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Abstract Autophagy represents an intracellular degra-

dation process which is involved in both cellular

homeostasis and disease settings. In the last two decades,

the molecular machinery governing this process has been

characterized in detail. To date, several key factors regu-

lating this intracellular degradation process have been

identified. The so-called autophagy-related (ATG) genes

and proteins are central to this process. However, several

additional molecules contribute to the outcome of an

autophagic response. Several review articles describing the

molecular process of autophagy have been published in the

recent past. In this review article we would like to add the

most recent findings to this knowledge, and to give an

overview of the network character of the autophagy sig-

naling machinery.

Keywords Autophagy � ATG � ULK � PtdIns3K �
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Introduction

The term autophagy originates from the Greek expressions

aùsó1 (autos = self) and uaceı̂m (phagein = to eat), lit-

erally meaning the self-eating of a cell. Next to the

ubiquitin–proteasome system (UPS), autophagy is a major

pathway for the degradation of intracellular cargo.

Autophagy occurs at basal levels in any cell to carry out the

proper degradation of long-lived proteins, protein aggre-

gates or damaged organelles, ultimately ensuring cellular

homeostasis. However, different stress conditions can

cause the active induction of the autophagic machinery.

These stress conditions include nutrient deprivation,

growth factor withdrawal, hypoxia, or pathogen infection.

Of note, the basic autophagic machinery is conserved

among different eukaryotes, including yeast, animals, and

plants.

Types of autophagy and morphology

In 1962, Ashford and Porter observed cytoplasmic com-

ponents, i.e., mitochondria or remnants thereof, in

lysosomes of hepatic cells which had been perfused with

glucagon [1]. In the same year, Novikoff and Essner

observed similar mitochondria-containing vacuoles in

hepatic cells from mice intravenously treated with the

detergent Triton WR-1339 [2]. They termed these struc-

tures cytolysomes. In 1963, Christian de Duve suggested

the name ‘‘autophagic vacuoles’’ for these cytolysomes and

‘‘autophagy’’ for the process of cellular self-eating [3].

Today, autophagy has become one of the most intensely

investigated fields of cell biological research. This might

partly be attributed to the fact that the process of autophagy

or its dysregulation contribute to the onset of diverse

human diseases or clinically relevant processes, including

cancer, neurodegeneration, immune responses, or aging [4–

7]. There exist three types of autophagy, i.e., macroau-

tophagy, microautophagy, and chaperone-mediated

autophagy [8]. Within chaperone-mediated autophagy,
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target proteins are directly recognized by cytosolic chap-

erones and transported across the lysosomal membrane [8].

Microautophagy describes a process by which the lysoso-

mal membrane directly engulfs small portions of the

cytoplasm [8]. During the process of macroautophagy

(herein referred to as autophagy), cytoplasmic cargo is

enveloped within a double-membraned vesicle, called

autophagosome. Autophagosomes are transported to and

fuse with lysosomes, leading to the generation of

autolysosomes. Within autolysosomes, the sequestered

cargo and the inner membrane of the autophagosome are

degraded, and the resulting molecular building blocks such

as amino acids or fatty acids are transported back to the

cytosol through lysosomal permeases and are available for

anabolic processes [9, 10]. Autophagy might be non-se-

lective, leading to the bulk degradation of cytoplasm.

However, in recent years different selective forms of

autophagy have been identified and characterized, leading

to the specific degradation of organelles or pathogens.

These selective pathways include the autophagic degrada-

tion of mitochondria (mitophagy), peroxisomes

(pexophagy), endoplasmic reticulum (reticulophagy or ER-

phagy), ribosomes (ribophagy), protein aggregates (ag-

grephagy), lipid droplets (lipophagy), spermatozoon-

inherited organelles following fertilization (allophagy),

secretory granules within pancreatic cells (zymophagy), or

intracellular pathogens (xenophagy) [11–14].

The formation of autophagosomes is a central hallmark

of autophagy, and includes different discrete steps, i.e.,

nucleation, elongation and closure of the double-mem-

braned vesicle. The cellular source of the autophagosomal

membrane has been controversially discussed in the recent

past. In yeast, a specific platform for the biogenesis of

autophagosomes has been identified, the pre-autophagoso-

mal structure (PAS) [15]. The PAS is a single punctate

structure adjacent to the yeast vacuole, where most of the

Atg proteins (see below) are present [8]. From the PAS the

phagophore (also referred to as isolation membrane, IM) is

generated, which envelopes cytoplasmic cargo to ulti-

mately form the complete autophagosome [8]. In 2008,

Axe et al. reported that the phosphatidylinositol 3-phos-

phate (PtdIns3P)-binding protein double FYVE domain-

containing protein 1 (DFCP1) translocates to a punctate

compartment upon nutrient starvation in mammalian cells

[16]. The observed compartment is in dynamic equilibrium

with the ER and provides a platform for the generation of

the phagophore and the release of fully formed

autophagosomes [16]. Since these structures were seen in

association with the underlying ER forming an X-like
shape, the authors termed them ‘‘omegasomes’’ [16].

Interestingly, so far no DFCP1 homolog has been reported

for yeast [16]. Two further groups confirmed the physical

connection between the ER and the phagophore by 3D

electron microscopy [17, 18]. Collectively, these results

strongly suggest that the phagophore originates from spe-

cialized subdomains of the ER. However, different other

sources for autophagosomal membrane lipids have been

suggested, including mitochondria, the Golgi complex,

recycling endosomes, the nuclear envelope and the plasma

membrane (reviewed in [8, 19, 20]). For example, it has

been reported that mitochondria supply membranes for

autophagosomes during starvation [21]. Apparently,

autophagosome formation is dependent on ER/mitochon-

dria connections. It has been proposed that these

connections are necessary to transfer phosphatidylserine

(PS) to the mitochondria, where PS is converted to phos-

phatidylethanolamine (PE). PE in turn is the target of Atg8/

LC3-conjugation (described in ‘‘Two ubiquitin-like con-

jugation systems in autophagy: Atg12/ATG12–Atg5/ATG5

and Atg8/LC3–PE’’). It has also been reported that

autophagosomes themselves form at ER–mitochondria

contact sites [22]. Recent data indicate that several specific

organelles contribute to autophagosome formation, e.g.,

ER exit sites (ERES), coat protein II (COPII)-coated

vesicles leaving the ERES, or the ER–Golgi intermediate

compartment (ERGIC) [23–25]. Biazik et al. reported that

forming phagophores can have multiple simultaneous

membrane contact sites with surrounding organelles [26].

Presumably, different sources contribute to the completion

of autophagosomes, presumably also depending on the

autophagy-inducing stimulus and on the cargo to be

degraded.

Molecular regulation of autophagy

In the late 1990s, another era of autophagy research has

evolved, leading to the molecular characterization of this

process [27]. In 1993, Tsukada and Ohsumi reported the

isolation and characterization of 15 S. cerevisiae mutants

that displayed defective autophagy and named them apg1-

15 (autophagy) [28]. Similar screens were performed by

other research groups, and the identified mutants defective

in either autophagy, pexophagy, or the cytoplasm-to-vac-

uole pathway were called aut, cvt, pdd, gsa, pag, or paz,

respectively [29–35]. In 2003, a unified nomenclature for

the so-called autophagy-related genes/proteins, Atgs, was

proposed [30]. Recently, yeast Atg39 and Atg40 have been

identified as receptors which are apparently involved in the

selective removal of the cytoplasmic and perinuclear ER

and the nucleus [36]. Most of the yeast Atgs have homo-

logs in the mammalian system (abbreviated as ATGs).

However, sometimes homology is only based on function

but not on sequence. Additionally, there exists one mam-

malian ATG, ATG101, which does not have an obvious

counterpart in yeast [37, 38]. Frequently, in mammals
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different isoforms of a certain yeast Atg exist. Furthermore,

different non-ATG proteins are involved in the regulation

and process of autophagy, e.g., the mammalian/mechanis-

tic target of rapamycin (mTOR), AMPK, AKT, AMBRA1,

BCL2, DFCP1, or vacuolar protein sorting protein 34

(VPS34), which is the catalytic subunit of the class III

phosphatidylinositol 3-kinase (PtdIns3K). Finally, different

functions of ATGs in non-autophagic processes have been

reported and are likely to emerge in the future (reviewed in

[39]).

