone marrow cultures [141] and reasoned that
the decrease in osteoclast formation in FGF23-deficient mice is due to deficient parathyroid hormone
actions [132]. In transgenic mice overexpressing FGF23, the number of osteoclasts, serum level of
TRACP 5b, and mRNA levels of TRAP and cathepsin K are unchanged, but markers of bone matrix
degradation are elevated. However, FGF23 transgenic mice exhibit structural and morphological
changes in osteoclasts with an immature ruffled border and clear zone, despite the fact that the levels
of MMP-9 and cathepsin k around the morphologically aberrant osteoclasts are comparable with those
in wildtype osteoclasts, indicating that they are functionally sound in terms of resorptive activity [142].
FGF23 is considered as a marker of numerous conditions such as chronic kidney disease, in which
osteocyte sclerostin and FGF23 are elevated [143]. Conditions in which serum phosphate alone or
in combination with 1,25(OH)2D3 are elevated also exhibit an increase in FGF23 mRNA expression
by murine osteocytes [144] as well as proinflammatory mediators TNF-α, IL-1β, and LPS that also
increase FGF23 expression by osteocytes [145]. TNF-α and IL-1β-mediated upregulation of FGF23 in
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osteocytes is dependent on activation of the NF-κB pathway [145]. TNF-α and IL-8 treatment enhances
FGF23 gene expression in human osteocyte cultures [28]. A combination of IL-1β, IL-6, and TNF-α
treatments synergistically upregulates FGF23 gene expression [28]. A correlation between elevated
levels of serum FGF23 in rheumatoid arthritis (RA) patients with disease activity and bone resorption
has been established [146] because serum RA enhances osteocyte-mediated osteoclastogenesis [28].

3.6. IGF-1

IGF-1 is polypeptide hormone that is primarily produced by liver cells (75%) following stimulation
by growth hormone (GH) [147]. Except for the liver, almost every organ expresses IGF-1 receptors under
physiological conditions. The GH/IGF-1 axis is mainly responsible for increasing muscle mass, lipolysis,
and bone growth [148]. It has been shown that osteocytes produce a considerable amount of IGF-1 that
regulates osteoblasts and osteoclasts in paracrine or autocrine manners [149]. Deletion of the Igf1 gene
in osteocytes causes an impairment in developmental bone growth [150]. Mechanical loading induces
local IGF-1 expression of osteocytes [151], and then osteocyte-derived IGF-1 immediately induces
osteogenic differentiation by upregulating Wnt10b expression and suppressing SOST expression in an
autocrine manner [152]. This indicates a role of osteocyte-derived IGF-I in the translation of mechanical
stimuli into bone formation. IGF-1 enhances osteoblast proliferation via MAPK and Akt pathways [153].
Osteogenic differentiation of periodontal ligament stem cells can be induced by IGF-1 treatment via
activation of ERK and JNK MAPK pathways [154]. However, the anabolic bone effects of parathyroid
hormone are synergized by IGF-1 in vivo [155]. Osteoblast-to-osteocyte transition is also enhanced by
IGF-1-induced parathyroid hormone receptor phosphorylation [156]. Moreover, local IGF-1 derived
from osteocytes is important for osteoblast-osteoclast interactions and osteoclast formation [157].
IGF-1 promotes osteoclast differentiation by increasing both M-CSF and RANKL expression in
osteoblasts and RANK expression in osteoclasts [158]. In addition, IGF-1-induced osteoblast and
osteoclast differentiation is regulated by ephrin B2/EphB4-mediated cell–cell communication [159].

