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Protein stability is a requisite for most biotechnological and medical applications of proteins. As natural
proteins tend to suffer from a low conformational stability ex vivo, great efforts have been devoted
toward increasing their stability through rational design and engineering of appropriate mutations.
Unfortunately, even the best currently used predictors fail to compute the stability of protein variants
with sufficient accuracy and their usefulness as tools to guide the rational stabilisation of proteins is lim-
ited. We present here Protposer, a protein stabilising tool based on a different approach. Instead of quan-
tifying changes in stability, Protposer uses structure- and sequence-based screening modules to
nominate candidate mutations for subsequent evaluation by a logistic regression model, carefully trained
to avoid overfitting. Thus, Protposer analyses PDB files in search for stabilization opportunities and pro-
vides a ranked list of promising mutations with their estimated success rates (eSR), their probabilities of
being stabilising by at least 0.5 kcal/mol. The agreement between eSRs and actual positive predictive val-
ues (PPV) on external datasets of mutations is excellent. When Protposer is used with its Optimal kappa
selection threshold, its PPV is above 0.7. Even with less stringent thresholds, Protposer largely outper-
forms FoldX, Rosetta and PoPMusiC. Indicating the PDB file of the protein suffices to obtain a ranked list
of mutations, their eSRs and hints on the likely source of the stabilization expected. Protposer is a dis-
tinct, straightforward and highly successful tool to design protein stabilising mutations, and it is freely
available for academic use at http://webapps.bifi.es/the-protposer.

� 2022 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The beginning of protein design was marked by the application
of site-directed mutagenesis to the modification of protein active
sites, which paved the way for many subsequent biotechnological
and biomedical advances [1–6]. One of the main goals in protein
design is to gain a deep understanding of protein stability and
how it can be modulated by single amino acid variations, as this
is the key to efficient protein production. If we manage to design
protein stabilising mutations in an easy, quick and accurate man-
ner (i.e. with a high positive predictive value (PPV)), the biotechno-
logical and biomedical use of proteins as analytic, synthetic, and
therapeutic tools will be tremendously boosted. Protein-based
biosensors [7–11] are widely used in medicine by practitioners
and patients. Their usefulness in developing countries can greatly
benefit from the availability of more stable proteins, permitting
easier storage conditions and longer shelf lives. The generalization
of biological catalysis in food, fuel, pharmaceutical or more con-
ventional chemical production industries is slowed down by the
low stability of proteins in organic solvents, high temperatures or
extreme pH conditions sometimes required. Availability of more
stable enzymes will translate into higher production rates and
reduced replacement costs [12–16]. Moreover, protein-based bio-
logical products [17–21], such as those used in cancer
immunotherapy [22–23], provide new treatments that are revolu-
tionizing and personalizing medicine. As with other protein prod-
ucts, their production, transport, long-term storage and ease of
administration can substantially benefit from protein stabilization.

The biopharmaceutical market (vaccines excluded) is estimated
at U.S.$208 billion by the end of 2020. [24]. While the economic
and social impact of being able to design protein-stabilizing muta-
tions is clear and many different approaches have been suggested
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for this purpose, the present performance of software implement-
ing those approaches provides considerable room for improvement
[25]. Modarres et al. reviewed 22 standalone calculation tools
described as capable of predicting stabilizing mutations [16]. Those
predictors were based on analysis of the protein sequence and/or
structure and typically used machine learning or potential energy
functions, although a few ones used fuzzy queries (FQ-STAB
[26]), graphs (mCSM [27]), or Normal Mode Analysis (ENCoM
[28]). It seems that even structure-based predictors, which are usu-
ally more accurate than sequence-based ones [16], present serious
limitations for calculating the precise change in stability a given
mutation will bring about (change in unfolding free energy:
DDG). Even for the simpler task of classifying mutations as either
stabilizing or destabilizing, stability predictors suffer from a very
limited accuracy. A comparative study by Khan and Vihinen [29]
indicated that the accuracy of the best three predictors (I-Mutant
[30], D-mutant [31] and FoldX [32]) among those compared was
only around 60%. In another systematic evaluation of mutation sta-
bility predictors, Potapov et al. [33] showed that combining differ-
ent methods could not significantly enhance the accuracy.

The DDG calculated by structure-based predictors should be
very useful for deciding whether to implement a particular muta-
tion in order to stabilise a biotechnologically relevant protein.
Unfortunately, even the best predictors calculate DDG values with
average unsigned errors over 1 kcal/mol [33] (i.e., in average, the
predicted DDG value is over 1 kcal/mol away from the experimen-
tal value). Furthermore, the correlation coefficients between exper-
imental and predicted DDG values are below 0.6 [33], so the
experimental and predicted data do not correlate well and, there-
fore, the average unsigned errors cannot be due to the predicted
values being a multiple of the experimental ones. Additionally,
the self-consistency biases reported are over 0.7 kcal/mol [34],
showing that the thermodynamic assumption that DDGA?B = -
DDGB?A is not being fulfilled by predictors. A recent review by
Pucci et al. [35] covering from very complex deep learning algo-
rithms (e.g., ThermoNet [36]) to very simple three-parameter pre-
dictions (e.g., SimBa [37]) confirms that the average unsigned
errors of the predictors have been stagnated at around that value
of 1 kcal/mol for over 15 years. The fact that simple models may
perform as well as very complex ones has been discussed by
Semenova et al. [38], whose recommendations for improving pre-
dictors stagnated around a certain predictive value align with find-
ing simple rational models that, at least, may provide a better
understanding of the problem.

Additional limitations of structure-based predictors that calcu-
late DDG values are that they usually evaluate mutations previ-
ously defined by the user and do not provide much insight on
the physical cause of the predicted stabilization. For researchers
unfamiliar with structural computational biophysics, assuming
the task of conceiving potentially stabilizing mutations so that a
specialized software analyses them and eventually confirms their
usefulness could be troublesome. On the other hand, trying to cir-
cumvent the problem by asking the software to compute all possi-
ble mutations (19 times the length of the sequence) will set them
to struggle with a large amount of data. Some programs, such as
PoPMuSiC [39–41], tackle this problem by making a map of muta-
tion hot spots, based on the DDG values calculated for all possible
mutations of each residue. However, interpretation of a hot spot
map may not be straightforward, as not all mutations in a hot spot
will be equally stabilizing.

Fortunately, thermodynamic analysis of thousands of point
mutations generated by protein engineers over decades has pro-
vided a wealth of data allowing biotechnologists to identify
protein-stabilizing strategies. While they are far from infallible,
the chances of stabilizing a protein by taking them into account
are much greater than by making random mutations. Well-
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known examples of successful stabilizing strategies for which a
biophysical explanation can be offered include sequence optimiza-
tion of a-helical segments [42–46], filling of internal protein cavi-
ties [47–48], optimization of electrostatic interactions between
charged residues [49], replacement of hyperexposed hydrophobic
residues [50] or underexposed polar ones [51], or replacement of
hydrogen-bonded acidic residues by neutral isosters [52]. Other
successful stabilizing strategies that find justification on the
grounds of evolutionary reasoning rely on mutating residues to
return to a previously calculated consensus sequence of the protein
family studied [53] or to the calculated ancestral sequence of that
family [54]. Once stabilizing mutations have been introduced and
tested in a protein, the more stabilizing ones can be combined,
sometimes in a close to additive manner, to obtain highly stabi-
lized variants of the initial unstable wild type protein [55–56].
Drawing from this accumulated knowledge on protein stabilization
strategies, we develop here Protposer, a straightforward web ser-
ver that proposes protein stabilizing point mutations for any pro-
tein of known structure. To do that, Protposer analyses the PDB
file indicated by the user in search for stabilization opportunities.
Then it internally assesses mutations that could increase protein
stability by amending the structural weaknesses found, and finally
it returns a simple ranked list of potentially stabilizing mutations
along with their estimated success rate (i.e., the probability a pro-
posed mutation has of increasing the stability of the protein
by>0.5 kcal/mol).
2. Materials and methods

2.1. Algorithm

Protposer operates through four main steps, displayed in Fig. 1:
1) PDB file retrieval and preparation; 2) internal nomination of
candidate mutations (including filtering); 3) evaluation of candi-
dates; and 4) scoring. In the initial step, if the user provides a
PDB ID code, the corresponding PDB file is downloaded from the

wwPDB database (www.wwpdb.org [57–59]) and a new PDB file
containing only the indicated target chain is prepared. If the user
provides its own PDB file, a target chain must be also indicated
and a PDB file for the specified chain is similarly prepared. In step
2, the PDB file is scanned in search for specified features of the pro-
tein (Fig. 1) that allow the program to nominate potential muta-
tions for further evaluation, if some criteria are met (see the
subsection ‘‘Modules” below, for details). The mutations nomi-
nated in this step are filtered to discard those likely to produce
steric clashes. Additionally, mutations proposed by the ‘‘cavities”
module are filtered by SASA in order to prevent artifacts caused
by the opening of internal cavities to solvent upon mutation. In
the candidates evaluation step (step 3), each candidate mutation
that has passed the filters is evaluated to obtain numerical scores
for each of several properties (Fig. 1). The scoring metrics for each
property have been defined considering recommendations from
Pucci et al. [60] for getting unbiased scoring models, as well as rec-
ommendations from Fang [61] for selecting informative features in
predictive models. Details on each specific metric used are given in
the ‘‘Modules” subsection below. In the scoring step (step 4), the
scores for all the metrics calculated for each mutation are stan-
dardized and fed to a supervised logistic regression model, previ-
ously trained, in order to calculate each mutation probability of
being stabilizing, which is defined as the probability of having
DDGwt!mut

unf > 0.5 kcal/mol. As these probabilities underestimate
the actual positive predictive value (PPV) of the mutations, they
are transformed, as explained in the results section, into estimated
success rates (eSR), which are then used for ordering the mutations

http://www.wwpdb.org/


Fig. 1. General workflow of Protposer. Each step of the general workflow is represented with one colour in the underline of the step title, and the boxes for each module or
process inside that step. Boxes in ‘‘Nomination of candidates” and ‘‘Candidates evaluation” steps correspond to the different nominating and evaluating modules. The user
supplies a PDB file or its ID code in the worldwide PDB database and indicates the chain to be analysed. The structure is then prepared for the nomination step (first column in
‘‘Nomination of candidates”) and then, some mutations are filtered out to avoid steric clashes and other artifacts. The remaining candidate mutations have some of their
features evaluated, and the values obtained are passed to a trained logistic regression model to get the probability of each mutation of being stabilizing, which is then
converted to an estimated success rate indicated in the results report emailed back to the user. The model is trained using a set of mutations obtained after filtering the
database ProTherm [87–88].
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from most to least potentially stabilizing, as reported in the results
page returned to the user.

Protposer has been implemented as a web server using Joomla,
a content management system, with PHP as a connector between
the input form and the main Python script performing the calcula-
tions behind Protposer, either directly or calling additional
software. The web page and the email sent to the user is also
returned by PHP. All the programs and Python modules used
by Protposer and their respective versions are shown in
Supplementary Table S1.

