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Abstract

With the widespread uptake of 2D and 3D single molecule localization microscopy, a large set of 

different data analysis packages have been developed to generate super-resolution images. In a 

large community effort we designed a competition to extensively characterise and rank the 

performance of 2D and 3D single molecule localization microscopy software packages. We 

generated realistic simulated datasets for popular imaging modalities - 2D, astigmatic 3D, biplane 

3D, and double helix 3D - and evaluated 36 participant packages against these data. This provides 

the first broad assessment of 3D single molecule localization microscopy software and provides a 

holistic view of how the latest 2D and 3D single molecule localization software perform in 

realistic conditions. This resource allows researchers to identify optimal analytical software for 

their experiments, allows 3D SMLM software developers to benchmark new software against 

current state of the art, and provides insight into the current limits of the field.

Editor’s Summary

This study reports results from the second community-wide single molecule localization 

microscopy software challenge, which tested over thirty software packages on realistic simulated 

data for multiple popular 3D image acquisition modes as well as 2D localization microscopy.

INTRODUCTION

Image processing software is central to single molecule localization microscopy 

(SMLM1–3). Efficient and automated image processing is essential to extract the super-

resolved positions of individual molecules from thousands of raw microscope images, 

containing millions of blinking fluorescent spots. Improvements in SMLM image processing 

have been crucial in maximizing spatial resolution and reducing imaging time of SMLM for 

compatibly with live cell imaging4–6. If SMLM is to achieve a resolving power approaching 

that of electron microscopy, the analysis software employed needs to be robust, accurate, 

and performing at current algorithmic limits. This can only be achieved through rigorous 

quantification of SMLM software performance.

The first localization microscopy software challenge was carried out in 2013 to benchmark 

2D SMLM software7. But biology is not just a 2D problem, and a key focus of localization 

microscopy is 3D imaging of nanoscale cellular processes8,9. 3D localization microscopy is 

a more difficult image processing problem than 2D SMLM. In addition to finding the center 

of diffraction limited spots to super-resolve lateral position, 3D SMLM algorithms must also 

extract axial information from the image, usually by measuring small changes in the shape 

of a point spread function10 (PSF).

Despite the widespread use of 3D localization microscopy, and challenging nature of 3D 

SMLM image processing, the performance of software for 3D single molecule localization 

microscopy has previously only been assessed for 2-3 software packages at a time, and 

without standard test data or metrics11–14. In the absence of common reference datasets and 

reliable assessment, it is not possible to objectively assess how different software affect final 

image quality, or which algorithmic approaches are most successful. Crucially, end-users 
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cannot determine which 3D SMLM software package and imaging modality is optimal for 

their application.

We therefore ran the first 3D localization microscopy software challenge, to assess the 

performance of 3D SMLM software. We assessed software performance on simulated 

datasets designed for maximum realism, incorporating experimentally derived point spread 

functions, using biologically inspired structures, using signal to noise levels based closely on 

common experimental conditions, and modelling fluorophore photophysics. We assessed 

software performance on synthetic datasets for three popular 3D SMLM modalities: 

astigmatic imaging10, biplane imaging15 and double helix point spread function 

microscopy16. We also assessed astigmatism software performance on two real STORM 

datasets. Furthermore, we ran a second 2D localization microscopy software challenge to 

assess performance of the latest 2D SMLM software.

RESULTS

Competition design

We established a broad committee from the SMLM community, including experimentalists 

and software developers, to define the scope of the challenge, ensure realism of the datasets 

and define analysis metrics. We opened this discussion to all interested parties in an online 

discussion forum17.

In 2016, we ran a first round of the 3D SMLM competition with explicit submission 

deadlines, culminating in a special session at the 6th annual Single Molecule Localization 

Microscopy Symposium (SMLMS 2016). Since then, the challenge has been opened to 

continuously accept new entries. Thirty-six software packages have been entered in the 

competition thus far, including four packages used in commercial software (Table S1, 

Supplementary Note 1). Participation in the competition actually led at least eight teams to 

modify their software to support additional 3D SMLM modalities, showing how competition 

can foster microscopy software development.

Realistic 3D simulations

Testing super-resolution software on experimental data lacks the ground truth information 

required for rigorous quantification of software performance. Therefore, realistic simulated 

datasets are required. A critical challenge to in simulating 3D SMLM data was accurate 

modeling of the experimental microscope PSF for each 3D modality. 3D SMLM inherently 

involves addition of aberrations to the microscope PSF to encode the Z-position of the 

molecule. For the PSF models included in the competition: astigmatic (AS), double helix 

(DH), and biplane (BP), we observed that the PSFs showed complex aberrations not well 

described by simple analytical models (Fig. S1). Even experimental 2D PSFs showed 

significant aberrations away from the focal plane (Fig. S1).

We thus combined experimental 3D PSFs with simulated ground truth by performing 

simulations using PSFs directly derived from experimental calibration data (Fig. 1, 

Methods). We generated simulated datasets over a range of spot densities and signal to noise 
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levels, for simulated microtubule- and endoplasmic reticulum-like structures, using a 4-state 

model for photophysics18 (Methods).

Quantitative performance assessment of 3D software

We assessed software performance by 26 quality metrics (Supplementary Note 2). The 

complete set of summary statistics, axially resolved performance and super-resolved images 

is available for each competition software on the competition website. We built an 

interactive ranking and graphing interface for ranking and plotting software performance by 

any metric, including new user defined metrics (Fig. S2). Detailed individual software 

reports are also available, along with a tool for side-by-side comparison of software (Fig. S2, 

S3).

We focused our primary analysis on metrics directly assessing performance in detecting 

individual molecules. This was based on three key metrics (Methods):

1. Root mean squared localization error (RMSE) between measured molecule 

position and the ground truth.

2. Jaccard index (JAC). This quantifies the fraction of correctly detected molecules 

in a dataset.

3. Efficiency (E). For ranking purposes, we developed a single summary statistic 

for overall evaluation of software performance combining RMSE and Jaccard 

index, which we term the efficiency (Methods).

Choice of ranking metric is discussed in Supplementary Note 2, where several alternative 

ranking metrics are also presented.

Performance of 3D software

Complete rankings for each imaging modality and spot density are presented (Fig. 2), 

together with summary information on all competition software (Supplementary Table 1, 

Supplementary Note 1).

After assembling an overall summary of best performers for each competition category, we 

investigated the performance of software within each imaging modality.