Functionally, mammalian ATGs can be subdivided in

six functional clusters (Fig. 1): (1) the ULK1–ATG13–

FIP200–ATG101 protein kinase complex; (2) the PtdIns3K

class III complex containing the core proteins VPS34,

VPS15 and Beclin 1; (3) the PtdIns3P-binding WIPI/

ATG18–ATG2 complex; (4) the multi-spanning trans-

membrane protein ATG9A; (5) the ubiquitin-like ATG5/

ATG12 system and (6) the ubiquitin-like ATG8/LC3

conjugation system (reviewed in [8]). These six modules

regulate different steps during autophagosome biogenesis,

i.e., vesicle nucleation, elongation of the autophagosomal

membrane, and autophagosome completion. In the fol-

lowing, the autophagy-related functions of these six

modules and their crosstalk will be described in detail, with

the main focus laid onto the autophagy-initiating ULK1

kinase complex.

The Atg1/ULK1 complex

The yeast Atg1–Atg13–Atg17 complex

In 1997, Matsuura et al. showed that the apg1/atg1 gene

discovered in their first screen for autophagy-defective

yeast strains encodes a protein kinase (Apg1p/Atg1), and

they reported an overall homology to C. elegans UNC-51

protein [40]. Furthermore, they showed that Atg1 overex-

pression suppressed the autophagy-defective phenotype in

the Dapg13/atg13 strain, indicating a linkage between Atg1

Fig. 1 Functional clusters of

autophagy signaling. 1 The

ULK1–ATG13–FIP200–ATG101

protein kinase complex, 2 the

PtdIns3K class III complex

containing the core proteins

VPS34, VPS15 and Beclin 1, 3 the

multi-spanning transmembrane

protein ATG9A, 4 the PtdIns3P-

binding WIPI/ATG18–ATG2

complex, 5 the ubiquitin-like

ATG5/ATG12 system and 6 the

ubiquitin-like ATG8/LC3

conjugation system. For the ULK1

complex, mTOR-dependent

inhibitory phosphorylations are

depicted as red arrows, and

ULK1-dependent activatory

phosphorylations are depicted as

black arrows. For the PtdIns3K

class III complex, the mutually

exclusive interactions of ATG14

or UVRAG with Beclin 1 are—for

simplicity—shown within one

complex
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and Atg13 [41]. In the following years, the exact molecular

details of the Atg1-dependent initiation of autophagy were

deciphered. Yeast Atg1 associates with pathway-specific

sets of Atg proteins, regulating either canonical autophagy

or the yeast-specific cytoplasm-to-vacuole targeting (Cvt)

pathway, respectively (reviewed in [42–45]). During

canonical autophagy, Atg1 associates with Atg13, Atg17,

Atg29 and Atg31. In contrast, during the Cvt pathway,

Atg1 interacts with Atg11, Atg13, Atg20, Atg24 and Vac8

[44]. Accordingly, Atg17, Atg29 and Atg31 are selectively

important for autophagy [46–48]. These three Atgs form a

complex which is constitutively assembled and represents a

scaffold for the recruitment of further Atgs to the PAS [49–

51]. Upon starvation, Atg1 binds to Atg17, and this asso-

ciation is primarily mediated by Atg13 [52, 53]. Both the

Atg1–Atg13 kinase complex and the autophagy-specific

Atg17–Atg29–Atg31 complex cooperatively regulate the

subsequent recruitment of downstream Atgs to the PAS,

and for this function their physical interaction is mandatory

[50, 54].

In 1998, it was reported that autophagy is negatively

regulated by the protein kinase target of rapamycin (TOR),

and that rapamycin accordingly induces the autophagic flux

[55]. Two years later, Kamada et al. published a pioneering

work demonstrating that this TOR-dependent control of

autophagy is mediated by the Atg1 kinase complex [47].

The authors observed that both starvation and rapamycin

enhanced the kinase activity of Atg1. Furthermore, Atg13

is hyperphosphorylated by TOR, resulting in a reduced

affinity to Atg1. Accordingly, rapamycin treatment favors

the dephosphorylation of Atg13 and its association with

Atg1, resulting in increased Atg1 activity. Finally, the

authors reported that rapamycin-induced Atg1 activity was

decreased in the Datg17 strain, indicating that both Atg13

and Atg17 are important for Atg1 activation [47]. Subse-

quently the same group discovered that TOR

phosphorylates Atg13 at S437, S438, S646, and S649. The

authors mutated these four sites and four additional puta-

tive TOR sites (S348, S496, S535, S541) to alanines, and

demonstrated that expression of the nonphosphorylatable

Atg13-8SA mutant induced autophagy independently of

TOR activity or nutrient status, apparently mimicking

rapamycin treatment [56].

Notably, it has also been reported that Atg1 and Atg13

constitutively interact in vivo, irrespective of nutrient

availability [57]. This situation would resemble the ULK1

complex constitution in higher eukaryotes (see below).

Although the authors confirmed that binding of Atg13 to

Atg1 indeed promotes its kinase activity and is important

for efficient autophagy in vivo, the described observation

would suggest that Atg1 activation in yeast is not exclu-

sively controlled by regulated Atg13 binding, but rather

involves additional levels of control. This could include

conformational alterations or recruitment of additional

factors regulated by the Atg13 phospho-status. Addition-

ally, Atg1 phosphorylation itself is important for

activation, as confirmed by two independent studies [58,

59]. However, next to TOR-regulation and Atg1

autophosphorylation additional kinases have been impli-

cated in the regulation of the yeast Atg1–Atg13 complex,

including PKA, Ksp1, Sch9 (yeast ortholog of mammalian

AKT or p70S6K), or Snf1p [yeast ortholog of the mam-

malian AMP-activated protein kinase (AMPK)] [60–64].

Additionally, the phospho-status of the Atg1–Atg13 com-

plex is likely to be regulated by phosphatases [65]. With

regard to the downstream Atg1 substrates which regulate

the initiation of autophagy in yeast, the current knowledge

is less complete. Although different in vitro substrates have

been identified for Atg1 by a global phosphorylation

analysis, including Atg8 and Atg18, their in vivo relevance

awaits further confirmation [66]. Previously it has been

reported that Atg9 cycling depends on Atg1–Atg13 (de-

scribed in ‘‘Atg9/ATG9A’’), but apparently the kinase

activity of Atg1 is not important [67]. Nevertheless,

recently it has been reported that Atg1 can directly phos-

phorylate Atg9 and that this phosphosphorylation is

required for the efficient recruitment of Atg8 and Atg18 to

the site of autophagosome formation and subsequent

expansion of the IM [68]. Identified Atg1 substrates are

summarized in Table 1.

In the last few years, the understanding of the signal

transduction by the yeast Atg1 complex has significantly

been complemented by several works investigating its

structure. Ragusa et al. reported the crystal structure of a

2:2:2 complex of Atg17, Atg29 and Atg31 [69]. Atg17 is

crescent-shaped with a 10 nm radius of curvature. During

PAS organization and autophagy, the Atg17–Atg29–Atg31

complex dimerizes, and each dimer contains two complete

crescents. The C-terminal ‘‘early autophagy targeting/

tethering’’ (EAT) domain of Atg1 senses membrane cur-

vature, dimerizes, and tethers lipid vesicles [69]. This

double-crescent/S-shape architecture was also reported by

Chew et al. [70]. The crystal structure of the N-terminal

domain of yeast Atg13 has also been published [71]. Atg13

contains a HORMA (Hop1p, Rev7p, Mad2) domain at its N

terminus. The HORMA domain is dispensable for the

interaction with Atg1 or Atg13 recruitment to the PAS, but

is apparently required for autophagy and the recruitment of

the PtdIns3K subunit Atg14 (see ‘‘The PtdIns3K class III

complex’’) [71]. Furthermore, it has been reported that the

Atg13 HORMA domain recruits Atg9 vesicles during

autophagosome formation [72]. Fujioka et al. reported the

X-ray crystallographic analysis of the interaction of yeast

Atg13 with Atg1 and Atg17 [73]. Atg13 binds tandem

microtubule interacting and transport (tMIT) domains in

Atg1 via a 2-part MIT interacting motif (residues
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460–521). Additionally, the Atg17-binding region was

mapped to amino acids 424–436 of Atg13. The authors

propose that starvation-induced dephosphorylation of

specific serine residues in Atg13 enhances the interaction

with both Atg1 and Atg17, directly explaining the TOR-

dependent regulation of these interactions described above.

The Atg1–Atg13 interaction was essentially confirmed by

Stjepanovic et al. [74]. They report that Atg1–Atg13

complex binds as a unit to the Atg17–Atg31–Atg29 scaf-

fold with *10-lM affinity via Atg13. The resulting

complex consists primarily of a dimer of pentamers in

solution [74]. Recently, it has been shown that the PAS

contains *28 copies of Atg17 and—upon autophagy

induction—similar numbers of Atg1 and Atg13 molecules

[75]. Furthermore, they observe tetramers of Atg1 pen-

tamers that assemble via Atg17–Atg31–Atg29, ultimately

proposing a model for the higher organization of the Atg1

complex at the PAS [75]. Further aspects about the struc-

tural analyses of the Atg1 complex have been summarized

in a recent review article by Noda and Fujioka [76].