2.2. PDB preparation

To ensure that the PDB files are correctly analysed by all mod-
ules in Protposer, a routine check is performed at the beginning of
the workflow. If any correction is needed, the PDB file is automat-
ically edited to solve the issue detected. As part of this process, all
ligands, heteroatoms and residues with an incomplete backbone
(usually near the ends of the structure) are removed by editing
the PDB file with Python, the modified residues are substituted
by their precursor using SCWRL [62], and the numbering of resi-
dues is checked in order to detect if different residues have been
numbered as the same position. If more than one residue has been
given the same number, an error message will be returned to the
user indicating the problematic residues. A PDB file including only
a correct version of the target chain is generated for further steps.

2.3. Modules

Protposer has a modular structure. Nine different modules are
involved in the nomination of candidates and evaluation steps.
Seven of them (‘‘ancestral”, ‘‘consensus”, ‘‘alpha helices”, ‘‘expo-
sure”, ‘‘acidic H-bonds”, ‘‘cavities” and ‘‘electrostatics”) search in
the protein structure for the presence of defined features and pro-
pose potentially stabilizing mutations accordingly. Two additional
modules (‘‘SASA” and ‘‘steric clashes”) are used to quickly filter out
nominated mutations that might easily turn out to be destabilizing
due to their specific location in the structure.

The ‘‘ancestral” module searches for closely related proteins
using blastp [63] against the non-redundant protein database of
the NCBI server, including all non-redundant GenBank CDS transla-
tions [64], PDB [57–59], SwissProt [65–66], PIR [66–67] and PRF,
excluding environmental samples from WGS projects (PRF/SEQDB
database, Protein Research Foundation, Osaka, Japan). Then, the
retrieved sequences are grouped in clusters of 90 % sequence sim-
ilarity using CD-HIT [68]. A phylogenetic tree is constructed using
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PhyML with default parameters [69] and the common ancestor
sequence is calculated using PAML [70] with the JTT amino acid
substitution model [71]. Mutations are proposed for those residues
differing in the original and ancestral sequences, which consist of
replacement of the wild type residue for the ancestral one.

The ‘‘consensus” module generates, from the sequences with a
higher similarity score, as previously found and calculated using
blastp [63], a multiple alignment using MUSCLE [72]. Then, BioPy-
thon alignment tools [73] are used to calculate the consensus
sequence. Mutations are then proposed for those residues differing
in the original and consensus sequences consisting of replacement
of the wild type residue by that in the consensus sequence. The
score given by this module to a given mutation (either proposed
by this module or otherwise) is calculated using the number of
occurrences at that position in the multiple alignment of the wild
type residue (nWT) and of the residue that is proposed to replace it
(nmut), and the total number of sequences (N), according to:

Score ¼ ðnmut � nWTÞ=N
The ‘‘alpha helices” module identifies the helices and their ends

using DSSP [74] for the prediction of secondary structure and crite-
ria defined by Leader et al. [75] Hydrogen bonds are calculated
using HBPlus [76]. Mutations are proposed in order to improve
the stability of the helix. As suggested in the literature [42–46],
three different helical positions are considered: N-cap, C-cap, and
inner helix. Specifically, the theoretically most stabilizing residues
for the N- and C-caps and for the inner residues of the helices,
according to the scale defined by Muñoz et al. [43–45], are pro-
posed to replace any non-buried helical residue whose side chain
does not establish hydrogen bonds with protein atoms in the wild
type structure. Values of DGhel calculated by Muñoz et al. [43–45]
as the difference in free energy between the random coil and helix
states are used to determine the best options of residues for each
position: Ala for inner residues, Asp for N-cap or Gly for C-cap.
The estimation of DDGwt!mut

unf according to their work is used as
score.

The ‘‘exposure” module calculates the relative exposure of a
residue (100 � folded exposure/unfolded exposure) using data
from DSSP and the average exposure for each residue in the
unfolded state, as calculated by Estrada et al. [77–78] Buried polar
residues with relative exposure under 15 % are proposed for muta-
tions, following recommendations by Ayuso-Tejedor et al. [51]
Mutations for overexposed apolar residues with relative exposure
over 100 % are proposed to be replaced by more polar residues of
similar size and structure (e.g. Val to Thr, Phe to Tyr or Leu to
Gln). For scoring, an empirical equation from Ayuso-Tejedor et al.



Table 1
Nomenclature of datasets and predictive models.

Nomenclature Description

Datasets
PTori Original PT dataset filtered from

Protherm
PTdup Duplicated dataset, including PTori and

its reverse mutations
train-PTori Training subset extracted from PTori in a

stratified manner
test-PTori Test subset extracted from PTori in a

stratified manner
train-PTdup Training subset extracted from PTdup in

a stratified manner
test-PTdup Test subset extracted from PTdup in a

stratified manner
ED External dataset obtained from

ThermoMutDB excluding mutations in
PTori

ED+ ED with the addition of the
experimental data from 1PGA and 1FTG

Lr models
Lrori Logistic regression model trained on

PTori

Lrdup Logistic regression model trained on
PTdup

Protposer
versions

Protposerori Full Protposer workflow including the
nominating algorithm, Lrori and the
sigmoidal model estimating eSR, trained
on PTori

Protposerdup Full Protposer workflow including the
nominating algorithm, Lrdup and the
sigmoidal model estimating eSR, trained
on PTori

Results subsets

ProtposeroriHM
Results of Protposerori selected
according to the half of mutations (HM)
criterion

Protposeroriclassic
Results of Protposerori selected
according to the classic (classic) criterion

ProtposeroriOj
Results of Protposerori selected
according to the Optimal kappa (Oj)
criterion

Specification of
dataset
predicted

Lrdup ? PTori a Predictions of Lrdup on PTori

a The same convention is used throughout the text to indicate the results of any
specified model on any specified dataset.
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[51] has been adapted to full residue Accessible Solvent Areas (ASA,
the only exposure data returned by DSSP) by using the following
assumptions: a) all backbone is considered to be apolar, b) side
chains are considered as either completely polar or completely
apolar, c) the size of the backbone is approximately that of an ala-
nine (per residue), and d) backbone and side chains are equally
buried, being the burial percentage the complementary of the rel-
ative exposure (1 - RE). The final score is calculated with the fol-
lowing equation:

0:0276 ASAAla�ASAWTð Þþ0:0072 ASAMut �ASAAlað Þ½ � 1�REð Þif polar! apolar

0:0276 ASAMut �ASAAlað Þþ0:0072 ASAAla�ASAWTð Þ½ � 1�REð Þif apolar!polar

�

The ‘‘acidic hydrogen bonds” module analyses the relative
exposures and hydrogen bonds, as calculated before, to identify
acidic residues (Asp or Glu) with a relative exposure over 85%
and, at least, one hydrogen bond formed by their side chain, and
proposes their mutation to isosteric neutral residues (Asn or Gln,
respectively), as suggested by Irún et al. [52].

The ‘‘cavities” module finds residues at the surface of internal
cavities of the protein identified using Voronoia [79] and proposes
mutations to bigger, apolar residues in order to fill the cavities (e.g.
from Phe to Trp or from Val to Ile, Leu, Phe, Tyr or Trp). For their
evaluation, the mutations are generated using SCWRL [62], keeping
the backbone and side chains of the protein static while allowing
movement for the side chain of the mutated residue in order to
minimize an energy function. The difference in size (in Å3) of the
volume of internal cavities between the wild type and mutant pro-
teins is used as score.

The ‘‘electrostatics” module is based on the work by Estrada
et al. [49], using MODELLER [80–82] and REDUCE [83] for the
preparation of the structure and Delphi [84] for the calculation of
the potential map of the protein. The stabilization profile is calcu-
lated using the Native only model, and only the residues with a cal-
culated ionization energy under �2.5 kJ/mol are proposed for
mutations. Basic aliphatic residues (Lys or Arg) are mutated to
Ala (neutralization) or Glu (inversion), while acidic residues (Asp
or Glu) are mutated to their isosteric neutral residues, Asn or
Gln, (neutralization) or to Lys (inversion). The score of a mutation
is the calculated ionization energy multiplied by �1 (neutraliza-
tion) or �2 (inversion).

The ‘‘steric clashes” module filters out mutations that are likely
to generate steric clashes. For that purpose, the difference in
energy between the wild type and mutant protein is calculated
by SCWRL [62]. If the difference is more destabilizing than 50 (in
SCWRL energy units), the mutation is discarded. This value has
been estimated using several mutations to bigger residues giving
rise or not to steric clashes (data not shown).

The ‘‘SASA” module calculates the difference in Solvent Accessi-
ble Surface Area (SASA) between the SCWRL-generated mutant and
the wild type protein, using the Gromacs sasa module [85–86]. For
cavity filling mutations, if SASA grows by >0.275 nm2 upon muta-
tion, the mutation is discarded, as such growth may be revealing
the opening of an internal cavity to the solvent.

Whether to consider or not for scoring in step 4 any of the pro-
tein features identified by the modules described above was
decided in the model training process, using the training set (see
subsection ‘‘Logistic regression model training and testing”).
2.4. Mutation Databases used and names of models

Several databases and logistic regression models are considered
along this work. They have been named as summarized in Table 1.
Two datasets (PTori and PTdup), jointly referred to as PT, have been
obtained from ProTherm [87–88]. PTori is a filtered, therefore
reduced, version of ProTherm, while PTdup is a duplicated database
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containing all mutations in PTori plus their corresponding reverse
mutations. Either version of PT has been used for training and test-
ing a logistic regression model (Lr) that calculates the probability
of a given mutation of being stabilizing. The Lr models obtained
for PTori and PTdup are termed Lrori and Lrdup, respectively. The
training and testing process for either of these Lr models has been
done after splitting the corresponding PT in two subgroups, respec-
tively used for training and for testing (e.g., for training and testing
Lrori, the PTori dataset has been split into train-PTori and test-PTori).

For each dataset derived from Protherm, and for external data-
sets that will be described below, partitions have been made based
on different properties of the protein or the mutation itself: rela-
tive exposure, change of size of the mutated residue, protein fold
and protein length. Relative exposure has been calculated with
the ‘‘exposure” module and each mutation has been classified as
exposed if the relative exposure is over 30% and as buried other-
wise, as previously defined by Caldararu et al [89]. For the change
of size of the mutated residue, a mutation is considered volume-
changing if the change of volume in the mutated residue is, in
absolute value, higher than 30 Å3, as defined by Caldararu et al
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[89]. According to this, there are large-to-small (L2S) and small-to
large (S2L) volume-changing mutations, and equal-to-equal (E2E)
size ones. The fold of the protein has been obtained from CATH
[90] and the length has been taken from the structure as in the
PDB database, the protein being classified as long if the length is
over 150 residues and short otherwise [89]. These partitions are
useful to assess potential biases in the final model.