Astigmatic localization microscopy—Astigmatic localization microscopy is probably 

the most popular 3D SMLM modality, reflected by the highest number of software 

submissions in the 3D competition (Fig. 2). For astigmatism, we observed a large spread of 

software performance, even for the most straightforward high SNR, low spot density (LD) 

conditions (Fig. 3, Supplementary Table 2). The best-in-class software (SMAP-201819) has 

significantly better localization error and Jaccard index performance than average (lateral 

RMSE 26 nm best vs 38 nm average, axial RMSE 29 nm best vs 66 nm average, Jaccard 

index 85 % best vs 74 % average). Clearly, the quality of the image reconstruction depends 

strongly on choice of 3D software.

To investigate the reasons for software variation, we inspected plots of software performance 

as a function of axial position in the low density, high SNR dataset for best-in-class and 
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representative middle-range software (Fig. S4A). We observed that a key cause of the spread 

in software performance is variation in software performance away from the focal plane. 

Near the focal plane, most software packages perform well. However, the axial and lateral 

RMSE away from the plane of focus is significantly higher for the best in class software, and 

the Jaccard index is also slightly improved (Fig. S4A). This is also visibly apparent in the 

super-resolved images (Fig. 4A). We observed that best-in-class software had a Z-range (the 

FWHM range of axially resolved software recall, Methods) of 1170 nm, greater than two-

thirds of the simulated range. Outside this range, the recall and Jaccard index dropped 

sharply, probably due the large increase in PSF size and decrease in effective SNR at large 

defocus (Fig. S1).

When we examined results for the low SNR, low density dataset (Fig. 2A, 3F), we found an 

expected two-fold degradation in best-in-class RMSE (lateral RMSE 39 nm, axial RMSE 60 

nm), due to the decrease in image SNR. However, the best-in-class software (SMolPhot20) 

Jaccard index was effectively constant between the low and high SNR datasets (86 % vs 

85 %), although the Z-range did drop at lower SNR (930 nm vs 1120 nm). The best 

astigmatism software packages were thus remarkably good at finding spots at low SNR, 

even away from the focal plane.

We compared best-in-class software performance to Cramer-Rao lower bound (CRLB) 

theoretical limits (Fig. S5, S6, Supplementary Note 3). Close to the focus, best-in-class 

software was near the CRLB (within 25 %), but significant deviations from the CRLB 

occurred > 200 nm (Fig. S6). This could be due to difficulty in distinguishing signal from 

false positives away from focus.

Astigmatic software performance dropped for the challenging high spot density datasets 

(Fig. 2A, 3). For the high SNR high spot density dataset (best software, SMolPhot), 

localization error increased and Jaccard index decreased significantly compared to the low 

density condition (lateral RMSE best HD 51 nm vs best LD 27 nm, axial RMSE best HD 66 

nm vs best LD 29 nm, Jaccard index best HD 66 % vs best LD 85 %). Inspection of the 

super-resolved images (Fig. S7) nevertheless shows qualitatively acceptable results for the 

HD dataset, particularly in the lateral dimension. In some circumstances, the performance 

reduction at 10x higher spot density could be acceptable for 10x faster, potentially live-cell-

compatible, imaging speed. We also observed a large spread of software performance for the 

high density datasets, probably because a significant fraction of the software packages were 

primarily designed for low density conditions.

We observed poor performance for the most challenging low SNR high spot density 

astigmatism dataset (Fig. 2A, 3, S8, best software SMolPhot). Best-in-class localization 

precision and Jaccard index decreased significantly (lateral RMSE 76 nm, axial RMSE 101 

nm, Jaccard index 58 %). These data suggest that low SNR high density 3D astigmatic 

localization microscopy entails significant reduction in image resolution.

Double helix point spread function localization microscopy—We next analyzed 

the performance of the double helix software (Fig. 3D–F, S9A). For the software in the high 

SNR low spot density condition, double helix software showed more uniform performance 
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than astigmatism. Best-in-class software (SMAP-2018) showed only a limited improvement 

compared with average software (Fig. 3D–F, lateral RMSE, 27 nm best vs 37 nm average; 

axial RMSE 21 nm best vs 34 nm average; Jaccard index 77 % best vs 73 % average). In 

general software localization performance was close to the CRLB (Fig. S6). We observed 

that performance of the software away from the focal plane is relatively uniform (Fig. 4A, 

S4A), and best-in-class Z-range at high SNR was large at 1180 nm (Fig. S4A, 

Supplementary Table 2). Double helix imaging may show less software-to-software 

variation and larger Z-range at low spot density than astigmatic imaging because the PSF 

shape and intensity are fairly constant as a function of Z; unlike astigmatic imaging, where 

spot size, shape and intensity vary greatly as a function of Z (Fig. S1).

Double helix software performance decreased significantly for the low spot density low SNR 

condition (best software, SMAP-2018), particularly in terms of best-in-class Jaccard index 

(66 % low SNR vs 77 % high SNR, Fig. 3D–E, S8, S9A). DH Jaccard index was also 

significantly worse than astigmatism results at either high or low SNR (85 % high SNR, 

86 % low SNR). This poor performance in the low SNR DH dataset is likely because the 

large size of the DH PSF spreads emitted photons over a large area, lowering effective image 

SNR. DH PSF designs with reduced Z-range but more compact PSF would likely be less 

sensitive to this issue21.

Double helix software performed poorly on the high spot density datasets at high SNR (best 

software CSpline22), especially in terms of the Jaccard index (Fig. 3D–E, S9A, best lateral 

RMSE 67 nm, best axial RMSE 69 nm, best Jaccard index 46 %). The poor performance at 

high spot density is again probably because the large DH PSF size increases spot density and 

decreases SNR (Fig. S1). DHPSF performance at high spot density and low SNR was also 

not reliable (Fig. 3D–F, S9A, best software, SMAP-2018).

Biplane localization microscopy—Best-in-class biplane software (SMAP-2018), at low 

spot density and for both high and low SNR, delivered the best performance in any modality 

(high SNR: lateral RMSE 12.3 nm, axial RMSE 21.7 nm, Jaccard 87 %), despite a slightly 

decreased image SNR for the biplane simulations (Methods). We observed a large spread in 

software performance in terms of lateral RMSE and Jaccard index, with the best-in-class 

software significantly outperforming the other competitors (Fig. S9B, 2D). At low spot 

density, best-in-class biplane software (SMAP-2018) showed good performance as a 

function of Z, with high Jaccard index over almost the entire Z-range of the simulations, and 

with a Z-range of 1200 nm at high SNR (Fig. S4AC, Supplementary Table 2). The axial 

RMSE was relatively uniform as a function of Z and close to the CRLB limit (Fig. S6). As 

axial and lateral RMSE are both averaged over the entire Z-range, the strong biplane results 

arise from good performance across a large Z-range (Fig. S4).