The ULK1–ATG13–FIP200–ATG101 complex in higher

eukaryotes

Atg1 has orthologs in the nematode C. elegans and the fruit

fly D. melanogaster, i.e., UNC-51 and ATG1, respectively.

In mammals, so far five orthologs have been identified, i.e.,

ULK1, ULK2, ULK3, ULK4, and STK36 (also termed

Fused homolog) (reviewed in [42–45, 77]). In 1998, mur-

ine ULK1 was cloned and its similarity to yeast Atg1 and

C. elegans UNC-51 was reported [78]. ULK1 consists of an

N-terminal serine/threonine protein kinase domain, fol-

lowed by a proline/serine (P/S)-rich domain and a

conserved C-terminal domain (CTD). Shortly afterwards

the same group reported the identification of human ULK1

and murine ULK2, respectively [79, 80]. In 2007, ULK1

was identified as an autophagy-modulating kinase by an

siRNA screen of the kinome [81]. Knockdown of ULK1 in

HEK293 cells blocked the autophagic response upon amino

acid starvation or rapamycin treatment, respectively. ULK1

and ULK2 colocalize with ATG16L1 (see ‘‘Two ubiquitin-

like conjugation systems in autophagy: Atg12/ATG12–

Atg5/ATG5 and Atg8/LC3–PE’’) and are accordingly tar-

geted to the phagophore [82]. Notably, knockdown of

ULK2 did not reveal any effect on autophagy induction in

HEK293 cells, indicating that at least in this cellular sys-

tem ULK1 and ULK2 cannot compensate each other [81].

However, compensatory roles of these two kinases can be

deduced from the corresponding knockout mouse models.

ULK1-deficient mice are viable and survive neonatal

starvation periods [83]. Nonetheless, these mice reveal a

delayed clearance of mitochondria from reticulocytes,

indicating some differential roles of ULK1 and ULK2 for

selective autophagy in general and for mitophagy in par-

ticular. Similarly, Ulk2-/- mice are viable and do not show

an overt autophagy phenotype [84]. In contrast, ULK1/2-

double-deficient mice die shortly after birth, similar to

mice deficient for ATG3, ATG5 or ATG7 [84]. Further-

more, autophagy induced by amino acid starvation is

blocked in MEFs of these double-deficient mice [84]. The

homology between ULK1 and ULK2 comprises the full

length of the kinases, i.e., kinase domain, PS-rich domain,

and CTD. In contrast, homology towards the other ULK

family members is restricted to the kinase domain (re-

viewed in [42–45, 77]). However, ULK3 overexpression

induced autophagy and premature senescence in a human

fetal lung fibroblast cell line [85].

In 2007, Meijer et al. analyzed the degree of conserva-

tion for different Atgs/ATGs between different species

[86]. They predicted that the protein KIAA0652 represents

the human ortholog of yeast Atg13. Notably, they failed to

identify Atg17 and Atg29 orthologs in higher eukaryotes

[86]. Additionally, an Atg31 ortholog has not been reported

in higher eukaryotes so far [8, 43]. However, in 2008 Hara

et al. reported that the focal adhesion kinase family inter-

acting protein of 200 kDa (FIP200) is an ULK1-interacting

protein (Fig. 1, panel 1) [82]. Originally, FIP200 has been

identified as a proline-rich tyrosine kinase 2 (Pyk2)- and

focal adhesion kinase (FAK)-interacting protein which

inhibits Pyk2 and FAK by direct binding to the kinase

domains [87, 88]. FIP200 is also referred to as

retinoblastoma 1-inducible coiled-coil 1 (RB1CC1) [89].

FIP200 is ubiquitously expressed and is involved in mul-

tiple cellular processes (reviewed in [90]). According to

these multiple roles performed by FIP200, several FIP200-

interacting proteins next to Pyk2 and FAK have been

identified so far, including ATG16L1 (see ‘‘Two ubiquitin-

like conjugation systems in autophagy: Atg12/ATG12–

Atg5/ATG5 and Atg8/LC3–PE’’), TSC1, p53, PP1, ASK1,

TRAF2, Arkadia E3-ligase, COP1 E3-ligase, hSNF5,

PIASy, b-catenin, ActA, and stathmin [91–105]. FIP200

comprises a putative nuclear localization signal (NLS)

within the N-terminal half of the protein, a large coiled-coil

domain and a leucine zipper motif at the C terminus [90].

FIP200 has been reported to localize in the cytoplasm, the

nucleus and at focal adhesions [90]. The interaction

between ULK1 and FIP200 requires the CTD of ULK1,

and—similar to ULK1/2—FIP200 localizes to the phago-

phore upon starvation [82]. Furthermore, in FIP200-

deficient MEFs autophagy induction is blocked, and the

defect in autophagosome formation occurs downstream of

mTOR [82]. Within the ‘‘Discussion’’ section of this first

report demonstrating the importance of FIP200 for auto-

phagy, the authors already speculate that FIP200 might

represent the functional counterpart of yeast Atg17, due to

several functional and architectural similarities [82, 106].
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As described below, this assumption was subsequently

confirmed by several reports.

Following the prediction by Meijer et al., several groups

demonstrated that KIAA0652 indeed represents the human

ATG13 ortholog (Fig. 1, panel 1) [107–110]. Furthermore,

three of these reports deciphered the mechanistic details

how mTOR regulates autophagy through the mammalian

ULK1–ATG13–FIP200 complex. Human ATG13 is a 517

aa protein (isoform 1) and exhibits a 16 % identity to its

yeast ortholog [109]. Chan et al. showed that knockdown

of ATG13 blocks starvation-induced LC3 lipidation and

ATG9A redistribution. They found that ATG13 binds to

the CTD of Ulk1/2 [107]. Additionally, it was demon-

strated that ATG13 serves as substrate for ULK1/2 and that

the association between ULK proteins and ATG13 is not

affected by the nutritional status or ATG13 phosphoryla-

tion [107]. In three almost simultaneously published

studies, the mechanistic details how the mammalian

ULK1–ATG13–FIP200 complex regulates autophagy and

how mTOR transduces signals to this complex were elu-

cidated [108–110]. ATG13 interacts with both ULK1/2 and

FIP200 [108–110]. It appears that the association between

ULK1 and FIP200 significantly depends on ATG13, but

one group also demonstrated that ULK1 can independently

interact with ATG13 and FIP200 [108]. Kim’s group

reported that the last 75 aa of ATG13 are mandatory for

ULK1/2 binding, and the last 134 aa for binding of both

FIP200 and ULK1/2 [110]. We have recently fine-mapped

the interaction sites between ATG13/ULK1 and ATG13/

FIP200, respectively. It appears that the last three amino

acids of ATG13 control binding to ULK1 and that the

peptide sequence encoded by exon 14 of the human ATG13

gene mediates binding to FIP200 ([111] and unpublished

results). Size exclusion analyses by Mizushima’s group

revealed that ULK1, ATG13 and FIP200 can be detected

within a 3-MDa complex [109]. FIP200 is exclusively

found in this mega-complex, and this complex cannot be

detected in FIP200-/- cells, indicating that FIP200 sig-

nificantly contributes to the elution volume of this

complex. The Jiang group performed size exclusion

experiments with recombinant proteins and observed the

three components within a complex with a molecular

weight[1 MDa [108]. All three components of the com-

plex localize to the phagophore upon induction of

autophagy, and the assembly of the complex is not sensi-

tive to starvation. Furthermore, ATG13 and FIP200 are

required for maximal ULK1 kinase activity, ULK1 stabil-

ity, and ULK1 recruitment to the phagophore. In turn, both

ATG13 and FIP200 are substrates for ULK proteins. All

three groups observed that either starvation or rapamycin

treatment results in a faster migration of ULK1 and ATG13

in SDS-PAGE, and all three groups clearly demonstrated

that mTOR phosphorylates both ULK1 and ATG13 [108–

110]. Furthermore, Hosokawa et al. showed that the mTOR

complex 1 (mTORC1) associates with the 3-MDa complex

under nutrient-rich conditions and dissociates under star-

vation [109]. This interaction is mediated by the mTORC1

component RAPTOR and the PS-domain of ULK1. Of

note, the mTORC1 binding site has alternatively been

mapped to the kinase domain of ULK1 [112]. Accordingly,

the ATG13-interacting CTD of ULK1 is not necessary for

mTORC1 recruitment [109].