The role of the alternative Lrmodels (Lrori and Lrdup) is limited to
calculating the probability of individual mutations of being stabi-
lizing. Protposer is the conjunction of an algorithm designed to
nominate potentially stabilizing mutations, an Lr model used for
evaluating them and a sigmoidal model used to calculate eSR from
Lr probabilities. The nominating algorithm strongly reduces the
number of mutations that are subsequently evaluated by the Lr
model and improves the interpretability and quality of the results.
Depending on the Lr model used for evaluating the mutations
nominated by the algorithm, two versions of Protposer, termed
Protposerori and Protposerdup, have been built. Either version of
Protposer has been made to operate always on original, publicly
available PDB files (i.e., not usually modelled to include mutations).
Therefore, the Protposer performance has been tested always on
PTori, irrespective of the Lr model (Lrori or Lrdup) implemented in
it. To avoid confusion, results are presented through this work indi-
cating both the Lr model or Protposer version used and the data-
base on which it is being evaluated, connected by an arrow (e.g.,
Lrdup ? PTori).

In some cases, additional specifications have been applied to
Protposer results to influence the size of the output (a ranked list
of likely stabilizing mutations) and its predictive quality. This is
done by setting specific minimum eSR values only above which a
mutation evaluated is actually considered to have been proposed.
Those specifications to Protposer results are explained in detail
in the ‘‘Protposer performance assessment” section below. They
will be indicated throughout this work using subindices (e.g.,

ProtposerdupOj for the Optimal kappa specification).
Once Protposer has been fully trained and tested using the PT

datasets, further tests of the final version (i.e., Protposerdup) have
been performed on proteins or mutations that were not present
in PT. For this purpose, two external datasets, ED and ED+, have
been built. ED contains mutations, not present in PTori, correspond-
ing to the 9 proteins with more newly reported mutations in Ther-
moMutDB [91] that were not present in ProTherm. ED+ is a larger
database, additionally including mutations from proteins with PDB
IDs 1PGA and 1FTG, whose effects on protein stability have been
characterized by Nisthal et al. [92] and Sancho and coworkers
[47–48,51–52,55,93–100], respectively.
2.5. Training and testing of the logistic regression model

Experimental mutation stability data have been extracted from
the ProTherm database (last release, February 2013) [87–88], fil-
tering to obtain single amino acid point mutations corresponding
to proteins of known three dimensional structure, analysed in
the 6.0–8.0 pH and 5–45 �C temperature ranges. Data has been
consistently checked for misannotations in order to get a high
quality database, as suggested by Yang et al. [101] The resulting fil-
tered ProTherm database is termed here PTori. On the other hand,
to get a better balance of stabilizing and destabilising mutations,
a larger dataset has been generated (PTdup dataset) under the
assumption that DDG for the reverse mutation equals –DDG for
the direct mutation (i.e. DDGmut!wt

unf = � DDGwt!mut
unf ) [60,102]. In

either dataset, DDG is calculated as DGmut
unf � DGwt

unf , and mutations
are considered to be stabilizing if their DDG value is >0.5 kcal/mol.
Under this criterion, PTori and PTdup contain approximately 11 %
and 37 % of stabilizing mutations, respectively.
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The so filtered experimental stability data deriving from 91 pro-
teins (1692 single mutations for PTori and 3384 for PTdup) have
been further filtered, leaving out the mutations for which the stan-
dard deviation of the available stability determinations was higher
than the difference between its mean and the 0.5 kcal/mol thresh-
old used to define a mutation as stabilizing. The resulting datasets
(1641 mutations for PTori and 3236 for PTdup) were divided into
two groups in a stratified manner, in order to preserve the ratio
of positives to negatives in each group. The training groups
(train-PTori and train-PTdup) contain 80 % of the corresponding orig-
inal data, and the test groups (test-PTori and test-PTdupÞ, the
remaining 20%.

To select, among those provided by the different modules, the
optimal features to combine in the mutation evaluation step, the
weight coefficient versus regularization strength (C-value) plots
were represented. As the scores of all the features considered have
been designed to be positive for presumed stabilizing mutations,
those features exhibiting abnormal behaviour, such as alternating
from positive to negative weights or their weights being always
negative or 0, have been eliminated. (Supplementary figure S1).
The discarded metrics were those of the ‘‘ancestral”, ‘‘acidic hydro-
gen bonds” and ‘‘steric clashes” modules. Thus, in its current ver-
sion, the program computes the stabilizing probabilities of the
mutations by weighing the scores provided by the ”consensus‘‘,
”alpha helices‘‘, ”exposure‘‘, ”cavities‘‘, ”SASA‘‘ and ”electrostatics‘‘
modules. To select the hyperparameters (L1 or L2 regularization
and C value) which best fit each logistic regression model, 10-
fold stratified cross-validation has been performed on the training
groups, using learning and validation curves (Supplementary figure
S2) for both PTori and PTdup. Once the best hyperparameters have
been selected, each logistic regression model has been trained with
the corresponding full training set, and it has been evaluated on
both the training and test sets, in a holdout manner, so obtaining
the weights for the Lrori and Lrdup models.

2.6. Predictive quality assessment of the Lr models and of Protposer

For comparing the performance of the Lr models, and their
implementations in Protposer, with that of other currently avail-
able classifiers, we have used the same measures as Yang et al.
[101] (i.e. accuracy, positive predictive value (PPV), negative pre-
dictive value (NPV), sensitivity or true positive rate (TPR), speci-
ficity or true negative rate (TNR) and Matthews correlation
coefficient (MCC)) on both test-PTori and test-PTdup. For external
validation, only the PPV for different levels of stabilization has
been calculated on the external databases ED and ED+.

Accuracy ¼ TP þ TN
TP þ TN þ FP þ FN

PPV ¼ TP
TP þ FP

NPV ¼ TN
TN þ FN

TPR ¼ TP
TP þ FN

TNR ¼ TN
TN þ FP

MCC ¼ TP � TNð Þ � FP � FNð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP þ FNð Þ � TP þ FPð Þ � TN þ FNð Þ � TN þ FPð Þp

where TP, TN, FP and FN are the numbers of true positives, true neg-
atives, false positives and false negatives, respectively. Also, Recei-



H. García-Cebollada, A. López and J. Sancho Computational and Structural Biotechnology Journal 20 (2022) 2415–2433
ver Operating Characteristic (ROC) curves have been calculated,
where the False Positive Rate (FPR) is defined as 1-TNR. As both
PTori and PTdup, as well as subsets thereof used for training and test-
ing, are imbalanced datasets, normalized values for each measure
[101] have also been obtained by multiplying the number of nega-
tive samples (either TN or FP) by the factor TPþ FN

FPþ TN, thus forcing the
number of positive samples (TP + FN) to be the same as that of neg-
ative ones (TN + FP).
2.7. Specific quality assessments of Protposer predictive performance

Using the optimal weights for each version of Lr obtained as
described above, Protposer (Fig. 1) has been run on the 91 protein
structures present in PTori (Protposer ? PTori). The probabilities
calculated by either Lr model for each of the mutations nominated
by the algorithm that were present in PTori have been used to
obtain the actual PPV of Protposer as a function of the calculated
probability threshold. For that, increasingly smaller subsets of
mutations have been selected by using increasingly larger Lr prob-
ability threshold values. The PPVs calculated for those mutations
with a Lr probability over that threshold have been plotted as a
function of such threshold (Supplementary figure S3). As it is clear
in the figure that the probabilities reported by each Lr model
underestimate the actual PPV of Protposer, realistic estimations
of the actual PPV have been obtained from a fit of the plotted data
to the following sigmoidal equation:
estimated Success Rate %ð Þ ¼ bþ h
1þ e�k� P�P0ð Þ

� �
� 100
where b is the minimum value (baseline), h is the difference
between the minimum and maximum values (height), k is the
steepness of the curve, P is the probability calculated by the Lr
model and P0 is the midpoint: the value in which the curvature of
the function changes. The newly estimated PPVs obtained with this
formula are referred to as ‘‘estimated success rates” (eSR) in the
output report provided by the Protposer server and from now on
along this work. The eSR reported for a given mutation should not
be interpreted as the probability of the individual mutation of being
stabilizing, but as the average probability of being stabilising of the
different mutations exhibiting that eSR value or higher.

For further evaluating the predictive quality of the Prot-
poser? PTori proposal and scoring and to provide general interpre-
tation advice to users, three different mutation selection eSR
thresholds have been considered to define shorter lists of muta-
tions from the full proposal. The so-termed ‘‘Classic” eSR threshold
(eSR > 50%) selects the mutations whose chances of being stabiliz-
ing (i.e. of having DDG > 0.5 kcal/mol) are higher than those of not
being stabilising. The ‘‘Half of Mutations” (HM) eSR threshold is
simply designed to select the half of the proposed mutations with
higher eSRs for all the mutations nominated for all proteins in PTori.
The Optimal Kappa (Oj) eSR threshold is set at the maximum
Cohen’s kappa value, which is calculated using and algorithm sim-
ilar to the one developed in GHOST [103]. Cohen’s kappa [104], a
statistic value measuring the agreement between two classifica-
tions having into account the chance of agreement at random, is
determined using the following formula: j ¼ 1� 1�po

1�pe
, where po is

the relative observed agreement and pe is the randomly expected
one. Perfect agreement renders a j of 1, and worse than random
agreement would give negative values of j. Using the Cohen’s
kappa value as a selection threshold ensures maximal agreement
between proposals and empirical data.
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2.8. Validation of Protposer on external databases

Additional testing of Protposer has been performed by running
the program on proteins or mutations not included in the training
dataset. Nine proteins have been selected from the relatively new
protein stability database ThermoMutDB [91] in order to build
the ED external database. Those nine proteins are particularly use-
ful to test Protposer for two reasons: they are the proteins with
more single point mutations described in ThermoMutDB that are
absent in PTori, and the percentage of their mutations present in
ThermoMutDB that was already present in Protherm is low (from
0 to 12 % overlap; Supplementary Table S2). These proteins thus
have contributed very little to the training of Pirepred, and the
specific mutations selected to conform the ED database have not
contributed at all, as mutations in PTori have been filtered out of ED.

On the other hand, two extensively characterised proteins, for
which thermodynamic data on point mutations abound, have been
selected for a detailed study of the performance of Protposer (Sup-
plementary table S3). One of them is the 56-residue b1
immunoglobulin-binding domain of streptococcal protein G (struc-
ture with PDB code 1PGA). Protposer predictions on this protein
have been compared with the experimental data obtained by
Nisthal et al. [105], who have constructed almost every single
mutant of this domain and measured their stabilities using
liquid-handling automation and deep mutational scanning tech-
niques. The other protein is the 168-residue Nostoc sp. apoflavo-
doxin (PDB code 1FTG) for with abundant stability data have
been reported in previous experimental studies published by our
group [47–48,51–52,55,93–100].

The set of novel mutations conforming ED plus those from b1
immunoglobulin-binding domain and apoflavodoxin jointly con-
stitute the external dataset ED+. Protposer predictions on ED
(Protposer? ED) and on the two additional proteins selected have
been compared with the corresponding experimental data in order
to find out whether mutations with experimentally determined
DDG > 0, 0.25, 0.4 or 0.5 kcal/mol are predicted as stabilizing,
and whether the estimated eSR shown in the results report of
the Protposer server agrees with that calculated from the ED+ data.