At high spot density and high SNR, best-in-class biplane software (SMAP-2018) showed 

acceptable performance (Fig. 3D–F, S7, S9B, best lateral RMSE 43 nm, best axial RMSE 49 

nm, best Jaccard index 61 %). Uniquely among the 3D modalities, best-in-class biplane 

software also gave acceptable performance at high spot density and low SNR (Fig. 3D–F, 

S7, S9B, best lateral RMSE 55 nm, best axial RMSE 72 nm, best Jaccard index 61 %, best 

software SMAP-2018).
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Performance of 2D software

We next assessed the performance of 2D SMLM software. For the pseudo-ER 2D dataset at 

low density, best-in-class software (ADCG23) performed substantially better than the class 

average (Fig. S10, S11, lateral RMSE 31 nm vs 36 nm average, Jaccard index 90 % best vs 

72 %). Low density results for the brighter fluorophore microtubules dataset were similar to 

the dimmer pseudo-ER dataset (Fig. S10, S12 best software SMolPhot). For the very high 

density 2D dataset, which had 25x higher spot density than the LD dataset, best-in-class 

software (ADCG) showed excellent performance (Fig. S10, lateral RMSE, 45.5 nm, Jaccard 

index 75%). Best-in-class performance (ADCG) on the dimmer fluorophore data at high 

spot density was also strong (Fig. S10, best lateral RMSE 51 nm, best Jaccard index 70 %).

Algorithms

We identified several classes of algorithms in the participant software (Supplementary Table 

1):

1. Non-iterative software regroups pixels in the local neighborhood of the 

candidates, like interpolation, center of mass (QuickPALM24) or template 

matching (WTM25). These often older algorithms are fast but tend to perform 

poorly.

2. Single emitter fitting software is usually built on a multi-step strategy of 

detection, spot localization, and optional spot rejection. The detection step finds 

bright spots in noisy images on the pixel grid. The selection of candidates is 

usually performed by local maximum search after a denoising filter. Others rely 

on more complex algorithms like the wavelet transform (WaveTracer26). We did 

not observe software ranking to depend noticeably on the choice of optimization 

scheme: least-square, weighted least-square or maximum-likelihood estimator.

3. Multi-emitter fitting software groups clusters of overlapping spots and 

simultaneously fits multiple model PSFs to the data. Typically, fitted spots are 

added to the cluster until a stopping condition is met4,5. This leads to improved 

localization performance at high spot density, at the cost of reduced speed. This 

class of software (e.g., 3D-DAOSTORM11, CSpline, PeakFit, 

ThunderSTORM27) was amongst the top performers in each 2D and 3D 

competition category.

As expected, single- and multiple-emitter fitting methods both performed well on 

low density data. For the 2D challenge, multi-emitter fitting showed a clear 

advantage over single emitter fitting at high density. Surprisingly however, well-

tuned single-emitter fitting algorithms slightly outperformed multi-emitter 

algorithms for 3D high density conditions (e.g., astigmatism, SMolPhot vs 3D-

DAOSTORM). This result merits further investigation as it conflicts with results 

for 2D software, and with naive expectation, which suggests multi-emitter fitting 

should be a better model for data where PSFs overlap significantly.

4. Compressed sensing algorithms. One subset of these algorithms utilize 

deconvolution with sparsity constraints to reconstruct super-resolved 
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images28–30. Although deconvolution approaches can give good results, they are 

limited by the necessary use of a sub-pixel grid; increased localization precision 

requires smaller grid resolution, which must be balanced against increased 

computational time. Recent approaches address this issue by localizing the point 

sources in a gridless manner under some sparsity constraint (ADCG, SMfit, 

SOLAR_STORM, TVSTORM31). This software class consistently gave the 

overall best performance for 2D high-density (ADCG 1st, FALCON30 2nd, SMfit 

3rd).

5. Other approaches. Of the alternative algorithmic approaches used, the 

annihilating filter-based method LEAP32 gave good performance for biplane 

imaging. Recently, we received the first challenge submission from a deep 

learning SMLM software (DECODE); these promising preliminary results are 

available on the competition website.

Post-hoc temporal grouping—Because molecule on-time is stochastically distributed 

across multiple frames, a common post-processing approach to improve localization 

precision is to group molecules detected multiple times in adjacent frames, and average their 

position33 (Supplementary Note 4). Temporal grouping was used by the top performers 

(including SMolPhot, MIATool34 and SMAP-2018), and is visibly apparent as a more 

punctate super-resolved image (Fig. 4A).

Choice of PSF model—Most software used a variant of Gaussian PSF model. A few 

participants designed more accurate PSF models. Either diffraction theory was used 

(MIATool, LEAP) or spline fitting of an analytical function to the experimental PSF was 

adopted (CSpline, SMAP-2018). Although simple Gaussian model PSFs were sufficient to 

obtain best-in-class performance for the 2D and astigmatic modalities (ADCG, PeakFit, 

SMolPhot), top results for the more optically complex biplane and double helix modalities 

were exclusively software using non-Gaussian PSF models (SMAP-2018, CSpline, 

MIATool, LEAP).

Multi-algorithm packages—Several software packages take a Swiss army knife 

approach of integrating multiple optional localization algorithms into one program, to be 

flexible enough to suit various experimental conditions19,27. SMAP-2018 and 

ThunderSTORM achieved strong across-the-board performance supporting this rationale.

Software run time—Software run time is important both for ease of use and real time 

analysis. We did not observe correlation between software localization performance 

(Efficiency) and software run time (Fig. S13A). We thus created an alternative ranking 

metric, Efficiency-Runtime, which gave 25 % weighting to run time (Supplementary Note 

2.7, Fig S13B). Many good performers in the efficiency-only ranking were relatively fast 

and thus retained good ranking (SMAP-2018, SMolPhot, 3D-DAOSTORM). Interestingly, 

two software packages highly optimized for speed gained top ranking in this analysis: 

pSMLM-3D35 and QC-STORM.
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Diagnostic tools for software and algorithm performance—During our analysis, 

we frequently noticed common types of deviation between software results and ground truth 

which were easily diagnosed by visual inspection (Fig. S14, S15). This included not only 

obvious issues of poor localization precision or spot averaging at high density, but also more 

subtle problems such as a common error of structural warping which significantly reduced 

software performance. On the competition website, we provide detailed diagnostic software 

reports including multiple examples of software performance on individual frames to help 

developers to identify algorithm and software limitations and maximize software 

performance (Fig. S3, S16).