3.7. IL-8

IL-8 is a CXC chemokine known to play an important role in regulation of the inflammatory
response. It was identified as a neutrophil chemotactic factor. IL-8 is produced by macrophages,
epithelial cells, airway smooth muscle cells, and endothelial cells. IL-8 exerts its effects by binding
to its receptors, CXCR1 and CXCR2 [160]. It is overexpressed in many tumors and cancer cell lines,
and promotes tumor growth, angiogenesis, and metastasis in a variety of human cancers [161]. It is
also elevated in the serum and synovial fluid of RA patients [162]. Production of IL-8 by breast cancer
cells increases osteoclast formation and may contribute to bone metastasis [163]. IL-8 is a potential
stimulator of osteoclast differentiation and bone resorption. IL-8 upregulates RANKL expression
in osteoblasts and induces osteoclastogenesis directly by binding to CXCR1 on cells [42]. It has
also been reported that IL-8 plays an important role as a RANKL-induced autocrine mediator of
osteoclast formation. A neutralizing anti-IL-8 antibody inhibits osteoclast formation and NFATc1
nuclear translocation [164]. IL-8 is a direct factor that induces osteoclast differentiation in multiple
myeloma [165]. Bone marrow stromal cells from patients with multiple myeloma enhance production
of IL-8. IL-8 potentiates NF-κB activation induced by certain multiple myeloma bone marrow stromal
cells. Therefore, IL-8 production in myeloma promotes tumor growth and contributes to increased bone
resorption [166]. Binding of anti-citrullinated protein antibodies to osteoclasts induces production of
IL-8 and enhances osteoclast maturation and activation [167]. IL-8 also stimulates RANKL expression
in bone marrow stromal cells. These results suggest that IL-8 not only induces osteoclast differentiation
directly, but also RANKL expression contributing to osteoblast-mediated osteoclastogenesis [168].
Bone-metastasized cells from primary cancers such as lung and breast cancers release cytokines,
such as IL-6, IL-8, M-CSF, and monocyte chemotactic protein-1, which affect osteocyte functions [169].
IL-8 treatment enhances TNF-α, IL-8, and FGF23 gene expression and TNF-α reciprocates by enhancing
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IL-8 gene expression in osteocyte-enriched cells. IL-8 gene expression is also upregulated by the
synergistic action of TNF-α, IL-1β, and IL-6 [28].

3.8. M-CSF

M-CSF was identified as a hematopoietic cell growth factor that induces differentiation of
macrophages from bone marrow progenitors. M-CSF as a small protein is produced constitutively
by various cell types such as macrophages, endothelial cells, fibroblasts, osteoblasts, lymphocytes,
monocytes, and osteocytes [170]. M-CSF induces proliferation, differentiation, and survival of
monocytes, macrophages, and bone marrow progenitor cells. M-CSF is indispensable for the
proliferation and differentiation of osteoclast precursors [171]. In osteopetrotic op/op mice, a thymidine
insertion in the Csf-1 results in M-CSF deficiency, which are deficient for osteoclasts and macrophages.
This deficiency is caused by the absence of functional M-CSF and rescued by injection of M-CSF [172].
Therefore, M-CSF is an essential factor for the formation and activation of osteoclasts [3]. In a previous
report, primary osteocyte and osteoclast precursors treated with 1,25(OH)2D3 and PGE2 showed a high
level of RANKL and osteoclast formation [12]. These results suggest that 1,25(OH)2D3 and PGE2 also
induce M-CSF in osteocytes. In our previous study, a coculture system of highly purified Dmp1-Topaz
primary osteocytes obtained by cell sorting and TNF receptor I- and II-deficient osteoclast precursors
treated with TNF-α showed a significant increase in TRAP-positive cells, whereas cultures without
TNF-α did not show TRAP-positive cells. TNF-α directly affects osteocyte RANKL expression and
increases osteoclastogenesis. However, TNF-α does not enhance M-CSF expression in osteocytes [16].
These results suggest that the constitutive level of M-CSF in osteocytes induces osteoclast formation.