2.9. Influence of structure resolution on Protposer performance. PDB
file coverage analysis

The proposal dependence on the resolution of the specific 3D
structure used has been checked by running Protposer on struc-
tures of three widely characterised proteins: barnase (1A2P,
1BRS), flavodoxin (1FLV, 1RCF) and CheY (1EHC, 3CHY, 5CHY)
obtained at different resolution. In the case of CheY, two of the
PDB structures contain a mutation (i.e., D13K in 1EHC and
Y106W in 5CHY), so any proposed mutation in the position of
the experimentally mutated residue (e.g., D13K and D13Q, pro-
posed for 3CHY and 5CHY, K13D for 1EHY or W106Y for 5CHY)
has been excluded from the comparison.

For improving and assessing the coverage of structures on
which Protposer can work, two rounds of testing and problem
solving with 100 protein structures each have been performed.
The 200 protein structures used have been randomly selected from
the subset of representative structures at less than 90% sequence
identity present in the Protein Data Bank which contain at least
one protein chain with a length between 50 and 400 residues
and are not part of a big protein complex. For the latter purpose,
the query has been filtered for protein structures with less than
4 entities in the PDB file, omitting large structures and not contain-
ing ‘‘ribosome”, ‘‘ribosomal”, ‘‘ribosomic” or derivatives in the title.
In the structures with more than one chain, Protposer has been run
on the first one appearing in the PDB and fulfilling the length
criterion.



H. García-Cebollada, A. López and J. Sancho Computational and Structural Biotechnology Journal 20 (2022) 2415–2433
2.10. Comparison of the final version of Protposer with other protein
stability servers

The performance of Protposer (as implemented in the server)
on the external database ED+ has been compared to that of three
representative stability predictive servers (FoldX [32], Rosetta
[106–107] and PoPMuSiC [39–41]) selected based on their popu-
larity and accuracy. The mutants used for FoldX and Rosetta
assessment have been built using SCWRL4 [62], as described previ-
ously for the ‘‘cavities” module. For direct comparison with the
mutants, the corresponding WT structures have been processed
using the same parameters. Calculations with FoldX have been per-
formed with the Stability command with default parameters. In
Rosetta, the Relax protocol with 3 separate relaxation trajectories
over 5 cycles of sidechain repacking and minimization has been
used to calculate, for each mutant, the minimum score of the three
trajectories, with the rest of parameters as default. In PoPMuSiC,
the systematic procedure available on the server has been used.

To simulate a real-case scenario of optimization of a protein for
which no previous quantitative stability determinations are avail-
able, only the 10 best mutations predicted by each program for
each of the proteins in ED+ have been selected for analysis. To sim-
ulate a case in which the user is more advanced, an additional cri-
terion for mutation selection has been adopted. In FoldX, only
mutations at least 0.5 kcal/mol more stable than the WT protein
are considered. In Rosetta, only mutations more stable than the
WT protein (in Rosetta Energy Units) are selected, and in PoPMu-
SiC, only mutations with a negative score (i.e., predicted as stabiliz-
ing) are used. The criteria used to select mutations from Protposer
are indicated in the Protposer performance assessment subsection
and they are detailed in the results section.
3. Results

3.1. Dataset properties

Single point mutations have been extracted from ProTherm
[87–88] and filtered as indicated in the Methods section. Misan-
notations in units of temperature and differences in Gibbs energy
have been corrected, as suggested by Yang et al. [101] The origi-
nal resulting dataset, PTori, is composed of all the mutations that
have passed the filters. If more than one DDG value is available
for a given mutation, the average is taken as its DDG value if
the whole range of average ± SD is completely above or com-
pletely below the free energy threshold used for classification. If
this condition is not met, the data is discarded. PTori contains
1641 mutations from 91 proteins, 179 being stabilizing (accord-
ing to DDG > 0.5 kcal/mol) and 1462 are non-stabilizing
(DDG � 0.5 kcal/mol). To be able to assess the impact of the high
size imbalance of the stabilizing and non-stabilizing classes pre-
sent in PTori (only � 11 % of positives, i.e. stabilizing mutations),
the approach from Capriotti et al [102] has been additionally
implemented. Considering that DDGA?B = � DDGB?A, a dupli-
cated dataset (PTdup) has been formed encompassing 3236 muta-
tions from the same 91 proteins as in PTori, 1208 of which are
stabilizing and 2028 are non-stabilizing mutations (�37 % of pos-
itive data, i.e., stabilising mutations). With a symmetrized dataset
as PTdup, reaching a 50% of positives is not expected as the dataset
is symmetric around 0 kcal/mol but the threshold between posi-
tives and negatives (i.e., stabilising and non-stabilising mutations)
is 0.5 kcal/mol.

Additional interesting features of a mutation dataset other
than containing a balanced number of stabilising and destabilis-
ing mutations have been recently reviewed [89,108]. Of the 380
pair-wise substitutions that can be made using the 20 protein
2421
amino acids, PTdup contains 329 of them, covering 87 % of all pos-
sible substitutions (see the PTdup mutation matrix in Fig. 2 and
related train-PTdup and test-PTdup matrices in Supplementary fig-
ure S4). As is often the case in mutation datasets, replacements to
alanine are overrepresented in PTdup. This type of mutation is
popular because it is easier to interpret in the absence of struc-
ture for the mutant protein. To counterbalance a predominance
of alanine mutations, special datasets have been proposed [89]
that limit the occurrence of any type of replacement to be below
a certain number. This seems a useful strategy when the goal is
advancing in the computing of accurate DDG values for muta-
tions. However, this strategy significantly reduces dataset size
and does not seem appropriate for our distinct approach focused
on proposing mutations that are likely stabilizing. In contrast
with alanine replacements, those involving Cys, Pro or Trp resi-
dues are scarce in PTdup. As these residues are either infrequent
in proteins or difficult to engineer obtaining a positive effect on
protein stability, their low representation in PTdup is of little con-
cern for our approach.

On the other hand, it has been proposed that, in addition to hav-
ing a balanced number of stabilising and destabilising mutations,
datasets should display a balanced distribution of DDG values.
As expected of a duplicated dataset, PTdup is highly balanced in this
respect and it displays a smooth and rather symmetric distribution
of free energies (Fig. 2). The same is true for its train-PTdup and test-
PTdup subsets (Supplementary figure S4). It is also appropriate that
datasets contain approximately similar fractions of buried and
exposed mutations, as this may help to obtain models not limited
to issue good predictions for either one type of mutation or the
other. To assess the content of buried and exposed mutations in
PTdup, the relative solvent exposure of all mutated residues, as cal-
culated using the ProtSA server [77–78], has been retrieved from
the ‘‘exposure” module. Although PTdup contains more mutations
(83 %) from short proteins (�150 residues) than from longer ones
(17 %), it includes a similar percentage of mutations involving
exposed (49.6 %) and buried residues (50.4 %) using 30 % relative
solvent exposure as cutoff [89] (see Table 2 for PTdup and Supple-
mentary Table S4 for related train-PTdup and test-PTdup datasets).
In addition, PTdup is also reasonably balanced in terms of mutations
belonging to a proteins (14.4 %), b proteins (49.3 %) and ab pro-
teins (34.1 %). Finally, PTdup is also balanced in terms of volume
change upon mutation. In 31 % of cases the volume of the new resi-
due exceeds that of the wild type one by >30 Å3 [89] (small-to-
large substitutions), in 37.0 % of cases the volume is similar
(equal-to equal size), and in 32 % of cases the new residue is smal-
ler by >30 Å3 (large-to-small substitutions).

As of the external dataset ED, the distribution of DDG values is
also smooth (Fig. 2). However, as ED is not a duplicated dataset, it
contains more destabilising than stabilizing mutations and the dis-
tribution is left-skewed as expected. The smooth, skewed distribu-
tion of ED is well retained by the ED partitions into exposed/buried
residues, a/b/ab fold, short/long length, or small-to-large/equal-to-
equal/large-to-small volume (not shown). ED also displays
(Table 2) an equilibrated content of mutations of different expo-
sures (45 % exposed and 56 % buried), volume changes (21%
small-to-large, 42 % equal-to-equal, 37 % large-to-small) and
occurrence of mutations in particular folds (50% a, 14% b, 28 %
ab) or chain lengths (42 % short, 57 % long). Interestingly, the fact
that these mutation distributions, particularly those related to pro-
tein fold and protein length, differ from those in PTdup, does not
apparently have a significant effect in the predictive performance
of Protposer (Table S5), which seems to be robust against dataset
composition variation in these terms. The composition of the data-
sets used to train and test the optimized method are provided,
together with the experimental and computed output, as supple-
mentary tabulated txt files.



Fig. 2. Dataset properties. In each column, the mutation substitution matrix (first row) and the experimental DDG histogram (second row) is shown for a given dataset:
PTdup, ED or ED+. In the mutation matrices, a gradient from red (no mutations) to green (maximum number of mutations for a given type in the dataset) going through yellow
(50% percentile) is shown to represent the number of mutations of each kind, also displayed as a number in the centre of its respective square. For the histograms, bins of
0.25 kcal/mol were made, including two bins for mutations over 8 kcal/mol and under �8 kcal/mol. The vertical red lines represent the mean DDG value for each dataset
(�0.017 kcal/mol for PTdup, �1.104 kcal/mol for ED and �0.868 kcal/mol for ED+), while the orange ones represent the median (�0.03 kcal/mol for PTdup, �0.7 kcal/mol for ED
and �0.36 for ED+). The histogram of PTdup is not perfectly symmetrical due to the asymmetric definition of the bins intervals and the filtering of mutations whose DDG
standard deviation was bigger than the difference between its mean DDG value and 0.5 kcal/mol. The outlier bar in the ED+ dataset is due to a technical limitation from the
data derived of the work of Nisthal et al. [105], in which clearly destabilizing mutations too unstable to be measured or with DDG values under –4 kcal/mol were represented
as –4 kcal/mol. However, these mutations are not proposed by Protposer and do not affect to the binary classification of the mutations according to their experimental DDG.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 2
Mutation type distribution in the datasets.

Type PTdup ED ED+

Burieda 50.36% 54.99% 38.78%
Exposeda 49.64% 45.01% 61.22%
ab 14.43% 50.44% 24.11%
bb 49.26% 13.65% 6.52%
a + bb 34.09% 27.62% 65.40%
Other foldb 2.22% 8.30% 3.97%
Shortc 82.63% 43.12% 69.15%
Longc 17.37% 56.88% 30.85%
S2Ld 31.24% 21.07% 30.90%
E2Ed 36.99% 42.14% 38.62%
L2Sd 31.77% 36.79% 30.48%
Total mutationse 3236 916 1916

a The exposure classification is performed according to the relative exposure
calculated by the exposure module, being buried those mutations with a relative
exposure under 30% and exposed those over 30%.

b The fold classification is performed according to CATH.
c The length classification is performed based on the residue length of the

structure in the PDB file, being long over 150 residues and short under 150 residues.
d Volume-changing mutations, as opposed to equal-to-equal size mutations (E2E)

are those in which the residue volume change upon mutation is >30 Å3. Those are
classified as small-to-large (S2L) o large-to-small (L2S) depending on whether the
mutated residue is bigger than the WT.

e The total number of mutations present in each dataset is directly retrieved from
each dataset.
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3.2. Performance of the logistic regression models Lrori and Lrdup

After the nomination of candidates step (Fig. 1) Protposer runs
a candidates evaluation step using a logistic regression model (Lr).
Alternative logistic regression models for Protposer have been
trained using either PTori or PTdup and have been assessed using a
2422
holdout approach. In each alternative training, a 20% of the corre-
sponding dataset has been selected in a stratified manner as a test
group (test-PT datasets) and the remaining 80% has been used as
training set (train-PT datasets). The best hyperparameters for the
training of each model have been identified using a 10-fold strati-
fied cross-validation, being L2 regularization with a C-value of 0.1
for both Lrori and Lrdup. Once trained, each model has been sepa-
rately tested on both its training and test set to check for possible
overfitting.