Assessment on real STORM data

We investigated the performance of a representative subset of astigmatism software on real 

STORM datasets of well-characterized test structures, microtubules and nuclear pore 

complex, NPC (Fig. 4B, S17). This qualitative assessment was consistent with findings for 

simulated data. No performance difference between single and multi-emitter fitters was 

observed, which is not surprising since spot density in these datasets was low. Relatively 

poor software performance was immediately obvious from visual inspection (QuickPALM). 

Temporal grouping noticeably improved resolution (3D-DAOSTORM, CSpline, MIAtool, 

SMAP-2018). Interestingly, although Gaussian/ Bessel PSF modelling software (3D-

DAOSTORM, MIATool, ThunderSTORM) gave high resolution images, software which 

explicitly modelled the non-ideal experimental PSF via spline fitting (CSpline, SMAP-2018) 

gave noticeably improved resolution of fine structural features such as the top and bottom of 

the NPC (Fig. 4B) or the hollow core of antibody-labelled microtubules (Fig. S17).

DISCUSSION

The strongest conclusion we draw from the 3D localization microscopy challenge is that 

choice of localization software greatly affects the quality of final super-resolution data, even 

at “easy” high SNR, low spot density conditions. Biplane performance was particularly 

dependent on software choice, with only one software (SMAP-2018) achieving near-

Cramér-Rao lower bound performance. Double helix SMLM showed less sensitivity to 

choice of software than biplane, with astigmatic SMLM intermediate between the two. The 

best software in each modality performed close to the Cramer-Rao lower bounds over a wide 

focal range and successfully detected most molecules, even at low signal to noise. Average 

software in all three modalities was significantly worse, with the obtained axial resolution 

being particularly sensitive to software choice. The second major conclusion is that 

localization software that explicitly includes the experimental PSF in the fitting model gives 

a significant performance increase for 3D SMLM. For the more optically complex biplane 

and double helix modalities in particular, the best results were from software that 

incorporated non-Gaussian PSF models (SMAP-2018, CSpline, MIATool). This result also 

highlights the importance of accurate PSF modelling in 3D SMLM simulations. The 

performance advantage of experimental PSF fitting software would not have been 

observable had simulations been generated with a simple Gaussian PSF.
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We can also make an overall comparison between 3D modalities, taking into account 

software performance. We stress that these comparisons apply to microscope PSFs similar to 

those tested here; for example, additional PSF engineering could improve results of any 

modality. Biplane imaging gave the best overall performance of any modality when used 

with best-in-class software (SMAP-2018), but performance depended surprisingly strongly 

on the software used. This requires further investigation; possibly it could be due to the 

inherent complexity of multi-channel imaging. Astigmatic imaging gave a good compromise 

of robustness and performance, particularly in combination with experimental PSF fitting 

software. For the model PSF used here, double helix imaging gave good results at high SNR 

and large Z-range, but performed poorly at low SNR or high emitter density. This is 

probably due to the large DH PSF used here; double helix designs with more compact PSF 

should reduce this issue21.

Of the different algorithm classes, well-tuned single-emitter and multi-emitter fitting 

algorithms (each capable of dealing well with occasional molecule overlap) gave good 

results for low density 3D SMLM. We also found that several software packages for 

astigmatic or biplane imaging gave adequate performance for the challenging case of high 

molecule densities, as long as the image SNR was high. Current software packages gave 

poor performance when molecule density was high and image SNR was low. These results 

indicate that with current algorithms high density 3D SMLM performance is mediocre at 

high SNR and poor at low SNR. Surprisingly, multi-emitter fitting did not show significant 

improvement over well-tuned single emitter fitting for the 3D high-density datasets; this may 

indicate that potential for improvement remains in this category. Many software packages 

did not apply temporal grouping33, resulting in reduced software performance. Since 

temporal grouping is a simple step for maximum precision, we urge all software developers 

to integrate this approach into their software as an optional final step in the localization 

process.

The second 2D localization microscopy challenge provided the opportunity to reassess the 

state of the field. The performance of best-in-class 2D software over a range of conditions, at 

both high and low spot density, was very strong. Interestingly, the top three performers in the 

2D high density condition were all compressed sensing algorithms (ADCG, FALCON, 

SMfit). In low density 2D conditions, the best single-emitter, multi-emitter and compressed 

sensing algorithms all gave comparable, excellent, performance. We speculate that 

performance in the low spot density 2D category might now be near optimal levels.

We look forward to new competition submissions using approaches not yet represented in 

the software challenge. In addition to the elegant HAWK preprocessing technique36, deep-

learning-based SMLM algorithms show great promise37–40, especially for modelling 

complex point spread functions38 or analyzing high emitter density data40. However, caution 

is required about making direct comparisons between algorithms which use strong structural 

priors to increase performance37, and algorithms which do not, as the latter may be more 

robust when presented with novel samples.

In future, we plan to extend the SMLM challenge into an open platform with a fully 

automated assessment process, and where new competition simulations and assessment 
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metrics can easily be created and contributed by the community. It will be important to 

account for new technologies and developments in SMLM, such as scientific CMOS 

cameras6, in future simulations. It would also be exciting to adapt the tools developed in the 

SMLM challenge to other classes of super-resolution microscopy, such as fluorescence-

fluctuation-based super-resolution microscopies (e.g., 3B41, SOFI42, SRRF43) and structured 

illumination microscopy44.

The results of this competition show that the best 2D and 3D localization microscopy 

software have formidable algorithmic performance. However, a problem that often hinders 

adoption of new SMLM algorithms is that only a small subset of algorithms is packaged in, 

or compatible with fast, well-maintained, user-friendly software packages, which include all 

stages of the SMLM data analysis pipeline – analysis, visualization and quantification. This 

remains a key outstanding challenge for the field.

Both the 3D and 2D localization microscopy software challenges remain open and 

continuously updated on the competition website. This continuously evolving analysis of 

SMLM software performance provides software developers with a robust means of 

benchmarking new algorithms, and helps to ensure that super-resolution microscopists use 

software that gets the best out of their hard-won data.