The fourth component of the ULK kinase complex has

been identified and characterized independently by two

groups. This component does not have any obvious

ortholog in S. cerevisiae and was thus termed ATG101 [37,

38]. Of note, the closely related fission yeast S. pombe

harbors an ATG101 ortholog (alternatively named Mug66)

[37, 113–115]. ATG101 directly interacts with the ULK1

kinase complex through ATG13, and this association is

independent of nutrient supply [37]. Mercer et al. mapped

the ATG101-binding site in ATG13 to amino acids

112–220 [38]. In contrast to the results described above,

the binding site of ATG13–ATG101 within ULK1 was

mapped to the N-terminal half of the PS-rich domain,

proximal to the kinase domain [38]. Notably, siRNA-me-

diated depletion of ATG101 suppresses GFP-LC3 puncta

formation or GST-BHMT fragmentation, indicating that

ATG101 is essential for autophagy [37, 38]. Although

yeast and higher eukaryotes share some overlapping com-

ponents of the Atg1/ULK1 complexes, e.g., Atg1/ULK1

itself and ATG13, there exist significant differences in

complex constitution. As described above, yeast Atg11 and

Atg17 serve as scaffolds during Cvt pathway or autophagy,

respectively. It appears that FIP200 and ATG101 have

overtaken some corresponding functions, since primary

sequence orthologs of Atg11 and Atg17 do not exist in

higher eukaryotes. Although FIP200 presumably represents

a functional Atg17 ortholog [106], it should be noted that

FIP200 is listed as Atg11 family member in the NCBI

Pfam database and is structurally similar to S. pombe and

C. elegans Atg11s [116]. Additionally, ATG101 has been

reported to show similarity to yeast Atg17 [116].

To date, structural analyses of the ULK1 complex in

higher eukaryotes remain less advanced compared to their

yeast orthologs, but some interesting observations have

recently been published. Suzuki et al. reported the struc-

tural analysis of the S. pombe Atg101–Atg13 complex

[115]. The fission yeast S. pombe is a suitable model sys-

tem for studying the mammalian ULK complex, since it

conserves Atg1, Atg13, Atg17 and Atg101 orthologs, but

not Atg29 and Atg31 [114, 115]. S. pombe Atg101 harbors

a HORMA domain similar to that of Atg13. The HORMA-

domain protein Mad2 has an open (O) and a closed

(C) conformation, and it appears that Atg101 has a locked

O-Mad2-like confirmation and stabilizes the C-Mad2-like
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conformation of Atg13. This in turn leads to the recruit-

ment of downstream factors to the autophagosome

formation site. In a parallel work, Michel et al. reported the

crystal structure of human ATG101 [117]. The authors

confirm the existence of ATG101 in a O-Mad2-like con-

formation. They also describe the presence of three large

insertions relative to Mad2 (extensions 1, 2 and 3), which

are all located to one pole of the molecule. Interestingly,

extension 1 is missing in S. pombe Atg101, and extension 3

is significantly shorter [117]. The exact function of these

extensions has to be unraveled in the future. Finally, the

crystal structure of the ULK1 kinase domain in complex

with different inhibitors has been reported by Lazarus et al.

[118]. Whether the interaction mode between ATG13 and

ULK1 is conserved in higher eukaryotes awaits further

clarification, since (1) yeast and mammalian Atg13/ATG13

are not very homologous and (2) we observed that this

interaction is—not necessarily directly mediated but at

least—controlled by the last three amino acids of ATG13

[111].

Taking all the experimental observations summarized

above into consideration, the following model has been

established [Figs. 1 (panel 1), 2]: under nutrient-rich con-

ditions, mTORC1 associates with the ULK1–ATG13–

FIP200–ATG101 complex and phosphorylates ULK1 and

ATG13. Under starvation conditions, mTORC1 dissociates

from this mega-complex, and the inhibitory mTOR-depen-

dent phospho-sites within ULK1 and ATG13 become

dephosphorylated. Active ULK1 then autophosphorylates

and phosphorylates ATG13 and FIP200, ultimately leading

to the initiation of autophagosome formation. However, this

proposed model leaves central remaining questions open,

which will be partially addressed below or are currently

being investigated: (1) how does mTOR-dependent phos-

phorylation of ULK1 and ATG13 keep the constitutively

assembled complex in an inactive state; (2) which phos-

phatases dephosphorylate these inhibitory mTOR-sites and

how does this contribute to the activation of the complex; (3)

how is the phospho-status of ULK1 and ATG13 regulated in

mTOR-independent pathways; (4) what is the role of the

ULK-dependent phospho-sites in ATG13 and FIP200; (5)

are additional interacting proteins and/or further post-trans-

lational modifications of this complex necessary for its

autophagy-inducing function, andmost importantly; (6) how

does the ULK1–ATG13–FIP200–ATG101 complex initiate

the downstream autophagy signaling machinery?

Regulation of the ULK complex by post-translational

modifications and downstream effectors

According to the above described model, the phospho-

status of the ULK1–ATG13–FIP200–ATG101 complex is

central for the regulation of autophagic processes. In

general, global phosphorylation of ULK1 and ATG13 is

decreased under starvation conditions and FIP200 phos-

phorylation is decreased under fed conditions [44, 45, 108–

110]. In other words, it appears that the phospo-status of

ULK1 and ATG13 primarily depends on mTOR, whereas

the phospho-status of FIP200 mainly depends on ULK1,

respectively. Several groups identified phosphorylation

sites within ULK1 by mass spectrometry (see supplemental

Table 1), both under nutrient-rich and starvation conditions

[119–121]. These phospho-acceptor sites are distributed

over the full length protein, i.e., within the kinase domain,

the PS-rich domain and the CTD. These proteomic screens

revealed that some of the sites are constitutively phos-

phorylated whereas others show a dependency on the

nutritional conditions. With regard to ULK1-dependent

sites in ATG13, seven phospho-acceptor sites have been

published [121–123]. The SILAC-based approach by

Shang et al. revealed that total phosphorylation levels of

ATG13 were low under nutrient-rich conditions and stayed

largely unaltered upon starvation [121]. The authors could

only identify phosphorylation of ATG13 S361 (isoform 1),

and phosphorylation of this site did not significantly

change during starvation [121]. This would indicate that

rather the ULK1 phospho-status than the ATG13 phospho-

status governs autophagy initiation. Joo et al. showed that

the Hsp90–Cdc37 chaperone complex regulates mitophagy

by modulating ULK1 stability and function. They reported

that ULK1-mediated phosphorylation of ATG13 at S318

(isoform 2; corresponds to S355 in isoform 1) is required

for the release of ATG13 from an ULK1–Hsp90–Cdc37

complex and for the recruitment of ATG13 to damaged

mitochondria, where it contributes to Parkin-mediated

mitophagy (see ‘‘Two ubiquitin-like conjugation systems in

autophagy: Atg12/ATG12–Atg5/ATG5 and Atg8/LC3–

PE’’) [123]. These results might account for the selective

role of ULK1 for the mitochondrial clearance during

reticulocyte development described above, and additionally

the data suggest a phosphorylation-dependent regulation of

the ULK1–ATG13 interaction during selective autophagy

processes. We were able to identify five ULK1-dependent

phospho-sites of ATG13 by an in vitro kinase assay (cor-

responding to S48, T170, T331, T428 and T478 in human

isoform 2). However, mutation of these five sites did not

alter starvation-induced autophagy in chicken DT40 B

lymphocytes, although starvation-induced autophagy is

completely blocked in ATG13-/- DT40 cells [122].

Additionally, mTOR-dependent sites of mammalian

ATG13 have not been reported so far [42, 45]. Recently,

ULK1-dependent phospho-sites of FIP200 have been

identified, but their functional relevance awaits further

clarification [124].

On the basis of its central role for the regulation of the

ULK1–ATG13–FIP200–ATG101 complex, mTOR has
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been dubbed the ‘‘gatekeeper’’ of autophagy (Fig. 2). The

protein kinase mTOR integrates (1) nutrient signals, e.g.,

generated by growth factors or amino acids; (2) energy

signals, e.g., controlled by the cellular AMP/ATP ratio; and

(3) stress signals such as hypoxia or DNA damage

(reviewed in [125–127]). The growth factor and energy

inputs are essentially controlled by the serine/threonine

protein kinases AKT and AMP-activated protein kinase

(AMPK), which both function as upstream regulators of

mTOR. Both kinases have also been implicated in the

Fig. 2 Signaling machinery upstream and downstream of the ULK1

complex. In recent years, the mTORC1-dependent regulation of the

ULK1–ATG13–FIP200–ATG101 complex has been deciphered.