The performance analysis of the alternative models shows
(Fig. 3) that Lrdup, the one trained on PTdup, outperforms Lrori

(trained on PTori), in both the PPV and the ROC curves. The close-
ness between the Lrdup ? train-PTdup and Lrdup ? test-PTdup PPV
and ROC curves (Fig. 3B and 3D) suggests there is no overfitting,
which is confirmed by their learning curves (Supplementary
S2D). As for Lrori, although a gap between Lrori ? train-PTori and
Lrori ? test-PTori is seen in their ROC curves, their learning curves
(Supplementary S2C) show no signs of overfitting either. The
apparently lower performance of Lrori in their respective datasets
may be due to the imbalance in positive (36) and negative (287)
mutations in test-PTori, making the PPV and other performance
metrics very sensitive to outliers.

The performance of Lrori and Lrdup on their respective test-PT
datasets is compared in Table 3 with that of other classifiers, pre-
viously analysed by Yang et al. [101] Lrdup outperforms the rest of
classifiers at the metrics that are more relevant for a stabilizing
mutation proposing objective. Of special interest for that is the
PPV, as the main goal of the program is to propose the user a small
set of mutations highly enriched in truly stabilizing ones. Our pro-
gram outstands in this metric as, out of the four other methods



Fig. 3. Evaluation of the alternative logistic regresion models (Lr) on their respective training PT datasets. Blue lines are used to represent the quality of the prediction
issued by the indicated Lrmodel on the training set, while orange lines represent the evaluation of the predictions on the test set. Dashed grey lines show the performance of a
random predictor. A) and B) PPV for different Lr probability threshold values for Lrori (A) and Lrdup (B). C) and D) Receiver Operator Curves (ROC) for Lrori (C) and Lrdup (D). The
area under the curve (AUC) for each ROC curve is indicated. A higher value of AUC corresponds to a better performing model, being 1 for a perfect predictor (dotted black line)
and 0.5 for a random predictor (dashed grey line). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 3
Comparison of the predictive performance of Lr with several predictors.

Performance measures a Predictors

Lrori b Lrdup b EASE_MMc I-Mutantc INPSc PON-tstabc

Predicted mutations 323 636 40 40 15 165
TP 2/2 131/131 0 0 0 3/3
TN 35.75 59/32.9 34/6 33/5.8 15 126/20.4
FP 2/0.25 246/137.1 0 1/0.2 0 16/2.6
FN 34/34 39/39 6/6 6/6 0 20/20
Accuracy 0.89/0.52 0.78/0.79 0.85/0.5 0.83/0.49 1 0.78/0.51
Sensitivity 0.06/0.06 0.84/0.84 0/0 0/0 NAd 0.13/0.13
Specificity 0.99/0.99 0.74/0.74 1/1 0.97/0.97 1 0.89/0.89
PPV 0.50/0.89 0.66/0.76 NAd 0/0 NAd 0.16/0.54
NPV 0,89/0,51 0.88/0.82 0.85/0.50 0.85/0.49 1 0.86/0.51
MCC 0.14/0.14 0.56/0.58 NAd �0.07/-0.12 NAd 0.02/0.03

a Results before and after normalization of positive and negative cases (stabilising and non-stabilising mutations, respectively) are separated by a slash (see main text for
further explanation on normalization of these data).

b Performance of Lr models evaluated on their respective test subset (test-PTori and test-PTdup).
c Data extracted from Yang et al. [101].
d NA: Not Available, division by 0.
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compared, only PON-tstab gets a PPV value different from 0 which
is, nevertheless, much lower than that obtained for our method.
Lrori predicts few positives when the standard probability cut-off
of 50% is used, which hampers drawing significant conclusions
on some of the performance metrics, such as PPV. The restrictive-
ness of Lrori for predicting mutations as positive is most probably
due to the fact that the cost function of the machine learning algo-
2423
rithm is based on accuracy. As there are very few positive cases in
PTori, not predicting them as positive is less costly than predicting
some negatives as positive, therefore making the model less prone
to predicting positives. Importantly, if a lower probability thresh-
old is used (i.e., when mutations over 33–38 % probability are pre-
dicted as positive), Lrori achieves a PPV of 50% or higher (Fig. 3A),
which still outperforms the other methods (Table 3).
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3.3. Performance of Protposer on PTori

Protposer has been run on the 91 proteins present in PTori in
order to evaluate its performance (Fig. 1), fit the sigmoidal model
that calculates the eSRs (Supplementary figure S3), and select the
final evaluating model (Lrori or Lrdup) which will be implemented
in the version available to users. To first assess whether the Prot-
poser combination of a nominating algorithm with an Lr model
represents an improvement versus using an Lr model alone, the
performance of Protposerori and Protposerdup (illustrated in
Fig. 4) is directly compared to that of Lrori, Lrdup, on PTori in Supple-
mentary figure S5. The decline of the relative number of proposals
from the Lrmodels operating on their own occurs in a more abrupt
way and with a lower eSR than when incorporated to the corre-
sponding Protposer version. As each Protposer version uses for
mutation scoring the same parameters as its corresponding Lr
model, the nominating algorithm incorporated in Protposer
appears to effectively select a subset of mutations enriched in
those exhibiting higher eSRs. Comparison of the PPV and average
experimental DDG values as a function of eSR threshold obtained
by either version of Protposer with those of their respective Lr
models (Supplementary figures S5B and S5C), reveals that
improvements of around 25% in PPV and of 0.2 to 0.4 kcal/mol in
DDG are obtained using Protposer. This implies that the rational
Fig. 4. Predictive performance of the alternative versions of Protposer on PTori. Or
performance of Protposerdup. The grey line in panel B indicates the expected behavior fo
where the eSR given coincide with the actual positive predictive values (PPV). A) Relat
relative number of 1 is obtained using 0% estimated eSR as threshold, which corresponds
all having eSRs above the indicated threshold. C) Average of the experimental DDG valu
indicated threshold. D) Average of the experimental DDG values determined for the
calculating the PPV and mean DDG for eSR thresholds between 0 and 100%, separated by
referred to the web version of this article.)
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rules used for nominating mutations efficiently retrieve mutations
sets that are enriched in stabilizing mutations.

To select the best performing version of Protposer, we have
considered the fact that the nominating modules only analyse
WT structures. Therefore, only PTori has been used for the compar-
ison of the two Protposer versions. For either version, 7318 muta-
tions in the 91 proteins have been nominated by the modules of
the nominating algorithm. Of those mutations, 114 are present in
PTori. The Protposerori ? PTori and Protposerdup ? PTori results
are compared in Fig. 4. The dependence of the relative amount of
proposed mutations on the eSR threshold imposed (Fig. 4A) shows
that, as the threshold increases, fewer mutations remain. Although
the number of mutations proposed by Protposerori and Prot-
poserdup is similar, Protposerdup may be slightly preferred as it
appears to propose more mutations in the higher eSR range. Along
the entire PPV and average experimental DDG curves (Fig. 4B and
C), Protposerori and Protposerdup perform similarly well, except for
a slight improvement of Protposerdup over Protposerori in the aver-
age measured DDG values corresponding to eSR thresholds
between 55% and 70%. Based on this and on the slightly higher
number of proposals issued by Protposerdup (Fig. 4A) we have
selected Protposerdup as the version implemented in the server.
The maximum PPV for Protposerdup (71.4%) is reached using an
estimated eSR threshold of 67.0 % (Fig. 4B). Actually, a PPV of
ange lines describe the performance of Protposerori, while blue lines refer to the
r an optimal sigmoidal model for the calculation of the estimated success rate (eSR),
ive number of proposals for each model with an eSR over a certain threshold. The
to 7318 proposed mutations. B) PPV for each subset of proposed mutations in PTori

es determined for the proposed mutations in PTori for which the eSRs are above the
proposed mutations in PTori vs Positive Predictive Value. The plot is obtained by
0.5%. (For interpretation of the references to color in this figure legend, the reader is
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approximately 70 % is maintained all over the 65–70% range of
estimated eSR threshold values. A decay of PPV is observed at esti-
mated eSR thresholds above 70%. As it is most likely due to the
scarceness of positive results, it is not shown in the figures. Prot-
poser shows a fine performance as it reaches a PPV above 70%. In
addition, the eSR given by Protposer in its output corresponds well
to the actual PPV (diagonal line in Fig. 4B) and therefore eSR con-
stitutes a reliable and easy-to-interpret metric for users. While
the eSR in Protposer is not directly related to the DDG values of
the mutations used for training, higher eSR threshold values lead
to higher PPVs, and there is a clear trend indicating that, as the
PPV increases, the mean experimental DDG value increases as well
(Fig. 4D). This trend has been observed not only in the subset of
mutations proposed by Protposer but also in the whole datasets
(Supplementary Figure S6).

When disaggregating the proposed mutations on PTori by differ-
ent properties (Supplementary table S5), no clear effects on PPV are
observed depending on exposure or protein fold, other than the
high PPV derived from the low number of mutations with a fold.
Differences between different protein length and volume change
upon mutation are found in PTori, but they are clearly reduced or
even inverted in ED+, so they are likely due to the low number of
proposed mutations in both datasets and not to those properties
being confounders.

To simplify comparison with other protein stability software
and to provide interpretation insight that may be useful to users,
an additional evaluation of Protposer has been carried out using
three different eSR thresholds to define mutation subsets from
the total proposal done by either Protposerori or Protposerdup.
The Classic threshold selects the mutations with eSR > 50%; the
Half of Mutations threshold selects the mutations with an eSR
higher than the median eSR value for all proposed mutations for
all proteins in PTori; and the Optimal j threshold selects mutations
with eSR higher than the eSR value at which Cohen’s kappa [104] is
maximized. The values of the thresholds obtained by each version
of Protposer, as well as the PPVs when using them on ED+ (see
below) are shown in Table 4.

3.4. Performance of Protposer on external datasets

There is evidence that the reported performance of a classifying
algorithm on the data set used for its training tends to be higher
Table 4
Predictive performance of different versions of Protposer on ED+.