METHODS

1. CHALLENGE ORGANIZATION

We first ran the 3D SMLM software challenge as a time limited competition, with a results 

session hosted as a special session of the 6th Annual Single Molecule Localization 

Microscopy Symposium in August 2016. The competition has now been converted to a 

permanent software challenge accepting new submissions. Special thanks is due to the 

software SMAP and 3D-WTM25 that participated in all eight categories (density x 

modality). The current list of participants is at: http://bigwww.epfl.ch/smlm/challenge2016/

index.html?p=participants

All datasets, methods, participations, and results of the challenge 2016 made available at 

http://bigwww.epfl.ch/smlm/challenge2016/. Software for simulation and analysis is hosted 

on the competition GitHub repository: https://github.com/SMLM-Challenge/Challenge2016/

A Life Sciences Reporting Summary is associated with this manuscript on the Nature 

Methods website.

2. LOCALIZATION MICROSCOPY SIMULATIONS

2.1. Structure, noise levels and spot densities

Structure.: The synthetic datasets were designed to be similar to images derived from real 

cellular structures . We defined mathematical models for cellular structures that imitate 

cytoskeletal filaments such as microtubules and larger tubular structures such as the 

endoplasmic reticulum or mitochondria (Fig. S18A). These structures have a tubular shape 

in the 3D space. For the 3D competition, we simulated synthetic 25 nm diameter 

microtubules (Fig. 1). Psuedo-microtubules are defined with their central axis elongating in 
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a 3D space having an average outer diameter of 25 nm with an inner, hollow tube of 15 nm 

diameter. For the 2D competition, in addition to synthetic microtubules (MT), we simulated 

larger diameter 150 nm cylinders, called pseudo-endoplasmic reticulum (pseudo-ER), 

designed to approximate larger cellular structures such as mitochondria and the endoplasmic 

reticulum (ER) (Fig. 1).

The underlying sample structure is formalized in a continuous space which allows rendering 

of digital images at any scale, from very high resolution (up to 1 nm/pixel) to low resolution 

(camera resolution: 100 nm/ pixel). The continuous-domain 3D curve is represented by 

means of a polynomial spline. The sample is imaged in a 6.4 × 6.4 μm2 field of view, and the 

center lines of the microtubules have limited variation along the z (vertical) axis, i.e., less 

than 1.5 μm. The fluorescent markers are uniform randomly distributed over the structure 

according to the required density. The photon emission rate of each fluorophore is controlled 

by a photo-activation model (see below). The exact locations of all fluorophores are stored at 

high precision floating-point numbers expressed in nanometers. This ground-truth file is 

used for conducting objective evaluations without human bias.

Noise levels.: We generated data at three different signal-to-noise ratio (SNR) levels, based 

on real signal to noise levels encountered under common SMLM experimental scenarios: 

N1, fixed cells antibody labelled with organic dye10, high signal, medium background; N2, 
fluorescent protein labelling1, low signal, low background; and N3, live cell affinity dye 

labelling45–46, high signal, high background.

Spot density.: As performance at different density of active emitters is a key challenge for 

SMLM software, we generated 3D competition datasets at both sparse emitter density (0.25 

mol. [molecule] μm−2), 3D LD and high emitter density (2.5 mol. μm−2), 3D HD. For the 2D 

competition, we generated a sparse (0.5 mol. μm−2), 2D LD, and very high density dataset (5 

mol. μm−2), 2D HD.

Together, these simulated conditions closely resemble experimental 3D and 2D data under a 

range of challenging conditions of SNR, spot density, axial thickness and structure 

summarized in Supplementary Table 3. In addition, we provide simulated z-stacks of bright 

beads for software calibration. The competition datasets (Supplementary Table 4) are 

available online on the competition website.

2.2. Photophysics activation model—We incorporated a 4-state model of 

fluorophore photophysics18, including a transient dark state (dye blinking) and a bleaching 

pathway (Fig. S18C). Given a list of source locations from the structure simulator, 

fluorophore blinking was simulated by a 4-states Markov chain model. The states are ON, 

OFF, BLEACH, DARK and the transitions are Poisson distributed (Fig. S18C), except for 

the OFF to ON transitions which follow a uniform random distribution to reflect that in 

typical experimental conditions, constant imaging density is maintained by tuning the 

photoactivation rate during the experiment. All switching is calculated at sub-frame 

resolution and then total fluorophore on-time was integrated over each frame.

Due to two decay paths, the actual mean lifetime of the state ON is
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TLIFETIME = 1
1

TON
+ 1

TBLEACH

Switching rates were chosen to approximate photoactivatable fluorescent proteins TON=3 

frames, TDARK=2.5 frames, and TBLEACH=1.5 frames.

Fractional fluorophore ON-times per frame (between 0 and 1) were multiplied by the mean 

flux of photon emission. The flux of photons expressed in photons/seconds was given by the 

relation

F = ∅ P σ
e

Φ is the quantum yield of the dye, P is power of the laser in W/cm2, e = h c / λ is the energy 

of one photon, σ = 1000 ln(10) ε / NA is the absorption cross section in cm2 and ε is the 

molar extinction coefficient (EC) or absorptivity in cm2/mol which is a characteristic of a 

given fluorophore. The laser power was Gaussian distributed over the field of view. At the 

end of this process a list of XY positions, on-frames and (noise-free) intensities for all 

activated fluorophores was obtained.

Analysis of the resulting simulated photon counting distribution is presented in 

Supplementary Note 5 and Figure S23.

2.3. Experimental Point Spread Function—Model PSFs, stored as high resolution 

look up tables, were derived from experimentally measured PSFs. Although the algorithmic 

approach is distinct, the concept of accurately modelling the experimental PSF based on 

calibration data bears relation to the PSF phase retrieval approach previously employed by 

Flanser and coworkers47.

Images of fluorescent beads were recorded for each modality (Supplementary Table 5). 

Signal to noise ratio of recorded PSFs was maximized in all cases by maximizing exposure 

time and averaging over several frames to increase dynamic range.

To acquire experimental PSFs, we took 100 nm Tetraspek beads (Invitrogen) adsorbed to 

#1.5 (170 μm thick) coverglass, imaged in water. The excitation wavelength was between 

640 nm and 647 nm, and a Cy5 emission filter was used. Data acquisition parameters for 

each modality are listed in Supplementary Table 5.