Under nutrient-rich conditions, mTORC1 associates with the

ULK1–ATG13–FIP200–ATG101 complex and phosphorylates

ULK1 and ATG13. Under starvation conditions or upon treatment

with mTOR inhibitors, mTORC1 dissociates from this mega-

complex, and the inhibitory mTOR-dependent phospho-sites within

ULK1 and ATG13 become dephosphorylated. Active ULK1 then

autophosphorylates and phosphorylates ATG13 and FIP200, ulti-

mately leading to the initiation of autophagosome formation [44, 45,

108–110]. The depicted substrates of ULK1 are listed in Table 1.

MTOR has been established as central ‘‘gatekeeper’’ of autophagy,

since this kinase integrates (1) nutrient signals, e.g., generated by

growth factors or amino acids; (2) energy signals, e.g., controlled by

the cellular AMP/ATP ratio; and (3) stress signals such as hypoxia or

DNA damage. The Ser/Thr kinase mTOR is the catalytic subunit of

two distinct kinase complexes, i.e., mTORC1 and mTORC2. The two

complexes contain unique associated proteins which serve as

scaffolds and determine the substrate specificity of the complexes,

i.e., regulatory-associated protein of mTOR (RAPTOR) and rapamy-

cin-insensitive companion of mTOR (RICTOR), respectively [396–

398]. Next to these two proteins, the two complexes both harbor

additional specific interacting proteins and share some components.

Amino acids are sensed by the RAG family of small GTPases. Active

RAG heterodimers translocate mTORC1 to lysosomal surfaces, where

they bind to the so-called Ragulator complex [399]. On the surface of

lysosomes, mTORC1 is activated by another small GTPase termed

RAS-homologue enriched in brain (RHEB). The presence of growth

factors is transmitted to mTOR via AKT. AKT phosphorylates

tuberous sclerosis 2 protein (TSC2; also termed tuberin), which

together with TSC1 (also termed hamartin) forms the TSC1–TSC2

complex. AKT-dependent phosphorylation of TSC2 inhibits the

GTPase activating protein (GAP) activity of the TSC1–TSC2

complex for RHEB, thus promoting mTORC1 activation by GTP-

loaded RHEB [400–402]. Alternatively, AKT phosphorylates

PRAS40, which is subsequently bound by 14-3-3 proteins and cannot

inhibit mTORC1 anymore [403–405]. Low energy levels as sensed by

a high AMP/ATP ratio are transmitted to mTORC1 via AMPK.

AMPK can—like AKT—phosphorylate TSC2. However, AMPK-

dependent TSC2 phosphorylation leads to increased GAP activity of

the TSC1-TSC2 complex and thus to mTORC1 inhibition [406, 407].

Alternatively, AMPK can directly inhibit mTORC1 by RAPTOR

phosphorylation [137]. Stress signals like hypoxia, DNA damage,

TRAIL or Ca2? signals also inhibit mTORC1 via AMPK and/or the

TSC1-TSC2 complex (reviewed in [42, 126, 127]). Finally, AKT and

AMPK can directly regulate ULK1, and ULK1 can—by negative

feedback loops—regulate the upstream kinases mTORC1 and AMPK

[120, 121, 128, 140, 141, 143, 153, 154]
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direct regulation of the ULK1 kinase complex (Fig. 2). The

serine/threonine kinase AKT (also termed protein kinase B,

PKB) translates signals received by receptor tyrosine

kinases or receptor-associated tyrosine kinases into a

diverse array of intracellular responses, including cell cycle

control, metabolism, apoptosis, or autophagy. Bach et al.

showed that ULK1 serves as direct substrate for AKT. The

authors observed that insulin induces the AKT-dependent

phosphorylation of ULK1 at S775 (human sequence) [128].

AMPK is the main sensor for cellular energy levels. AMPK

consists of three subunits, i.e., the catalytic a-subunit and
the regulatory b- and c-subunits, respectively. Addition-
ally, there exist several isoforms of the different subunits,

i.e., a1–2, b1–2, and c1–3 (reviewed in [129–131]). In

order to exert its full catalytic activity, the a-subunit has to
be phosphorylated within its activation loop at T172.

Besides T172 phosphorylation of the a-subunit, the het-

erotrimeric AMPK complex is controlled by the regulatory

b- and c-subunits. In 2001, Wang and colleagues reported

that the yeast AMPK-ortholog Snf1p is a positive regulator

of autophagy and probably functions via Atg1 and/or

Atg13, respectively [63]. Subsequently, several reports

analyzed the role of AMPK for mammalian autophagy.

Although an initial study reported that the AMPK-acti-

vating substances adenosine, AICA riboside and N6-

mercaptopurine riboside inhibit autophagy [132], subse-

quently several works supported a positive regulatory role

of AMPK for mammalian autophagy [133–136]. Generally,

this positive effect of AMPK on autophagy has been

attributed to its capability to inhibit mTOR (see Fig. 2).

The inhibition of mTORC1 can be achieved by two dif-

ferent pathways, either by AMPK-mediated

phosphorylation of the upstream regulator tuberous scle-

rosis complex 2 (TSC2) or by AMPK-mediated

phosphorylation of the mTORC1-subunit RAPTOR (see

Fig. 2) [137, 138]. However, in recent years a direct reg-

ulation of the ULK1–ATG13–FIP200–ATG101 complex

by AMPK has been established, which is accordingly

mTOR-independent. How does this direct regulation work?

We and others demonstrated that AMPK directly interacts

with ULK1 ([112, 120, 121, 139–142]. We discovered that

ULK1 phosphorylates all three subunits of AMPK. It

appears that ULK1-dependent phosphorylation of AMPK

negatively regulates both its activation and activity, pos-

sibly establishing a negative regulatory feedback loop

contributing to the termination of an autophagic response

[143]. Interestingly, several groups reported that AMPK in

turn phosphorylates ULK1 [120, 121, 140, 141]. However,

different groups mapped different phospho-acceptor sites

in the ULK1 amino acid sequence. Together with the

proteomic screens analyzing the global nutrient-dependent

ULK1 phosphorylation described above, a rather complex

picture of the ‘‘ULK1 phospho-barcode’’ evolves. The

different identified phospho-sites are summarized in sup-

plemental Table 1 and reviewed in Wong et al. and Alers

et al. [42, 45]. However, three ULK1 phospho-sites appear

to be of particular interest, since they were reported by

three or more independent groups, i.e., S556, S638, and

S758 of human ULK1 sequence [45]. The identification of

different sites by different groups already emphasizes that

the AMPK-dependent regulation of the ULK1 complex is

far from being completely characterized. However, it has

been stated that the function of AMPK in autophagy is

rather a ‘‘fine-tuning’’ than an ‘‘on–off switch’’ [45].

Apparently, mTOR, AKT, AMPK and presumably

additional kinases (see prediction in [120]) contribute to

the regulation of the ULK1–ATG13–FIP200–ATG101

complex. It is conceivable that these phosphorylation

processes depend on different factors, i.e., cell type or

autophagic stimulus. Additionally, there appear to exist

significant differences between metazoan lineages in the

regulation of the ULK kinase complex. Chang and Neufeld

reported the regulation of this complex in D. melanogaster

in parallel to the works on the mammalian complex.

Interestingly, they reported common and divergent aspects.

Like for the mammalian system, ATG13 is essential for

starvation-induced autophagy, the ATG1–ATG13 interac-

tion is independent of the nutrient status, and ATG13 is

required for the autophagy-promoting function of ATG1

[144]. In contrast to the mammalian system, ATG13 is

hyperphosphorylated under starvation conditions, indicat-

ing that the ATG13 phospho-status might be more

dependent on ATG1 than on TOR in D. melanogaster.

Furthermore, the authors demonstrated that ATG13 over-

expression blocks autophagy and that TOR associates with

ATG1/ATG13 independently of nutrient supply.

Next to the diversity among different species, different

cell types and different autophagy-inducing stimuli, the

complexity of this regulatory system is even increased by

two additional aspects: (1) the action of phosphatases and

(2) ULK1-dependent feedback signaling targeting the

upstream kinases. It can be assumed that phosphatases

contribute to the dephosphorylation of the mTOR-sites in

ULK1 and ATG13, respectively [45]. Notably, the direct

interaction between ULK1 complex components and pro-

tein phosphatases has been documented. For example,

UNC-51 interacts with the protein phosphatase 2A (PP2A)

in C. elegans, and FIP200 harbors a docking motif for

protein phosphatase 1 (PP1) [100, 145]. However, the

dephosphorylation of specific sites by specific phos-

phatases has not been reported yet. Generally, the

phosphatase inhibitor okadaic acid is viewed as inhibitor of

autophagy [45, 146–149]. Furthermore, PP2A has already

been implicated in the regulation of autophagic processes,

both as positive and negative regulator [65, 146, 148, 150].