Model a SR decision threshold b # mutations With d

Randomd NA 24,472 2006
Protposere 25% 640 83

ProtposeroriHM
f 35% 323 49

ProtposerdupHM
f 38% 308 55

Protposeroriclassic
g 50% 133 21

Protposerdupclassic
g 50% 180 26

ProtposeroriOj
h 43% 185 27

ProtposerdupOj
h 64.3% 93 14

a Model used for the selection of the mutations predicted as stabilizing. It indicates
dataset (dup), and the criteria for the selection of the estimated eSR decision threshold (

b Minimum value of the estimated eSR calculated by Protposer for a mutation in orde
c Positive Predictive Value considering as actually positive (stabilising) mutations t

respectively, as indicated.
d Calculated as the statistics for the whole dataset.
e All mutations proposed by Protposer. The decision threshold here is the minimum va

methods).
f The decision threshold has been selected in order to discard half of the proposed m
g The decision threshold has been selected with the classic criterion of being positive o

higher than the probability of being a false positive.
h The decision threshold has been selected in order to get the maximal value of Co

mutations and the experimental values.
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than when it is tested on external datasets [35,60–61,109].
Throughout this work, we have carefully minimized the possibili-
ties of overfitting in Protposer, and we have shown that its perfor-
mance in the subset of mutations left aside from the training (test-
PT) is as good as its performance on the training set (train-PT). Still,
we deem it necessary to further test the Protposer performance by
evaluating the predictions it makes on mutations that had not been
known at the time the final server was ready (i.e., mutations that
were not present in either train-PT or test-PT. To that end, we have
performed an additional validation test on an external mutation
dataset of 9 proteins derived from ThermoMutDB [91] (ED), and
on two individual proteins: the rather small, 56-residue b1
immunoglobulin-binding domain of streptococcal protein G (PDB
structure 1PGA), and the larger, but still one-domain, 168-
residue Nostoc sp. apoflavodoxin (PDB structure 1FTG).

First, data recently obtained by Nisthal et al. [105] have allowed
us to test the performance on a new set of mutations available for
PDB structure 1PGA (Fig. 5, supplementary table S3). Although this
protein was present in the training database (5 mutations in 1PGA
were present in PTori) none of the mutations proposed by Prot-
poser for 1PGA had been included in ProTherm and, therefore, in
PT datasets. Out of the 7 mutations proposed by Protposer for
1PGA, 3 are stabilizing according to our general criterion (DDG � 0.
5 kcal/mol), one additional mutation is very close to it (DDG � 0.
4 kcal/mol), and only one is destabilizing. The average DDG for
the 7 proposed mutations is 0.13 kcal/mol. To consider alternative
scenarios of Protposer use in real cases, two additional indicators
can be calculated. Accumulated DDG is the sum of the experimen-
tal DDG of all proposed mutations (if more than one mutation is
proposed at a position, the DDG of the first one indicated by Prot-
poser is selected). It represents the user expectation when all the
mutations proposed are engineered simultaneously and their
effects are accumulative. The accumulated DDG for 1PGA is
0.92 kcal/mol. On the other hand, maximal DDG is the sum of
the experimental DDG of all proposed mutations that are non-
destabilising. It represents the user expectation when the muta-
tions are engineered individually and, afterwards, the non-
destabilising ones are jointly engineered. The maximal DDG for
1PGA is 2.69 kcal/mol. When using the Optimal Kappa criterion,
only one stabilizing mutation is proposed, with a DDG of
0.97 kcal/mol, being this the average, the accumulated and the
maximal DDG.
ata in ED+ PPV 0 c PPV 0.25c PPV 0.4 c PPV 0.5 c

34.4% 24.0% 14.4% 10.4%
51.8% 39.8% 32.5% 26.5%
73.5% 57.1% 46.9% 38.8%

61.8% 47.3% 40.0% 34.5%

76.2% 66.7% 66.7% 57.1%

73.1% 61.5% 57.7% 50.0%

74.1% 59.3% 55.6% 48.1%

78.6% 78.6% 78.6% 78.6%

the training dataset, being the original dataset (ori) or the duplicated symmetrized
HM, Oj or classic).
r to be considered as predicted positive. Not available for a random predictor (NA).
hose with an experimental DDG value higher than 0, 0.25, 0.4 or 0.5 kcal/mol,

lue achievable using the reported equation for the calculation of estimated eSR (see

utations in PTori.
nly when the probability of being a true positive (as given by the calculated eSR) is

hen’s kappa coefficient of agreement between the classification of the predicted



Fig. 5. Predictive performance of Protposer on 1PGA and 1FTG. A comparison of Protposer predictions on the structures of the 56-residue b1 immunoglobulin-binding
domain of streptococcal protein G (1PGA) and of the 168-residue apoflavodoxin (1FTG) with empirical data obtained by Nisthal et al [92] and Sancho and coworkers [47–
48,51–52,55,93–100], respectively, is summarized in the lower part of the figure. Cartoon representations of the three-dimensional structures of each protein are shown with
the residues proposed for mutation displayed as red sticks. Colours used in the summary for each type of mutations according to their DDG experimental values follow the
same code as in supplementary table S2. The average DDG is the average of the DDG values for all proposed mutations for the protein. The accumulated DDG estimates the
DDG for a mutant protein including all proposed mutations by summing up their individualDDG values. If several mutations are proposed for a given position, the first in the
proposed list returned by Protposer is used, as they are ordered from higher to lower eSR. The maximal DDG estimates a scenario where all mutations are tested and only
those with positive DDG are engineered in the final protein, so only positive values of DDG are summed. If several stabilizing mutations are proposed for a given position, the
most stabilizing one is selected. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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A second protein-specific test can be done from the data
obtained in our group on the conformational stability of apoflavo-
doxin [47–48,51–52,55,93–100] using the PDB structure 1FTG
(Fig. 5, supplementary table S3). This protein is not a totally naïve
example, as 26 of the 71 mutations that have been experimentally
analysed were already present in PTori. Protposerdup did 130 pro-
posals for apoflavodoxin, of which 17 had been experimentally
characterized (7 were present in PTori). Out of the 17 proposed
mutations, 5 have a negative experimental DDG value, while 8
are clearly stabilizing (DDG � 0.5 kcal/mol). The obtained average
DDG is 0.45 kcal/mol, with an accumulated DDG of 8.4 kcal/mol
and a maximal DDG of 8.9 kcal/mol. Importantly, the mutations
that are proposed with a high estimated eSR are very successful
as 6 out of the 7 mutations fulfilling the Optimal Kappa criterion
display DDG � 0.5 kcal/mol and only 1 is destabilising. For these
mutations, the average DDG is 0.95 kcal/mol, the accumulated
DDG is 6.66 kcal/mol and the maximal DDG is 6.88 kcal/mol.
These results illustrate the usefulness of Protposer in proposing
mutation lists highly enriched in stabilizing mutations, and indi-
cate that the eSR provided by the server is a good indicator of
the success expectation for proteins that are analysed for the first
time. They also illustrate that, while selecting only the best muta-
tions greatly improves the average stabilization per mutation, even
bigger absolute stabilizations can be obtained, at a higher experi-
mental cost, by individually determining the DDG of the proposed
mutations and combining the non-destabilising ones.

Finally, to carry out a wider and even blinder analysis of
Pirepreddup performance, a completely external mutation dataset
(ED) has been constructed from ThermoMutDB [91], a fairly new
database containing thermodynamic data for protein mutations.
First, any mutation present in PTori was filtered out from Thermo-
MutDB. Then, the 9 proteins with >50 mutations left in Thermo-
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MutDB (1BPI: Bovine pancreatic trypsin inhibitor; 1BVC:
Apomyoglobin from Physeter macrocephalus; 1LZ1: Human lyso-
zyme; 1RGG: Guanyl-specific ribonuclease Sa from Kitasatospora
aureofaciens; 1RX4: Dihydrofolate reductase from E. coli; 1SHF:
SH3 domain of human Fyn; 1TEN: Fibronectin type III domain from
human tenascin; 2LZM: Bacteriophage T4 lysozime and 2RN2:
Ribonuclease H from E. coli) were selected to conform the external
database named ED. Those 9 proteins were analysed using Prot-
poserdup, obtaining with the optimal kappa criterion a PPVs of
66.7%, slightly higher than the corresponding eSR threshold of
64.3 %.

For the larger ED+ external database encompassing both ED and
the two proteins (1PGA and 1FTG) individually analysed, the good
correlation between the estimated eSR and the real PPV deter-
mined from the published stability data (Table 4, Fig. 6B) is main-
tained. Besides, the similar behaviour exhibited by Protposerdup

when tested on either PTori or ED+ (supplementary figure S7) indi-
cates there is no sign of overfitting in the trained Lr model (Lrdup)
used for evaluating the mutations. A strong indication of Protposer
usefulness for pinpointing protein stabilising mutations in ED+ is
the high PPV obtained (73.3 %) and the high mean experimental
DDG (0.8 kcal/mol) for the 15 mutations proposed with the opti-
mal kappa criterion (Table 4, Fig. 6C).

3.5. Protposer coverage, sensitivity to X-ray resolution, and number of
mutation proposals to expect

200 PDB structures were randomly selected to perform 2 cycles
of testing and debugging, using 100 structures in each cycle. After
this process, the percentage of structures for which Protposer suc-
cessfully returned results was of 95%. The 5 % of structures for
which Protposer could not finalize the predictions encompassed



Fig. 6. Predictive performance of the final version of Protposer on ED+. Blue lines describe the performance of Protposerdup, the version of Protposer selected for the
server. The grey line in panel B indicates the behavior expected for an optimal sigmoidal model for the calculation of estimated success rates (eSR), where the estimated
success rates given coincide with the actual positive predictive values. A) Relative number of proposals for each model with eSR over a certain threshold. The relative number
of 1 is obtained using 0% eSR as threshold, which corresponds to 672 proposed mutations. B) Positive Predictive Values (PPV) for each subset of proposed mutations in ED+ all
having estimated eSRs above the indicated threshold. C) Average of the experimental DDG values determined for the proposed mutations in ED+ for which the estimated eSRs
are above the indicated threshold. D) Average of the experimental DDG values determined for the proposed mutations in ED+ vs Positive Predictive Value. The plot is obtained
by calculating the PPV and mean DDG for eSR thresholds between 0 and 100%, separated by 0.5%. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)
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a 2% of structures with incorrect numbering of the PDB file and a
3% of structures rendering a wide variety of rare errors. For the 2
% of structures with incorrect numbering, an informative email is
returned to the user to facilitate the renumbering needed for
resubmitting.

On the other hand, the sensitivity of the program to the X-ray
resolution of the protein structure analysed has been investigated
running the program on several structures of the same proteins
(barnase, flavodoxin and CheY) solved at different resolutions.
The predictions are similar for structures differing in resolution
(from 1.08 to 2.26 Å) (Supplementary Table S6). For these proteins,
the structure with less proposals contained at least 77 % of the total
of all proposed mutations in any of the analyzed structures. The
estimated eSR calculated for the mutations proposed in common
in structures of different resolution correlate well, with Pearson
correlation coefficients always over 0.90, with an average of 0.95.