The experimental PSFs used to generate the simulated data are available on the competition 

website. As the goal of this study was to compare software obtained on typical SMLM 

microscopes, we deliberately chose PSFs representative of common implementations of 

each 3D modality. However, additional PSF engineering should improve results of any 

specific modality, for example adaptive-optics corrected astigmatism48, or reduced Z-range, 

higher SNR DH-PSF designs21.
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The experimental point spread functions used here were measured for fluorescent beads 

adsorbed to the microscope cover slip, and should be appropriate simulations of SMLM data 

acquired within a few microns of the cover slip. Performing SMLM imaging at greater 

depths, e.g., in tissue or even deep within single cells, with oil immersion objectives will 

cause spherical aberration due to refractive index mismatch49. In order to accurately 

simulate SMLM data acquired at depth, the experimental PSFs could be acquired at a 

matching depth, by embedding fluorescent beads in agarose. Alternatively, the PSF for beads 

at the coverslip could be measured and explicitly calculated via phase retrieval, and then 

convolved with the appropriate degree of spherical aberration49.

2.4. Simulation PSF construction—For each modality, 3-6 beads were selected 

within a small (< 32 μm) region, to minimize PSF variation due to spherical aberration. 

Images for each selected bead were interpolated in XY to a pixel size of 10 nm. Beads were 

then coaligned by cross-correlation on the in-focus frame. Coaligned beads were averaged in 

XY to minimize pixel quantization artefacts and to increase SNR. Where necessary, Z-stacks 

were interpolated to a Z-step size of 10 nm. A central Z-range of 1.5 μm was selected that 

represents 151 optical planes with a Z-step of 10 nm. The Z-range covers −750 nm to +750 

nm. The plane of best focus was chosen as the simulation 0 nm plane. Each model PSF was 

normalized such that the total intensity of the PSF in the in-focus frame within a diameter of 

3 FWHM from the PSF center was equal to 1.

For the DH PSF, the transmission of the combined phase mask system was measured as 

96 %, which was approximated as 100 % brightness relative to the 2D and astigmatic PSFs.

In biplane super-resolution microscopy, emitted fluorescence is split into two simultaneously 

imaged channels, with a small (500-1000 nm) defocus introduced between the two 

channels15. As the small defocus should introduce minimal additional aberration into an 

optical system, we semi-synthetically constructed a realistic biplane PSF from the 

experimental 2D PSF. The two defocused PSFs were constructed by duplicating the 2D PSF 

and offsetting it by −250 nm and 250 nm for each Z-plane.

This yielded five high SNR model PSFs with an isotropic voxel size of 10x10x10 nm3.

The ground truth XY=0 was defined as the image center of mass of the in-focus frame of the 

model PSF, and Z=0 was defined as the in-focus frame. Accounts for shifts in the fitted XY 

center of the model PSF by localization software due to systematic offsets and Z-dependent 

variation of the model PSF center of mass are dealt with below (wobble correction).

2.5. Noise model—A constant mean autofluorescent background was added to the 

noise-free simulated images, and these images were then fed through the noise model 

representing Poisson distributed fluorescence emission recorded on a high quantum 

efficiency back-illuminated EMCCD50,51.

The proposed noise model assumed as main contributions to the stochastic noise:
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• σS, the shot noise produced by the fluorescence background and signal and the 

spurious charge. Shot noise can be derived from the second moment of the 

Poisson distribution

• σR, the read noise of EMCCD camera, which is described by second moment of 

the Gaussian distribution

• σEM, the electron multiplication noise introduced by the gain process, which is 

described by the second moment of the Gamma distribution51.

We assumed as camera parameters the ones specified for the Photometrics Evolve Delta 512 

EMCCD camera (values for other manufacturer’s EMCCDs are similar):

• QE = 0.9, Evolve quantum efficiency at 700 nm absorption wavelength.

• σR= 74.4 electrons, manufacturer measured root mean square noise for Evolve 

512 camera

• c = 0.002 electrons, manufacturer quoted spurious charge (clock induced charge 

only, dark counts negligible)

• EMgain = 300

• eadu = 45 electron per analog to digital unit (ADU), analog to digital conversion 

factor

• G = 0.9*300/45 = 6, total system gain

• BL = 100 ADU

The final simulated photon electrons will thus be given by:

nie = 𝒫(QE ⋅ nphotIn + c)

noe = Γ(nie, EMgain) + 𝒢(0, σR)

which leads to the final pixel counts:

ADUout = min
noe − noemod eADU

eperadu
+ BL, 65535

2.6. Depth-dependent lateral distortion/ wobble—As the PSF models are 

experimentally derived, the 3D estimated localizations exhibit a depth-dependent lateral 

distortion, here called wobble. This optical distortion is due to a combination of a systematic 

offset (arbitrary definition of PSF center) and optical aberrations52. In order to compare 

estimated and true localizations, we correct this effect during the assessment (Methods 3.1).

2.7 Comparison of software results between different modalities.—The 

intensities of the PSF in each imaging modality were normalized to facilitate comparison of 
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results between different modalities. Software results between 2D, 3D AS and 3D DH 

modalities are expected to be directly comparable.

For the biplane model PSF, as the emitted fluorescence is split into two channels, the 

intensity in each of the two simulated biplane channels was additionally reduced by 50 %. 

We note that a simulation bug meant that the fluorescence background was not reduced by 

50 % as intended, leading to artificially high background for the biplane simulation. I.e., the 

background in each of the two biplane channels is the same as in the single channel of the 

other modalities. Flowever, due to the low background level in the 3D simulations, the effect 

on image SNR and thus localization error is small (see Fig. S5, S6), less than 5 nm near the 

plane of focus. Therefore, as long as the small drop in image SNR is taken into account, 

approximate comparisons of the biplane data to the other modalities can still be made.

3. SOFTWARE ASSESSMENT

3.1 Protocol—Each localization file submitted by the participants was manually checked 

for erroneous systematic errors in the definition of the dataset coordinate system, such as 

offsets, XY axis flips or clear scaling errors. Datasets were then programmatically 

standardized into a consistent output format. All modifications are publicly available. If 

required, the modifications consisted of columns reordering, reversing axes, XY axis swap, 

and shifting the lateral positions by a half camera pixel.