However, it should be noted that PP2A enzymes fulfill
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multiple cellular functions with several different interact-

ing proteins, and the involvement of additional or more

selective phosphatases in the regulation of autophagy is

currently being intensely investigated.

Next to phosphatase-mediated dephosphorylation pro-

cesses, it has been postulated that feedback signaling

pathways originating from the ULK kinase complex con-

tribute to the shaping of an autophagic response.

Apparently, ULK1 can directly influence its upstream

regulators mTOR and AMPK, respectively (Fig. 2). As

described above, we were able to identify ULK1-dependent

regulation of AMPK. With regard to mTOR, it has been

well documented that Atg1/ULK1 activity affects this

kinase and its downstream signaling. In 2007, two groups

independently reported that ATG1 overexpression in D.

melanogaster negatively regulates the activity of the

(m)TOR downstream target S6K [151, 152]. Similarly,

Jung et al. observed an increased S6K phosphorylation

upon knockdown of ATG13 or ULK1 [110]. Congruent to

these observations, Chang and Neufeld reported that

ATG1–ATG13 complexes regulate TOR by modulating its

intracellular distribution and trafficking [144]. However,

these reports only indirectly show the effect of Atg1/ULK1

on mTOR activity. Two reports proved that activated

ULK1 directly phosphorylates RAPTOR and thus inhibits

mTORC1 signaling [153, 154]. Collectively, these reports

indicate that there is a close connection between mTOR-

dependent cell growth control and autophagy signaling.

Again another level of complexity is added by the fact that

the ULK1 kinase complex component FIP200 interacts

with TSC1, which is an upstream regulator of mTOR [92,

95]. Interaction of FIP200 with the TSC1–TSC2 complex

results in the inhibition of this complex, ultimately leading

to increased mTOR activity, S6K phosphorylation, and cell

growth. Taken together, it appears that ULK1 and FIP200

have opposite effects on the regulation of mTOR activity,

and future studies have to reveal the respective relative

contributions.

In general, kinase-catalyzed phosphorylations and

phosphatase-mediated dephosphorylations are the major

molecular switches regulating the autophagy-initiating

ULK1 complex. However, in the recent past alternative

post-translational modifications have been implicated in

this regulation, i.e., ubiquitination and acetylation. As

described in ‘‘Two ubiquitin-like conjugation systems in

autophagy: Atg12/ATG12–Atg5/ATG5 and Atg8/LC3–

PE’’, ubiquitination plays an essential role for cargo

recognition during selective autophagy processes. Fur-

thermore, this post-translational modification links the two

major cellular degradation pathways, i.e., the ubiquitin–

proteasome system (UPS) and selective autophagy.

Meanwhile it is well established that interference with one

pathway influences the flux through the other [155].

Finally, there are several lines of evidence that the ULK1

complex is modified by ubiquitin chains as well. Our group

observed that treatment with the deubiquitinase inhibitor

WP1130 increases ULK1 ubiquitination, and subsequently

leads to the transfer of ULK1 to cellular aggresomes and to

the parallel loss of ULK1 activity [156]. Zhou et al.

reported that nerve growth factor (NGF) can induce the

interaction of ULK1 with the NGF receptor TrkA [157].

This apparently occurs through K63-polyubiquitination of

ULK1 and binding of ULK1 to p62, which then recruits

ULK1 to TrKA receptor complexes. The study by Joo et al.

described above reporting ULK1-catalyzed phosphoryla-

tion of ATG13 at S318 indirectly confirms ULK1

ubiquitination. The authors demonstrate that the disruption

of the association between the Hsp90–Cdc37 chaperone

complex and ULK1 by the Hsp90 antagonist 17-allyl-

amino-17-demethoxygeldanamycin (17AAG) leads to

ULK1 destabilization, which can be inhibited with the

proteasome inhibitor MG132 [123]. Jiao et al. identified the

chaperone-like protein p32 as a key regulator of ULK1

stability [158]. P32 forms a complex with ULK1, and p32

depletion increased K48-linked but decreased K63-linked

polyubiquitination of ULK1, leading to proteasome-medi-

ated degradation of ULK1. Li et al. reported that the

mitochondrial outer-membrane E3 ligase MUL1 ubiquiti-

nates ULK1 and regulates selenite-induced mitophagy

[159]. Finally, Nazio et al. reported that mTOR does not

only regulate the ULK complex by phosphorylation, but

also indirectly by regulating ULK1 ubiquitination [160]. In

this study the authors show that under basal conditions

mTOR phosphorylates activating molecule in Beclin

1-regulated autophagy 1 (AMBRA1; alternatively named

autophagy/Beclin 1 regulator 1) and thus keeps it inactive.

AMBRA1 is a Beclin 1-interacting protein (see ‘‘The

PtdIns3K class III complex’’) [161]. Upon autophagy

induction, AMBRA1 enhances ULK1 kinase activity and

stability and promotes ULK1 self-association by enhancing

K63 ubiquitination of ULK1 through the AMBRA1-asso-

ciated E3-ligase tumor necrosis receptor-associated factor

6 (TRAF6) [160]. In turn, ULK1 phosphorylates AMBRA1

and thus promotes it detachment from the dynein complex

[162]. Notably, Chang and Neufeld already observed that

ATG1 and ATG13 levels were affected by TOR function in

D. melanogaster, i.e., reduced levels in cells with high

TOR activity and increased in cells with low TOR activity

[144]. Generally, it appears that the components of the

ULK1 complex are important for their mutual stabilization.

ULK1 is destabilized in cells deficient for ATG13, FIP200

or ATG101 [37, 108–110]. Similarly, FIP200 is destabi-

lized in cells deficient for ATG13 [109], and ATG13 is

reduced in ATG101-depleted cells [37, 38].

Next to ubiquitination, acetylation has been reported to

regulate autophagy. Gammoh et al. report that the histone
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deacetylase (HDAC) inhibitor suberoylanilide hydroxamic

acid (SAHA) activates autophagy via the inhibition of

mTOR and transcriptional up-regulation of LC3 expression

[163]. The authors confirmed that the SAHA-mediated

induction of autophagy depends on ULK1/2. Recently, the

direct acetylation of ULK1 was reported. Lin et al. found

that glycogen synthase kinase 3 (GSK3), which is activated

by growth factor deprivation and resulting AKT inactiva-

tion, phosphorylates and thus activates acyltransferase

TIP60 [164]. Activated TIP60 in turn acetylates and

stimulates ULK1. ULK1 acetylation presumably occurs at

K162 and/or K606, and a non-acetylatable ULK1 mutant

failed to rescue autophagy in Ulk1-/- MEFs [164]. Next to

the direct AKT-mediated ULK1 phosphorylation described

above, the GSK3–TIP60–ULK1 axis is another example

how AKT-dependent signals are transduced to the ULK1

complex independently of mTOR.

With regard to the downstream signaling machinery,

different ULK1 substrates have been reported (Fig. 2), but

frequently their exact contribution to the induction of

autophagy has still to be examined. Generally, the different

ULK1 substrates can be grouped into different categories:

(1) components of the ULK1 complex; (2) components of

the PtdIns3K complex (see ‘‘The PtdIns3K class III com-

plex’’); (3) other autophagy-related regulators and proteins,

and (4) non-autophagy-related substrates (Table 1; Fig. 2).

There likely exist several additional ULK1 substrates

which contribute to the regulation of the autophagic flux in

a phosphorylation-dependent manner. The identification

and characterization of these ULK1 substrates will greatly

enhance our understanding of autophagy signaling path-

ways. Furthermore, it has to be noted that there apparently

exist kinase-independent autophagic ULK1 functions, and

non-autophagic functions of ULK1 complex components

(reviewed in [45]) (Fig. 2). Several observations have

recently been reported to underscore the latter aspect:

nuclear ULK1 can promote cell death in response to

oxidative stress [165], ULK1 can negatively regulate the

stimulator of interferon genes (STING) pathway [166], and

ULK1 mediates expression of interferon-stimulated genes

via the p38alpha MAPK pathway [167]. Finally, also

ULK1/2-independent autophagic processes have been

reported [84, 122]. The signaling machinery upstream and

downstream of the ULK1 complex is summarized in Fig. 2.