A rough estimation of the number of mutations that Protposer
will propose for a PDB file of a given length has been obtained from
analysis of predictions on the external database ED+. For those pro-
teins (lengths ranging from 56 to 168 residues), 672 proposals
were made. A linear fit of number of proposals and sequence
2427
length (supplementary figure S8) rendered the following equation
with an R2 value of 0.749.

#proposals ¼ 0:82� length� 42:85

Having into account that the median size of proteins coded in
the genome of Homo sapiens is 414 residues [110], and extrapolat-
ing the obtained fit, the average expected number of proposals for
a human protein is 299, of which an approximate 14% (43 propos-
als) will fulfill the most restrictive selection criterion (optimal j)
yielding a PPV of 69%. Thus, around 29 mutations, each increasing
the stability by > 0.5 kcal/mol, should be expected. However, this
kind of analysis may be more illustrative if done on folding
domains rather than entire multidomain proteins. The reason is
that proteins containing several structural domains [111], and
even some single domain proteins [99], may exhibit a non-fully
cooperative stability behaviour. In those proteins, an individual
domain should be the specific target for stabilization [55]. As the
average length of protein domains is around 150 residues [112–
113], the expected number of proposals per domain is of 80, with
11 of them expected to fulfill the optimal j criterion, meaning that
7–8 of them will each stabilise the domain by at least 0.5 kcal/mol.
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3.6. Comparison with current methods

To compare Protposer performance with that of other software
currently used for calculation of protein stability changes upon
mutation (Table 5), the ED+ dataset has been analysed with FoldX
[32], Rosetta [106–107] and PoPMuSiC [39–41]. These servers have
been selected for comparison with the implemented version of
Protposer available to users, due to their representativeness and
accuracy. One comparison has been done selecting the 10 best
ranked predictions of each server regardless of their predicted
energies. Out of the three tested predictors, the best performance,
evaluated by their PPV, is obtained by PoPMuSiC (28.2 %), followed
by Rossetta (25.5 %) and FoldX (20.9 %). As the best predicted
mutations of the servers may not be stabilising in all cases, a more
stringent and meaningful comparison has been done by focusing
on the best mutations that are specifically predicted as stabilising,
thus discarding any destabilising one. In this selection scenario,
which would be likely favoured by an experienced user, the perfor-
mances of the three servers increase a bit, the best still being that
of PoPMuSiC (PPV of 32.3%), followed by Rosetta (PPV of 29.0 %)
and FoldX (22.1 %). As Protposer estimates the success rate of
the mutations it proposes, its PPV depends on the eSR threshold
used to define the short list of mutations to be implemented. If
no threshold is used, Protposer PPV is of 36.1 %, which increases
to 42.9 % if the Half of Mutations threshold is used, to 56.0 % if
the Classic threshold is used, and to 78.6 % using the Optimal kappa
eSR threshold. The much higher PPV of Protposer with the Oj
threshold (78.6%) compared to that of PoPMuSiC (32.3 %) is statis-
tically significant, having a p-value of 0.0006 in one-sided T test. If
the 7 mutations proposed for 1FTG that are present in ED+ but also
in PTori are removed from the analysis, the PPV of Protposer with
the Oj threshold is of 71.4 %, still much higher than the 32.2 % cal-
culated in that case for PoPMuSiC (Supplementary table S7), with a
p-value in one-sided T test of 0.0193, still significant. Furthermore,
if not only the 10 best mutations for each protein but all mutations
fulfilling the selection criteria for each program are selected (Sup-
plementary table S8), the predictive performance gap between
PoPMuSiC and Protposer with the Oj threshold remains of a sim-
ilar magnitude but, as more mutations are available, the signifi-
cance of these results increases, with a p-value of 0.0005.

3.7. Interface

As previously indicated, Protposerdup has been implemented in
the final version of Protposer (Fig. 1). A user-friendly interface has
been designed to allow both experienced users from protein-
related fields as well as novices an easy access to the server. Few,
simple parameters are requested to launch the calculations, with-
out any special knowledge of bioinformatics required (Fig. 7). The
input screen (Fig. 7A) enables users to upload their own PDB files
or to name one for automated retrieval from the Protein Data Bank
(PDB). In either case, the user must indicate the PDB file chain on
which the calculations will be performed. Besides, a name for the
project and an email address are requested in order to send the
results to the user.

The results page (Fig. 7B) consists of a self-explanatory table dis-
playing the mutations proposed as rows ordered from higher to
lower estimated eSR (i.e. higher to lower chance of increasing the
stability of the protein by >0.5 kcal/mol). The columns are organized
as follows. The first column corresponds to the mutation, expressed
in O#M format, where O and M are, respectively, the original and
mutated residues in one letter amino acid code, and # is a number
specifying the position of the mutation (e.g., D144K represents the
replacement of an aspartic acid residue by lysine at position 144).
The second column shows the estimated eSR calculated for the
mutation, which reflects the actual probability of the mutation
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being stabilizing by at least 0.5 kcal/mol, as calculated by Protposer.
The third to fifth columns give warnings if the mutation affects a
catalytic or binding site of the protein, as defined in the Catalytic
Site Atlas (CSA) or annotated in the PDB file (SITE) or, for oligomeric
proteins, if it takes place at the interface formed by the specific
polypeptide chain that has been analysed and another chain present
in the original PDB file. The sixth column indicates the Protposer
module that initially nominated the proposed mutation. The
remaining six columns show qualitatively the individual evalua-
tions done by each of the evaluating modules, color-coded and
using signs, so that it is accessible for colour-blind users. Each col-
umn contains a brief explanatory help that can be visualized by
hovering over the heading of the column. A legend at the end of
the table provides the full names of the evaluation modules and
their colour and sign codes. Additionally, in the web version of the
report, a protein structure viewer is available for locating the muta-
tion site in the structure upon clicking its name.
4. Discussion

4.1. Need of a simple protein stabilising program with high PPV

Biotechnological and medical use of proteins often requires pre-
viously increasing their conformational stability so that they can
remain active in harsh solution conditions (presence of organic sol-
vents, extreme values of pH or temperature) or be transported and
stored in non-demanding manners. Purely experimental
approaches for protein stabilization have been developed based
on generating protein variants and selecting or identifying the
more stable ones [114–116]. Advantages and disadvantages of
these methods have been discussed elsewhere [117]. On the other
hand, protein biophysicists and bioinformaticians have struggled
to develop automated computational methods that were able to
calculate the effect of specified mutations on protein stability.
Some of those computational methods [32,118–126] have spe-
cialised for their use in genetic interpretation [110] by combining
an evaluation of stability determinants with evolutionary data
reporting in both stability and function. Such methods are not of
use in protein engineering, as they do not provide for the muta-
tions tested neither an estimation of the stability change nor a clas-
sification of mutations purely based on stability considerations.

Many other computational methods have focused on calculat-
ing the change in folding free energy brought about by point muta-
tions (DDGwt�mut

fol ) [27,30,32,60,106,40–41]. As a direct calculation
of that change is still not possible, except for conservative muta-
tions and using computationally demanding methods [127–128],
a variety of empirical energy functions have been derived as prox-
ies for the changes in folding free energy. Several critical evalua-
tions of those methods [25,60] indicate that the correlations they
get between calculated and experimentally determined DDG val-
ues display Pearson correlation coefficients under 0.6, average
unsigned errors over 1 kcal/mol [33], and self-consistency biases
over 0.7 kcal/mol [34]. Those unsigned errors are in the range of
the stability effects commonly observed for point mutations in
proteins. Thus, the calculated stability differences often miss even
the right sign of DDG, predicting as stabilizing mutations that turn
out to be destabilising, or the other way around. In general, those
predictors are much more accurate at calculating destabilizing
mutations (average success rate of 69%) than stabilizing ones (av-
erage success rate of 29.4%) [25,60]. Both the known high imbal-
ance between abundant destabilizing and scarce stabilizing
mutations in the datasets used for training these methods and sub-
optimal selection of scoring features may contribute to their poor
performance [60,101]. It has been suggested that, for reaching
higher accuracies, the training datasets have to be improved



Fig. 7. Protposer input and output interfaces. A) Input screen of the server, with the required fields: the title for the job, the input field to select from uploading a PDB file or
indicating a PDB ID, the target chain, the email address to which the results must be returned, and a checkbox to assert the use of Protposer is non-commercial. B) Output
report. It consists of a self-explanatory result table where, by hovering over the titles of the columns, their contents are briefly explained, as shown for the ‘‘Cons” column. The
scoring results are shown both with a color code and a symbol code to allow for color-blind accessibility. On the right, the 3D visualizer that pops up when a proposed
mutation is clicked on shows mutation D90K in its structural context in PDB 1FTG. Legends at the bottom explain the color code used and the modules that appear in the
table.
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[25,60,101]. Approaches suggested for that include intensive
review of existing databases [101] and their extension using
results from novel techniques such as deep mutational scanning
[60,115]. In this line, in addition to a filtered version of ProTherm,
we have used ThermoMutDB [91], a manually curated database for
protein mutation thermodynamic data. ThermoMutDB includes
some mutations from ProTherm, but it also provides tools for
building external datasets. These tools have been useful to derive
here a naïve external dataset (ED) that does not overlap with
Protherm and has been used to carry out the final test of Protposer
performance.

Two main considerations have made us try in this work a totally
different computational approach for protein stabilization. One is,
indeed, the current difficulty in accurately calculating the change
in DDG associated to a given mutation, which hinders the use of
the quantitative results provided by the programs discussed above
as a guidance to select mutations for engineering more stable pro-
teins. The other is the realization that a biotechnologically oriented
user may have the need to stabilize a protein, but not necessarily
the knowledge for even anticipating which mutations should be
uploaded to those programs for evaluation. Having this in mind,
we have implemented a different approach that aims at being use-
ful for both experienced and non-experienced users, as it does not
require previous expertise in the protein stabilization field to
obtain the results needed. The method is plainly based in analysing
the protein structure of interest in search for opportunities of sta-
bilization by combining and exploiting some of the more success-
ful protein stabilizing strategies discovered by protein engineers
over many years. Some of those strategies are rooted in Biophysics
(e.g. electrostatic interactions optimization or cavity filling) [42–
52] and others are based on sequence analyses and evolutionary
interpretation (e.g. return to consensus or ancestral sequences)
[53–54]. The method integrates the different strategies considered
in a modular nominating algorithm and a logistic regression,
machine learning evaluating model (Lrdup) that performs the anal-
ysis of the protein structure in a fully automated way. Then, it pro-
vides the user with a ranked list of probably stabilizing mutations
ordered by their estimated success rates. It additionally provides
accompanying information that helps to understand why each of
the mutations has been proposed and what makes it to be likely
stabilizing, as well as warnings for mutations that may compro-
mise protein functional sites. Selecting the high ranked mutations
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for engineering into the protein of interest renders a superior per-
formance (higher PPV) to that of current software commonly used
for similar purposes.