The assessment pipeline includes three main parts: localization processing, the pairing 

between true and estimated localization and the metrics calculations. The first one depends 

on the assessment settings. There are two switchable properties: photon thresholding and 

wobble correction. Their combinations yield four different assessment settings. Up to 64 

assessment runs per software were possible (i.e., 4 modalities, 4 datasets per modality). For 

any setting, we excluded the fluorophores within a lateral distance of 450 nm from the 

border. This value corresponds to the radius of the largest PSF, i.e., Double Helix. The 

activations too close from the border are more difficult to localize and could bias the results.

The pairing between true and estimated localizations was performed frame by frame. For 

every frame, we identified the localizations that are close enough to a ground-truth position 

as true-positives (TP), the spurious localizations as false-positives (FP) and the undetected 

molecules as false-negatives (FN). The procedure matches two sets of localizations. We 

deployed the presorted nearest-neighbor search for its efficiency, with a linking threshold of 

250 nm. The results are effectively similar to the computationally intensive Hungarian 

algorithm7.

Photon thresholding: A photon threshold was required primarily due to the use of a 

realistic fluorophore blinking model. Since a fluorophore could activate/ bleach at any point 

in a simulated frame, this led to many frames containing very dim, undetectable 

localizations, e.g., where a molecule had been active for one or more frames previously, and 

then bleached during the first 5 % of a frame. These fractional localizations should also be 

present but practically undetectable in an experimental dataset.
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We decided to focus the software analysis on the localizations where the molecule was 

active for the majority of a frame, to be consistent with experimental expectations. 

Therefore, we implemented a photon threshold means where we kept the 75% brightest 

ground truth fluorophore activations. Because this was performed after the pairing step, 

observed localizations that were paired to discarded ground truth activations were also 

removed from the metric calculations.

Wobble correction: The centroid of experimental point spread functions shifts laterally by 

as much as 50 nm, as a function of axial position10,52. This is most often ignored by 

localization software, and instead corrected post-hoc by reference to a calibration curve37. 

Since our simulated PSF is experimentally derived, it was necessary to correct for these 

artefactual shifts between the observed localizations and ground truth, as part of the 

assessment process. This correction was performed using calibration data uploaded by 

competitors, similar to the correction typically performed on experimental data52.

Three scenarios were proposed to the participants: no correction was applied during the 

assessment; the correction was based on a file provided by the participant itself or the 

correction was calculated by ourselves. The latter nevertheless requires the participant to 

localize a stack of beads we provided. Since the true positions of the beads are known, the 

difference between the estimated and true positions could be calculated and averaged. It thus 

yields the values for wobble correction.

In certain specific cases (identified on the competition website), at the request of authors, we 

did not apply this correction, for example because the software explicitly considered the 

whole 3D PSF during fitting and was thus immune to this lateral shift artefact. For accurate 

results, application of lateral shift correction is critical for analysis of localization 

microscopy simulations using experimentally derived PSFs, as can be seen by comparison of 

typical software results with and without wobble correction (Fig. S19).

3.2 Metrics—We calculated a large number of analysis metrics to quantify the 

performance of software relative to ground truth. These are discussed in detail in 

Supplementary Note 2. The metrics are split into two categories: localization based and 

image based metrics.

Localization based metrics.: This directly relies on the localizations positions and notably 

includes the Recall, the Precision, the Jaccard Index, the RMSE (axial and lateral) and the 

consolidated Z-range. For the calculation of average software performance (Fig. 3D–F, S10) 

outlier software with an efficiency less than eff=0 (eff=−30 for 3D high density dataset) 
were excluded from the measurement. The key metrics of assessment were:

1. Root mean squared localization error (RMSE). The foremost consideration for 

localization software is how accurately it finds the position of labelled 

molecules. This was quantified as the root mean squared difference between the 

measured molecule position, xi
s, and the ground truth position, xi

t, in both the 

lateral (XY) and axial (Z) dimensions.
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RMSE lateral (RMSE Lateral) [nm]: 1
TP∑i ∈ S ∩ T (xi

s − xi
t)2 + (yi

s − yi
t)2 .

RMSE axial (RMSE Axial) [nm]: 1
TP∑i ∈ S ∩ T (Zi

s − Zi
t)2 .

2. Jaccard index (JAC, %). In addition to localization precision, SMLM image 

resolution depends critically on number of localized molecules53, so it is crucial 

for SMLM software to accurately detect a large fraction of molecules in a 

dataset, and minimize false localizations. For every frame, we identified the 

localizations that are close enough to a ground-truth position as true-positives 

(TP), the spurious localizations as false-positives (FP) and the undetected 

molecules as false-negatives (FN). We then computed the Jaccard index (JAC, 

%), which measures the fraction of correctly detected molecules in a dataset,

JAC = 100 TP
TP + FP + FN

3. Efficiency (E). For ranking purposes, we developed a single summary statistic 

for overall evaluation of software performance, which we term the efficiency (E), 
encapsulating both the software’s ability to find molecules, measured by the 

Jaccard index, and the software’s ability to precisely localize molecules.

E = 100 − (100 − JAC)2 + ∝2 RMSE2

The trade-off between these two metrics is controlled by a parameter α. In a 

retrospective analysis, we chose α = 1 nm −1 for the lateral efficiency Elat, α = 

0.5 nm −1 for the axial efficiency Eax, based on the linear regression slope 

between the localization errors and Jaccard index (Fig. S20J–K). Using this 

definition, an average software performance has an efficiency in the range 25-75, 

a perfect software would have the maximum efficiency of 100. Overall 3D 

efficiency was calculated as the average of lateral and axial efficiencies. Overall 

software rankings (Fig. 2) were calculated as the sum of rankings for high and 

low SNR datasets.

Image based metrics.: The image based metrics are computed from a rendered image and 

includes the Signal-to-Noise Ratio (SNR) and the Fourier Ring / Shell Correlation (FRC/

FSC). To render the image, we added the contribution of each localized molecule at the 

corresponding pixels. A contribution takes the form of a 3D additive Gaussian with a Full-

Width Half Maximum (FWHM) of 20 nm. A complete list of all computed metrics is 

presented in the Supplementary Note 2.

We also calculated localization based metric results as a function of axial position. We 

proceeded by considering a subset of activations lying within an interval of axial positions 
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(i.e., from the true localizations). Then, most of the metrics (e.g., Recall) are locally 

computed. This yields a curve providing information on the depth performance of each 

software / modality.