3.9. VEGF

The VEGF family includes six homodimeric proteins: VEGF-A, VEGF-B, VEGF-C, VEGF-D,
VEGF-E, and placenta growth factor. VEGF is the most important mediator regulating vascular
development and angiogenesis [173]. It has been reported that osteoblasts and chondrocytes secrete
VEGF in bone and that VEGF plays a critical role in skeleton development [174]. VEGF derived
from hypertrophic chondrocytes binds to VEGFR1 in monocytes during bone development to
promote monocyte migration and differentiation to osteoclasts [175]. It has been reported that
VEGF binds to VEGFR2 in osteoclasts and promotes osteoclast activity through PI3K/Akt signaling
stimulation [176]. It has also been reported that VEGF can replace M-CSF to promote osteoclast
differentiation and bone resorption in vivo and in vitro [177]. Furthermore, VEGF enhances the bone
resorptive activity of osteoclasts [178]. VEGF-A is activated by advanced glycation end products
via ERK1/2, P38, and STAT3 in patients with diabetes and the elderly through upregulation of
osteocyte-derived IL-6 and secretion [125], and osteocyte apoptosis [125,126]. Chronically elevated
glucose levels and activator of G-protein signaling are linked to osteoporosis and a disruption in bone
cell activity. Several factors from apoptotic osteocytes also induced nearby osteocytes and macrophages
to release VEGF, RANKL, TNF-α, IL-6, and IL-1β [73].

3.10. Sclerostin

SOST and its gene product, Sclerostin, were identified by examining genes involved in
sclerosteosis [179]. Sclerostin is a secreted glycoprotein that is primarily expressed in osteocytes and acts
as a negative regulator of bone homeostasis through inhibition of bone formation by osteoblasts [180].
It has been reported that sclerostin is expressed in not only osteocytes, but also cementocytes,
hypertrophic chondrocytes, osteoclasts, and periodontal ligament cells [181,182]. Sclerostin binds to
LRP5/6 as an antagonist of canonical Wnt signaling, which inhibits bone formation [183]. The sclerostin
antibody Evenity® (Romosozumab) was recently approved for clinical use in the US for the treatment of
postmenopausal women with osteoporosis, who have a high risk of fracture [184]. However, sclerostin
antibody treatment may promote TNF-dependent inflammatory joint destruction in rheumatoid
arthritis patients. Therefore, caution should be taken when using an anti-sclerostin antibody in patients
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with TNF-dependent rheumatism [185]. Sclerostin has been reported to increase RANKL expression
in MLO-Y4 osteocytes. It has been suggested that sclerostin is capable of promoting osteoclast
formation and osteoclast resorptive activity [186]. TNF-α upregulates the expression of expression
in MLO-Y4 cells [98]. In our recent study, TNF-α enhanced the expression of sclerostin in highly
purified primary osteocytes and sclerostin-induced RANKL expression in primary osteocytes enhanced
osteoclast formation [17]. Consistent with these findings, the use of a TNF-α antagonist reduces
RANKL and sclerostin expression in osteocytes of periodontitis rats with diabetes [76]. Sclerostin gene
knockout also attenuates alveolar bone loss in mice with periodontitis [77]. Periodontitis-induced
sclerostin elevates the RANKL/OPG ratio and ERK1/2 in alveolar bone [77]. Antagonizing TNF-α
using infliximab reduces expression of sclerostin and RANKL in osteocytes and the alveolar bone
loss in diabetic rats with periodontitis [76]. Inhibiting SOST expression using the unique design of
zoledronic acid-loaded nanoparticles targeting osteocytes attenuates early breast cancer metastasis
to bone [82]. Similar to other inflammatory cytokines, sclerostin expression is also upregulated in
MLO-Y4 cells in the settings of high glucose and advanced glycation end products [126]. High glucose
levels increase the production of reactive oxygen species, osteocyte apoptosis, and TNF-α that in turn
upregulates sclerostin expression in osteocytes [101]. A high level of sclerostin in chronic kidney
disease patients is associated with the pathogenesis of bone disorders such as an increased fracture risk
and correlates positively with serum 1,25(OH)2D3, phosphorus, and TNF-α, indicating a decrease in the
bone turnover rate [187,188]. Serum RA enhances SOST gene expression in human osteocyte-enriched
cell cultures [28]. Bone loss and an increase in sclerostin expression by osteocytes have been reported
in inflammatory bowel disease [31], spinal cord injury [86], and focal radiotherapy [189].