4.2. Protposer displays an excellent PPV on an external dataset of
mutations from 11 proteins

Adhering to concerns in the field about the training problem
posed by the low number of stabilizing mutations present in pro-
tein stability mutation databases [60,102,115] we have trained
our model in two ways. On one hand we have trained it using PTori,
a filtered version of Protherm containing 1641 mutations (179 sta-
bilizing: DDG > 0.5 kcal/mol, and 1462 non-stabilizing: DDG � 0.
5 kcal/mol). On the other, we have trained it using a duplicated
[60,102], better balanced dataset (PTdup) containing 1208 stabiliz-
ing and 2028 non-stabilizing mutations. Besides, our scoring fea-
tures have been selected conforming to the recommendation
[101] that they should analyse the type of residues involved in
the mutation and the changes introduced in the surrounding space
in order to reduce overfitting issues. As the imbalance between
positive and negative cases (i.e., stabilising and non-stabilising
mutations) could cause defects and bias in the training and in
the evaluation of the models, we have evaluated the model forcing
the number of positives and negatives to be the same (see meth-
ods). The classification of mutations based on either trained Lr
model is better than that offered by other mutation evaluating
software (Table 3). Among the two models trained, Lrdup performed
better than Lrori towards its training dataset (PTdup) but similarly
well when it was tested on PTori (supplementary figure S5). Addi-
tional analyses performed on Lrdup (Supplementary figure S2) indi-
cate it does not show signs of overfitting. Protposerdup has been
finally selected for implementation on the server available to users
because, when tested on PTori (Fig. 4, supplementary figure S5), it
reaches a slightly higher PPV as well as higher mean experimental
DDG values in the proposed mutations than Protposerori. The final
version of Protposer has been used to propose mutations for the 91
proteins in PTori. Out of the 7318 mutations proposed, 114 are pre-
sent in PTori and can thus be used to estimate the actual PPV of the
method. The PPV achieved by Protposer on PTori for proposed
mutations with eSR above the optimal kappa value is of 61.9 %
(Fig. 4, Supplementary Table S5), remarkably high and far above
the reported [25,32] PPV of 29 % for FoldX when that server is used
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for the search of stabilizing mutations. The PPV values achieved by
Protposer on PTori (Supplementary Table S5) do not seem to be
greatly affected by the exposed or buried position of the mutation,
by its occurrence in b or ab proteins or by the mutation replacing a
residue by another of similar or of larger volume. For a proteins,
short length proteins and large to small substitutions the number
of mutations involved is too low to draw conclusions.

Most importantly, the Protposer predictive power has also been
tested on ED+, an external dataset consisting of 9 structures
selected from ThermoMutDB plus structures 1PGA and 1FTG
(Table 4, Fig. 6). The eSRs calculated by Protposer for each pro-
posed mutation in ED+ (which, in the output of the server appear
reported as ‘‘estimated success rate”) have been compared with
the actual PPVs calculated using the experimental thermodynamic
stability data available for those 11 proteins. The agreement
between estimated eSR and actual PPV is excellent (Fig. 6B), which
suggests the training of the evaluating Lr model in Protposer has
not caused overfitting. Therefore, the proposals of mutations in
proteins outside the training set will be as successful as described
by the estimated eSRs provided by Pirepred. Interestingly, the
observed agreement between estimated eSRs and actual PPVs
seems independent of the crystallographic resolution of the struc-
ture used to propose mutations for a given protein (supplementary
table S6). Moreover, as seen for PTori partitions, the PPV values
achieved by Protposer on ED+ partitions are similar to those
obtained for the entire ED+ dataset (Supplementary Table S5).
Thus, no bias has been found due to structural resolution, residue
size change, residue exposure, protein fold or protein size.

Finally, the usefulness of Protposer as a program readily
proposing protein stabilising mutations has been compared to that
of current commonly used software such as FoldX [32], Rosetta
[106–107] and PoPMuSiC [39–41] using the external database
ED+. Compared with those programs, Protposer offers a clear
improvement (Table 5) in the predictions of stabilizing mutations
(defined as DDG > 0.5 kcal/mol). Out of the 11 proteins for which
the 4 predictors offer their predictions, Protposer exhibits the
higher individual PPV in 5 proteins. Globally, the PPV for the whole
Table 5
Comparison of predictive performance in a real case approach with ED+ between Protpose

Dataset or PDB
file

Predictor

Randomb FoldX FoldX
selc

Rosetta Rosetta
seld

PoPMuSi

ED+ g 14.6% 20.9% 22.1% 25.5% 29.0% 28.2%

1BPI 1.3% 0.0% 0.0% 0.0% 0.0% 0.0%

1BVC 12.2% 10.0% 10.0% 40.0% 40.0% 20.0%

1FTG 22.2% 30.0% 30.0% 30.0% 33.3% 30.0%

1LZ1 10.0% 10.0% 10.0% 10.0% 100.0% 20.0%

1PGA 18.4% 10.0% 10.0% 30.0% 30.0% 50.0%

1RGG 20.5% 50.0% 50.0% 20.0% 20.0% 30.0%

1RX4 5.3% 10.0% 10.0% 0.0% 0.0% 20.0%
1SHF 1.2% 0.0% 0.0% 20.0% 20.0% 0.0%

1TEN 5.3% 10.0% 20.0% 10.0% 11.1% 10.0%

2LZM 7.9% 30.0% 30.0% 30.0% 30.0% 30.0%

2RN2 40.8% 70.0% 70.0% 100.0% 100.0% 100.0%

a The predictive performance is shown as the PPV, considering as actually positive mut
predictor for each PDB, if >10 proposed mutations available. If there are less than 10 prop
ED+ dataset (in bold) or for each individual PDB is underlined and in bold. NA means
mutations for each PDB or the total for the ED+ dataset can be seen in Table S9.

b Calculated as the statistics for the whole ED+ dataset.
c Mutations analyzed in FoldX with a predicted stabilizing DDG (at least 0.5 kcal/mo
d Mutations analyzed in Rosetta with a predicted stabilizing Rosetta Energy Units (mo
e Mutations analyzed in PoPMuSiC with a predicted stabilizing score (negative score)
f Mutations analyzed in Protposerdup. The subscript indicates the selection criterion

mutations (38%), the classic uses an eSR threshold of 50% and the Oj uses a value to optim
g Calculated as the weighted mean of the PPV for all PDBs, with the number of mutat
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ED+ offered by the 4 predictors are: 22% (FoldX); 29% (Rossetta);
32% (PoPMuSiC); and 79% (Protposer). The superiority of Prot-
poser is even larger if a mutation is considered stabilising in a
non restrictive manner (e.g. DDG > 0.0 kcal/mol) (supplementary
table S9) but we believe the biotechnologist should be primarily
interested on the prediction of significantly stabilising mutations
(i.e. DDG > 0.5 kcal/mol), as summarised in Table 5.

4.3. Reflections for future development

Currently, Protposer only proposes single point mutations, not
being able to propose multiple point mutants exhibiting additive
or synergic effects. Some work in the field is being done in the
development of predictors (e.g., Fireprot [56]) that evaluate the
compatibility and synergies of combined mutations. Testing the
usefulness of these approaches is hampered by the lack of large
databases reporting thermodynamic data on single mutations as
well as their combinations. Such databases would be very useful
and they would allow training Protposer-like algorithms to learn
and propose combined mutations. From an experimental perspec-
tive, the combination of individually stabilising mutations has
proved to be very efficient for stabilising proteins by as much as
32 �C [55,116]. A collection of successful application of rational
protein engineering for the stabilization of biocatalysts can be
found in Bommarius et al. [129] Additionally, the development of
databases describing combinations of single point mutations
would enable an in depth study of disulfide bonds, which have also
proved useful for protein stabilisation [130–131].

At this point, we would like to bring attention to an intrinsic
limitation of any method that aspires to design protein stabilizing
mutations. Protein engineers tend to assume a two-state equilib-
rium behaviour for their proteins of interest. Where that is true,
the local stabilization impact introduced by a given point mutation
will certainly increase the overall stability of the protein, thus hav-
ing the expected beneficial biotechnological effect. However, as it
has been illustrated by theory and experiment [98–99,132], this
is not necessarily true for non-two state proteins. In fact, when
r and currently used similar purpose softwarea.

C PoPMuSiC
sele

Protposerdup
f

ProtposerdupHM
f

Protposerdupclassic
f

ProtposerdupOj
f

32.3% 36.1% 42.9% 56.0% 78.6%
0.0% 0.0% 0.0% 0.0% NA

20.0% 50.0% 50.0% 66.7% NA

30.0% 60.0% 60.0% 60.0% 85.7%
20.0% 33.3% 50.0% NA NA

50.0% 42.8% 50.0% 50.0% 100.0%
33.3% 20.0% 25.0% 25.0% 33.3%

20.0% 0.0% 0.0% 0.0% NA

0.0% 0.0% 0.0% 0.0% NA

0.0% 0.0% NA NA NA

30.0% 20.0% 33.3% 100.0% 100.0%

100.0% 60.0% 50.0% 100.0% 100.0%

ations those with a DDG higher than 0.5 kcal/mol for the best 10 mutations of each
osed mutations, all proposed mutations are considered. The best result for the whole
there were no mutations fulfilling criteria for selection. The number of proposed

l lower DGfol for the mutant than for the WT structure after SCWRL processing).
re negative score for the mutant than for the WT structure after SCWRL processing).
.
used: the HM criterion uses an eSR threshold that leaves out half of the proposed
ize Cohen’s kappa coefficient (64,3%).

ions evaluated as weights.



H. García-Cebollada, A. López and J. Sancho Computational and Structural Biotechnology Journal 20 (2022) 2415–2433
the goal is to stabilise a three-state (or more-state) protein, the
least stable domain should be specifically acted upon [55], because
acting on any of the other domains will only stabilise partly
unfolded intermediates of the protein likely deprived of biotechno-
logical interest [98]. It is important to tackle and overcome this
limitation, and further work to intertwine algorithms for protein
stabilization, such as Protposer, with algorithms predicting unsta-
ble subdomains [133] may result in further advances in the field of
protein stabilization.

In its final web implementation, Protposer constitutes a very
efficient mutation classifier that provides an unusual and very con-
venient functionality lacking in other protein stability predicting
software. From a PDB file, Protposer identifies highly likely stabi-
lizing mutations for biotechnologists and other users who do not
need to be trained in structural biophysics to run a query in the
server or interpret the resulting predictions. By doing so, Protposer
allows users to focus their efforts on expressing and testing the
potentially improved variants. For an average protein domain of
150 residues, Protposer users will be typically offered 11 muta-
tions for testing, of which 7–8 will increase the stability of the pro-
tein by>0.5 kcal/mol each, which exceed the performance currently
offered by programs commonly used for the same purpose. The

Protposer server is freely available for academic use at http://we-

bapps.bifi.es/the-protposer.

5. Conclusions

We have designed Protposer, a user-friendly protein mutation
proposal and evaluation software of free academic use, destined
to facilitate protein stabilisation for biotechnological applications.
Protposer overcomes some limitations of previous stability predic-
tors providing a higher positive predictive value, which allows
users to focus on the engineering and testing of just a few muta-
tions exhibiting a high probability of improving the stability of
their proteins of interest.
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