In order to summarize software axial performance, we analyzed how the recall varied as a 

function of Z. A typical recall versus axial position curve (Fig. S4) will drop at positions far 

from the focal plane, i.e., where software can no longer detect spots to defocus. We first 

smoothed the curve using a sliding window. Then we computed the software Z-range, 

defined as the full width half maximal Recall of the smoothed curve (Fig. S21). This 

quantity is visually intuitive and useful for discussion of the recall performance if considered 

alongside a plot of recall vs axial position. However, because FHWM recall depends on the 

maximal recall, ranking based on this procedure would promote a software which poorly 

performed everywhere (i.e., flat curve), whereas a software which performed well in the 

focal plane but less well outside would obtain a worse FWHM recall. This observation leads 

us to produce a so-called consolidated Z-range, by multiplying the Z-range value by the 

maximal Recall, which should provide a robust metric that avoids the previous case scenario.

Principal component analysis.: In order to analyse the relationship between analysis 

metrics we computed the covariance matrix between each metric (Fig. S22A) and the 

principal component analysis (PCA) on the metrics (Fig. S22B–D). Each metric was 

standardized before applying the covariance and the PCA. For convenience, we took the 

additive inverse of the metrics for which lower values are best (i.e., FP, FN, RMSE, FRC, 

FSC).

Summary statistics and detailed results for each software are available on the competition 

website (http://bigwww.epfl.ch/smlm/challenge2016/index.html?p=results), which also 

includes a tool for side-by-side comparison of the results of multiple software packages.

3.3 Baseline Localization Software—We developed a minimalist Java tool software 

that performs localizations of bright emitters on the 4 modalities of the challenge 2016: 2D, 

Astigmatism, Double-Helix, and Biplane. This SMLM_BaselineLocalization software is 

only designed to establish the performance baseline for the SMLM challenge. It has 

intentionally limited lines of code and relies only on few threshold parameters to localize 

particles. It has basic calibration tool that has to run on a z-stack of beads to find the linear 

f(x) relation between the axial position Z and the shape of the bead.

• Astigmatism: Z = f(WX − WY), where WX and WY are respectively an 

estimation of the size in X and Y.

• Double-Helix: Z = f(θ), where θ is the angle formed the pairing of two close 

points.

• Biplane: Z = f (Wleft − Wright), where Wleft and Wright are respectively an 

estimation of the size of the spots in left and the right plane.

The Java code is available: https://github.com/SMLM-Challenge/Challenge2016
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4 REAL DATA ASSESSMENT

Astigmatism software was tested on previously published real 3D STORM datasets of 

microtubules and nuclear pore complex19. The tubulin dataset corresponds to the raw data 

for Fig. S6 in Ref 19, and the nuclear pore complex dataset corresponds to raw data for Fig. 

S9 in Ref 19. Key acquisition parameters for data analysis are summarized on the 

competition website.

Data were analyzed by software authors or expert users, and submitted via the competition 

website. All data were drift corrected via cross-correlation. STORM images were rendered 

with a constant Gaussian blur with 3 nm standard deviation and saturated by 0.1 – 0.5 %. 

The complete scripts used for assessment and image rendering are available on the 

competition GitHub page.

5 DATA AVAILABILITY

5.1 Data availability statement—Simulated competition datasets are available at 

http://bigwww.epfl.ch/smlm/challenge2016/. together with the parameters used to generate 

the data. The ground truth list of simulated molecule positions for each competition dataset 

remains secret in order to allow the software challenge to remain continuously open to new 

submissions. However, ground truth data are available for the simulated training datasets.

Raw data for this study are uploaded on the Nature Methods website. The data 

corresponding to specific figures are listed with the Supplementary information.

5.2 Software availability statement—All software is available at https://github.com/

SMLM-Challenge/Challenge2016

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Summary of SMLM challenge simulations.
A. 3D rendering of simulated microtubules and endoplasmic reticulum samples. B. Key 
simulation steps. The structure is constructed from 3D tubes continuously defined by three 

B-spline functions in the volume of interest. Membranes of the tubes are densely populated 

with possible positions. Fluorophores follow a 4-state photophysics model. Activations of a 

given frame are convolved with the experimental PSF and shot & camera noise is added. C. 
Summary of all 16 challenge datasets, calibration data and experimental PSFs. Left column: 

orthogonal projections of the experimentally-derived PSF. Right column: exemplar frame for 
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each competition dataset, characterized by structure (endoplasmic reticulum, E; 

microtubules, MT), modality (2D; astigmatism, AS; double helix, DH; biplane, BP), density 

(low density, LD; high density, HD) and SNR (noise level N1, N2, N3). BP Ch. 1,2, 
indicates two biplane channels with a relative focal shift of 500 nm.
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Figure 2: Leaderboards for each competition modality, at low and high spot density.
Ranking is based on software Efficiency, which combines Jaccard index (fraction of 

successfully detected molecules) and localization precision (RMSE, root mean square error, 

lateral & axial). Orange, contribution of high SNR dataset; blue, contribution of low SNR 

dataset.
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Figure 3: Comparison of 3D software performance.
Gold stars indicate top performers for each dataset. Dashed lines in top, middle panels 

indicate overall efficiency (higher is better). A-C. Localization error and spot detection 

performance of all astigmatic SMLM software. D-E. Average (colored marker with s.d. error 

bars, sample sizes for each category indicated in Supplementary Table 2) and best-in-class 

(colored marker with gold star) software performance for all competition modalities. AS, 
astigmatism; DH, double helix; BP, biplane.
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Figure 4: Super-resolved images of software results for simulated and real competition datasets.
A. Xy and xz projection images of 3D competition datasets for representative software. Top: 
best-in-class software in each modality, for high SNR low density dataset. Bottom: 

representative average software. Left: xy and xz overview images for winning AS software. 

Middle: xy and xz zoom images of boxed regions in left panel, for winning and mid-range 

software, each modality. Right: xy and xz line profiles of winning and mid-range software 

for each modality, for boxed regions in middle panel. Image colors: red, ground truth; green, 

software results. Line profiles: GT, ground truth, black; AS, astigmatism, red; BP, biplane, 
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blue; DH, double helix, green. Panel key: Software-name Dataset-ranking°. Scale bar: full 

image, 1 μm, magnified regions, 100 nm. B. Astigmatism software results for real nuclear 
pore complex 3D STORM data. Top: Super-resolved overview image in xy for 3D-

DAOSTORM software, color coded for depth. Bottom: xz orthoslices along 600 nm wide 

dashed region indicated in top panel for 8 astigmatism software packages. Scale bars, 500 

nm.
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