The PtdIns3K class III complex

The yeast PtdIns3K class III complexes

Next to the ULK1–ATG13–FIP200–ATG101 complex,

another multiprotein-complex is important for the forma-

tion of autophagosomes. In yeast, the class III

phosphatidylinositol 3-kinase (PtdIns3K class III) Vps34

functions in both autophagy and sorting of vacuolar pro-

teins. Two separate Vps34 subcomplexes have been

identified to mediate these functions [168]. The autophagy-

regulating complex I contains Vps34, Vps15, Atg6

(Vps30), and Atg14. In contrast, the sorting of vacuolar

proteins is mediated by complex II, which contains Vps38

instead of Atg14 [168]. Accordingly, the unique complex-

subunits Atg14 and Vps38 regulate the intracellular local-

ization and the specific functions of these two complexes.

Atg14 mediates the localization of complex I to the PAS,

whereas Vps38 controls the localization of complex II to

endosomes [169, 170]. Recently, Araki et al. reported the

identification and characterization of yeast Atg38 [171].

The authors describe that Atg38 physically interacts with

Atg14 and Vps34 via its N terminus. The C terminus of

Atg38 mediates homodimerization, which is indispensable

for the integrity of complex I. Accordingly, it appears that

the homodimer of Atg38 functions as a linker between the

Vps15–Vps34 and Atg14–Atg6 subcomplexes, ultimately

facilitating complex I formation [171].

Mammalian PtdIns3K class III complexes

Similar to the situation in yeast, different PtdIns3K class III

complexes could be identified in mammals (reviewed in

[172–176]). The mammalian PtdIns3K class III core com-

plex consists of the catalytic subunit VPS34, the adaptor

VPS15 (p150), and Beclin 1 (ATG6) [Figs. 1 (panel 2), 3].

Beclin 1 forms the scaffold for the recruitment of additional

activators or repressors of the PtdIns3K class III complex.

Beclin 1 contains an N-terminal intrinsically disordered

region, a BCL2 homology 3 (BH3) domain, a coiled-coil

domain, and a C-terminal b-a repeated, autophagy-specific

(BARA) domain [175]. Additionally, He et al. identified

another mammalian ortholog of Beclin 1—termed Beclin

2—which functions in both autophagy and the degradation

of G protein-coupled receptors [177]. Although we address

some of the regulatory signaling pathways targeting and

established by Beclin 1, we refer readers to other excellent

reviews on this molecule [172–175].

In the recent past, three major subcomplexes have been

reported, which contain either ATG14, UV radiation resis-

tance-associated gene protein (UVRAG), or a dimer of

UVRAG and RUN domain protein as Beclin 1 interacting

and cysteine-rich containing (Rubicon) [Figs. 1 (panel 2), 3].

ATG14 (alternatively called Atg14-like, ATG14L, or

Beclin 1-associated autophagy-related key regulator, Bar-

kor) is the putative mammalian homolog of yeast Atg14

and was identified by four different groups [178–181].

Accordingly, the ATG14 containing PtdIns3K class III

complex likely represents the functional equivalent to yeast

complex I. ATG14 co-localizes with several marker pro-

teins on phagophores, indicating that this complex is
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involved in an early stage of autophagy. Furthermore,

ATG14-silencing suppresses autophagosome formation

[178–181]. It has additionally been shown that ATG14

increases VPS34 catalytic activity in a Beclin 1-dependent

manner [181]. Binding of ATG14 to Beclin 1 is mediated

via their respective coiled-coil domains [179–181]. Most

interestingly, recently it was shown that ATG14 is not only

involved in early steps of autophagosome formation, but

also in later steps. Diao et al. reported that ATG14 pro-

motes membrane tethering and fusion of autophagosomes

to endolysosomes [182]. This ATG14 function requires

ATG14 homo-oligomerization by its cysteine repeats. In

contrast, this homo-oligomerization is not required for

initial autophagosome formation [182]. Apparently,

ATG14 binds to the soluble N-ethylmaleimide-sensitive

factor attachment protein receptor (SNARE) core domain

of syntaxin 17 (STX17) and stabilizes the STX17–SNAP29

binary target-SNARE complex on autophagosomes (Fig. 3)

[182]. Previously, Itakura et al. demonstrated that the

SNARE protein Stx17 translocates to the outer

autophagosomal membrane [183]. Fusion with lysosomes

is then mediated by the interaction between autophago-

some-resident Stx17, synaptosomal-associated protein 29

(SNAP-29), and the lysosome-resident vesicle-associated

membrane protein 8 (VAMP8) [183].

In parallel, all four groups reported that the interactions

of ATG14 or UVRAG with the PtdIns3K class III core

complex are mutually exclusive, which is probably due to

their overlapping binding sites in Beclin 1 [178–181], and

accordingly it has been suggested that UVRAG represents

the mammalian Vps38 [178, 184]. Along these lines,

UVRAG was shown to primarily associate with Rab9-

positive late endosomes and partially with Rab5/Rab7-

positive endocytic compartments, and UVRAG knockdown

did not influence autophagic flux and GFP-LC3 dot for-

mation (see ‘‘Two ubiquitin-like conjugation systems in

autophagy: Atg12/ATG12–Atg5/ATG5 and Atg8/LC3–

PE’’) [178]. In contrast, UVRAG has originally been

attributed a role in autophagy signaling [185]. Furthermore,

Takahashi et al. demonstrated that Bif-1 (also termed

endophilin B1) interacts with Beclin 1 through UVRAG,

and that loss of Bif-1 suppresses autophagosome formation

[186]. In parallel, Liang et al. suggest that UVRAG-me-

diated activation of the Beclin 1/VPS34 complex

suppresses the proliferation and tumorigenicity of human

colon cancer cells, and Takahashi et al. observed that Bif-1

knockout enhances spontaneous tumor development [185,

186]. However, the interplay between UVRAG-dependent

autophagy and tumor suppression has also been contro-

versially discussed. Knævelsrud et al. demonstrated that

UVRAG mutations associated with microsatellite unstable

colon cancer do not affect autophagy [187]. Taken toge-

ther, the role of UVRAG for initial stages of autophagy

remains rather elusive. In 2008, Liang et al. reported that

UVRAG interacts with the class C Vps complex, which is a

key component of the endosomal fusion machinery [188].

This interaction promotes the GTPase activity of Rab7 and

autophagosome fusion with late endosomes/lysosomes.

The authors also showed that UVRAG enhanced endocytic

trafficking, directly supporting the above described

UVRAG localization studies. Most interestingly, the effect

on autophagosome maturation was independent of Beclin

1, indicating that UVRAG might play a dual role in

autophagy regulation: (1) in combination with Beclin 1

during autophagosome formation and (2) in combination

with C Vps/Rab7 during autophagosome maturation [188].

Finally, two of the four groups additionally identified

Rubicon as negative regulator of autophagy [179, 181]

[Figs. 1 (panel 2), 3]. Rubicon is alternatively called Beclin

1 associated RUN domain-containing protein (Baron)

[189]. Rubicon was only found in UVRAG-containing

Beclin 1/VPS34-complexes, but not in ATG14-containing

ones. Furthermore, Rubicon knockdown also affected

rather autophagosome maturation and endocytic trafficking

[179, 181]. However, Zhong et al. observed that Rubicon

inhibits VPS34 kinase activity only in the absence of

Beclin 1 overexpression, suggesting that the negative reg-

ulatory role exerted by Rubicon is Beclin 1-independent

[181]. Supporting this notion, it has been speculated that

Rubicon interferes with pro-autophagic Rab GTPases via

its RUN domain, and that sequestering of Rubicon by

Beclin 1 would vice versa promote autophagy [172]. Cur-

rently, the dynamics of the above described complexes are

intensively being investigated.

Recently, the putative mammalian counterpart of yeast

Atg38 has been identified and independently reported by

three different groups, which is named nuclear receptor

binding factor 2 (NRBF2) [Figs. 1 (panel 2), 3]. Two groups

reported that NRBF2 positively regulates autophagy,

whereas one group observed autophagy-suppressing effects

[190–192]. Accordingly, the autophagy-regulating capabil-

ity of NRBF2 is not entirely clarified. Of note, NRBF2 was

originally identified as interaction partner of nuclear recep-

tors [193, 194]. Similar to its effect on autophagy, both

activating and repressing effects of NRBF2 on nuclear

receptor signaling have been reported [193, 194].

Baskaran et al. reported the structure of the ATG14-

containing PtdIns3K complex as determined by single-par-

ticle electron microscopy [195]. It appears that the complex

is V-shaped, with VPS15 at the base of the V and serving as

bridge for VPS34 and the ATG14/Beclin 1 subcomplex.