3.11. IL-10

IL-10 is pleiotropic cytokine that plays an important role in immunoregulation and inflammation.
It is produced by B cells, mast cells, eosinophils, macrophages, and dendritic cells [190]. IL-10 is also
produced from T helper 2 cells and downregulates the expression of cytokines in T helper 1 cells,
such as IL-1, IL-6, and TNF-α [191]. Therefore, IL-10 is recognized as an anti-inflammatory
cytokine. IL-10 inhibits osteoclast formation via a direct action on osteoclast precursors [54,192].
It inhibits proinflammatory cytokine production in inflammatory bone resorption sites [193].
Therefore, IL-10 suppresses osteoclast formation and bone resorption. Spinal cord injury induces bone
loss by elevating the levels of circulating proinflammatory cytokines. In osteocytes, these cytokines
include TNF-α, IL-6, IL-17, IL-10, RANKL, and sclerostin, which lead to osteoclast formation and bone
resorption [86]. Because all of these cytokines except for IL-10 induce osteoclast formation and bone
loss, it is still unclear which role IL-10 plays in spinal cord injury. These conflicting results require
further experimentation.

3.12. IL-17

The IL-17 family of cytokines is well acknowledged for its essential role in inflammation
and immune system regulation. The IL-17 family includes six cytokines: IL-17A (IL-17), IL-17B,
IL-17C, IL-17D, IL-17E (IL-25), and IL-17F [194]. IL-17A, commonly referred to as IL-17, is the most
widely investigated member, owing to its proinflammatory properties. This cytokine is mainly
produced by T helper 17 (Th17) cells in addition to others immune cell types such as γδT cells,
neutrophils, innate lymphoid cells, macrophages, mast cells, natural killer cells, natural killer
T cells, and B cells [195–198]. IL-17 activates multiple downstream signaling cascades, including
mitogen-activated protein kinases (MAPKs) ERK1/2, JNK, P38, NF-κB, STAT3, and Nrf2/keap1 [199–201],
which further induce upregulation of several inflammatory cytokines and chemokines such as
TNF-α, IL-23, IL-1β, IL-6, IL-8, CCL4, CCL20, CXCL1, and CXCL12 [199,202–205]. Th17 cells have
osteoclastogenic effects directly or indirectly through IL-17-mediated stimulation of osteoclast-related
molecules on a wide variety of target cells. IL-17 treatment of CD14+ cells upregulates expression
of osteoclastogenic genes, such as TRAP, c-fms, and RANK, which results in an increased number
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of TRAP+ multinucleated cells [206]. In addition, IL-17 directly promotes osteoclast formation and
activation of CD11b+ cells in the absence of osteoblasts or exogenous sRANKL by increasing TNF-α
and RANKL secretion from IL-7-treated monocytes [207]. It has also been reported that IL-17-induced
RANKL mediates osteoclast formation by fibroblast-like synoviocytes isolated from adjuvant induced
arthritis rats through the IL-17/IL-17RA/STAT-3 signaling cascade [208]. Furthermore, IL-17 enhances
osteoblast-mediated bone resorption by promoting RANKL, M-CSF, and PGE2 activities, which in turn
leads to increased cathepsin K and MMP-9 expression [209]. Osteocytes are believed to play the main
role in regulating bone remodeling by sensing and responding to mechanical stimuli and have been
demonstrated to promote osteoclastogenesis. Recent studies have shown that both IL-17 and IL-17RA
are expressed in MLO-Y4 osteocytes. IL-17 increases the proliferation of MLO-Y4 cells and has no
effect on MLO-Y4 cell apoptosis. MLO-Y4 cells incubated with IL-17 show increased levels of RANKL
and TNF-α mRNA expression and sRANKL secretion. ERK1/2 and STAT3 signaling is inhibited
during IL-17A-induced osteoclastogenesis, while the ephrinA2-EphA2 pathway is activated [210,211].
Moreover, new evidence has demonstrated that IL-17/IL17RA signaling in osteocytes is needed for
parathyroid hormone to exert its regulatory effect on bone. IL-17 serves as an upstream cytokine that
elevates the sensitivity of osteocytes to parathyroid hormone and enhances osteocytic RANKL secretion
induced by parathyroid hormone. In addition, an in vivo study using IL-17RA knockout mice lacking
expression of IL-17RA in DMP1-cre-expressing cells revealed that continuous parathyroid hormone
supplementation does not induce cortical and trabecular bone loss and attenuates the capability of
parathyroid hormone to promote osteocytic RANKL production [212]. Psoriasis is a chronic skin
condition characterized by inflammation and is associated with high serum IL17A [213]. The Wnt
signaling pathway in osteocytes and osteoblasts was blocked in a mouse model of psoriasis, which was
mediated by the action of IL-17A, leading to arrest of bone formation in vivo rather than activation of
osteoclast formation [32]. IL-17 is also expressed during spinal cord injury and leads to bone loss [86].

3.13. Parathyroid Hormone

PTH is a major regulator of extracellular calcium and phosphate homeostasis [214]. PTH has
a dual effect on bone, both anabolic and catabolic. Osteocytes are regarded as a major target for
PTH [215]. In cases of chronic PTH elevation, such as in hyperparathyroidism, there is an increase
in bone turnover tipping towards a net loss of bone mass. Paradoxically, PTH is considered an
anabolic drug in osteoporosis cases when administered only intermittently due to enhanced osteoblast
differentiation and activity, as well as reduced osteoblast apoptosis [27]. In mice lacking PTHr under
the control of the 10-kb Dmp1 promotor, there was a decrease in trabecular bone and osteopenia [216].
PTHr deletion in both the 8- and 10-kb Dmp1 promotor models resulted in decreased RANKL/OPG
ratio, therefore, PTH signaling is important for maintaining RANKL relative levels that drive osteoclast
formation [217]. PTH decreases SOST and sclerostin expression [218,219], providing another mechanism
by which PTH control osteocyte bone remodeling. Activation of PTHr signaling in osteocytes leads
to suppression of sclerostin expression, and activation of Wnt pathway signaling by osteocytes
in vivo [215]. Mice lacking the PTHr receptor expression in osteocytes in a Dmp1 10 kb-Cre mice show
increased sclerostin levels [216]. PTHr signaling controls both bone anabolism and catabolism via
inhibition of sclerostin and activation of RANKL expression, respectively.

4. Conclusions

Osteocytes are the most abundant cell type in bone and outlive other bone cell populations.
They communicate with each other via an extensive network of dendrites, resembling an organ,
which allows osteocytes to moderate the inflammatory process locally and systemically (Figure 1).
Osteocytes act by secreting molecules that influence the osteocyte itself, the immediate vicinity of the
osteocyte, or systemically, behaving as a true endocrine cell. Osteocytes respond to a wide array of
effector cytokines and in turn produce more cytokines to augment or halt inflammation and bone
resorption. Osteocytes were once thought to be dormant, but are now in the spotlight and should
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be considered as a target cell for therapies of bone diseases. Osteocytes perform functions that were
thought to be reserved for other specialized cell types, and future studies may reveal much more
information on the osteocyte-bone dynamic and possibly confirm osteocytes as target cells for drugs of
bone resorption and other systemic inflammatory diseases.

Figure 1. Schema of osteocyte-related cytokines that regulate osteoclast formation and bone resorption.
Several cytokines are induced under pathological conditions. These cytokines directly induce osteoclast
formation and bone resorption, as well as induce expression of osteoclastogenic cytokines in osteocytes
and apoptosis of osteocytes as a result of released osteoclastogenic cytokines. These cytokines induce
osteoclast formation and bone resorption. In the process of bone resorption, apoptosis of osteocytes is
induced, which releases osteoclastogenic cytokines.



Int. J. Mol. Sci. 2020, 21, 5169 13 of 24

Author Contributions: Conceptualization, H.K.; writing—original draft preparation, H.K.; writing—review and
editing, H.K., A.M., F.O., T.N., W.-R.S., J.Q., Y.N., A.P., R.K., and I.M.; and funding acquisition, H.K. and I.M.
All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported in part by JSPS KAKENHI grants from the Japan Society for the Promotion of
Science (No. 19K10397 to HK and No. 18K09862 to IM).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

M-CSF macrophage colony-stimulating factor
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