Beclin 1-interacting proteins

Next to the stable binding of ATG14, UVRAG and Rubi-

con to Beclin 1, multiple cellular and viral Beclin
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1-interacting proteins have been identified which bind

rather transiently or specifically under certain conditions

(reviewed in [172–175]) (Fig. 3). In the following, we

would like to focus on the association of Beclin 1 with

AMBRA1 and viral and cellular BCL2 homologs. How-

ever, additional Beclin 1-interacting proteins include

EGFR [196], estrogen-receptor [197], FYVE-CENT [198],

HMGB1 [199, 200], MyD88/TRIF [201], nPIST [202],

PINK1 [203], Rab5 [204], SLAM [205], survivin [206],

and VMP1 [207], or the viral proteins HIV NEF [208],

HSV-1 ICP34.5 [209], and the influenza virus M2 protein

[210].

AMBRA1 is a scaffolding protein with a molecular

mass of *130 kDa [161]. Next to the above described

regulation of ULK1, AMBRA1 itself is regulated by

ULK1-dependent phosphorylation (see below) (Fig. 3). A

recent study by Fimia and colleagues showed that the

interaction between AMBRA1 and Cullin E3 ubiquitin

ligases regulates the dynamics of autophagic responses

[211]. Under fed conditions, Cullin-4 binds to AMBRA1

and reduces its abundance. Under pro-autophagic condi-

tions, ULK1 phosphorylates AMBRA1, leading to its

dissociation from Culin-4. Stabilized AMBRA1 in turn can

bind to Cullin-5, which leads to the accumulation of the

mTOR-inhibitory protein DEPTOR. Under prolonged

autophagic conditions, Cullin-4 reassociates with

AMBRA1, leading to its degradation and the termination of

the autophagic response [211]. However, AMBRA1 is not

only involved in bulk autophagy processes, but also in

mitophagy, cell death, cell proliferation, and development

(reviewed in [212–214]). Of note, Cianfanelli et al. recently

reported that AMBRA1 regulates the dephosphorylation

and degradation of the proto-oncogene c-Myc via PP2A

[215].

The association between Beclin 1 and viral and cellular

BCL2 homologs establishes a direct connection between

apoptosis and autophagy signaling pathways [216–224]

(Fig. 3). Beclin 1 was originally identified as BCL2-inter-

acting protein by a yeast-two-hybrid screen [219]. The

functional relevance of this interaction has been described

by Pattingre et al. in 2005 [222]. They showed that BCL2

can inhibit starvation-induced and Beclin 1-dependent

autophagy. This has been confirmed for viral BCL2 pro-

teins [216, 218, 222, 223]. The BH3 domain of Beclin 1

binds to the hydrophobic BH3-binding cleft of BCL2 [217,

220, 221, 225]. Although the interaction between Beclin 1

and BCL2 inhibits autophagy induction by nutrient depri-

vation, Beclin 1 does not suppress the anti-apoptotic

function of BCL2, as would be expected from ‘‘classical’’

BH3-only proteins [226].

Fig. 3 Signaling machinery upstream and downstream of the PtdIns3K

class III complex. The PtdIns3K class III core complex consists of the

catalytic subunit VPS34, the adaptor VPS15 (p150), and Beclin 1

(ATG6). Beclin 1 binds to additional regulatory proteins, including

ATG14, NRBF2, UBRAG, Rubicon, AMBRA1, BCL2, and several

others (reviewed in [172–175]). Furthermore, there exists consider-

able crosstalk between the ULK1-complex and the PtdIns3K class III

complex (for details see ‘‘The PtdIns3K class III complex’’). ULK1

phosphorylates Beclin 1, AMBRA1, and VPS34. In turn, AMBRA1

regulates ULK1 stability and activation. Next to ULK1 itself, several

ULK1-regulating kinases—such as mTORC1, AMPK, and AKT—

also regulate the PtdIns3K class III complex. The product of the

PtdIns3K class III catalytic activity is phosphatidylinositol 3-phos-

phate (PtdIns3P) (red circles). PtdIns3P then recruits the downstream

effectors DFCP1 and proteins of the WIPI-family. For simplicity, the

mutually exclusive interactions of ATG14 or UVRAG with Beclin 1

are shown within one complex
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The interaction between Beclin 1 and BCL2 is regulated

by several stimuli, including competitive binding, self-as-

sociation, phosphorylation, or ubiquitination [174]. The

Beclin 1 BH3 domain might be competitively displaced by

other BH3-only proteins or by BH3 mimetics, e.g.,

ABT737 [220, 225, 227]. Alternatively, membrane-an-

chored receptors or adaptors, e.g., IP3Rs or toll-like

receptor-associated Myd88/TRIF, might induce the dis-

ruption of the Beclin 1-BCL2 interaction [173]. Finally, it

has also been reported that reactive oxygen species pro-

mote cytosolic translocation of high mobility group box 1

(HMGB1), where it interacts with Beclin 1 and thus dis-

places BCL2 [200]. It has also been discussed that Beclin

1-homo-oligomerization might provide a scaffold for fur-

ther protein–protein interactions and displacement of

BCL2 proteins [174]. Additionally, post-translational

modifications of both interacting proteins might modulate

the Beclin 1-BCL2 interaction. Interestingly, both compo-

nents serve as phospho-acceptor proteins. Zalckvar et al.

reported that the death-associated protein kinase (DAPK)

phosphorylates Beclin 1 at T119, which is located within

the BH3 domain [228]. In turn, BCL2 might be phospho-

rylated by the mitogen-activated protein kinases ERK and

JNK, respectively. Wei et al. reported that JNK phospho-

rylates T69, S70 and S87 within the non-structured loop

between BH3 and BH4 of BCL2 [224]. Next to the direct

displacement of BCL2 by HMGB1 described above, it has

been suggested that HMGB1 promotes the activation of

ERK1/2, resulting in the ERK1/2-mediated phosphoryla-

tion of BCL2 and its dissociation from Beclin 1 [200].

Interestingly, it has been reported that viral BCL2 proteins

inhibit autophagy more effectively than cellular BCL2

proteins. This has been explained by either a stronger

affinity of viral BCL2 proteins to Beclin 1 or the fact that

viral BCL2 orthologs lack the JNK-dependent phosphory-

lation sites described above [218, 223, 224, 229]. It appears

that the BCL2-dependent blockade of autophagy might be

a viral strategy to ensure latency. Finally, it was demon-

strated that K117 within the BH3 domain of Beclin 1 is a

major ubiquitination site [230]. Accordingly, the authors

speculate that TRAF6-mediated K63-linked ubiquitination

at this site influences the association between Beclin 1 and

BCL2.

The interaction between BCL2 and Beclin 1 occurs both

at the mitochondrion and at the ER, and both mitochon-

drion- and ER-targeted BCL2 reduce LC3-II accumulation

induced by overexpression of Beclin 1 [231]. However,

starvation-induced autophagy is most efficiently inhibited

by ER-localized BCL2 [222, 231]. In 2009, Vicencio et al.

reported the identification of a trimeric complex consisting

of IP3Rs, Beclin 1 and BCL2 [232]. Apparently IP3Rs

facilitate the interaction between Beclin 1 and BCL2, thus

indirectly impairing autophagy. Upon IP3R inhibition, this

trimeric complex dissociates and autophagy is induced.

The authors further suggest that the Ca2? channel function

of the IP3Rs is not contributing to the autophagy-inhibitory

effect [232]. However, this has been challenged by other

groups [233, 234]. For example, in DT40 cells deficient for

all three IP3Rs, association between Beclin 1 and BCL2 is

not affected [235]. Notably, Khan et al. state that the

absence of IP3Rs in the triple-knockout DT40 cells results

in higher levels of basal autophagy, which would confirm

the results by Vicenco et al. However, reconstitution with a

functionally inactive D2550A IP3R mutant did not result in

a suppression of the autophagic flux, indicating that the

Ca2? channel function of IP3Rs is important for the regu-

lation of autophagy [235]. Along these lines, Decuypere

et al. suggest that IP3R-mediated Ca2? signaling and

autophagy induction are indeed two interrelated processes

[236]. They showed that IP3Rs are sensitized upon star-

vation, and that this sensitization depends on Beclin 1. In

their model, Beclin 1 shuttles from BCL2 to the ligand

binding domain of the IP3Rs upon starvation, indirectly

confirming the importance of ER-localized BCL2 to

modulate autophagy (see above). Next to IP3Rs, another

ER-localized transmembrane protein has been implicated

in the regulation of the Beclin 1-BCL2 association. Chang

et al. reported the identification of the nutrient-deprivation

autophagy factor-1 (NAF-1), and its requirement for BCL2

at the ER to functionally antagonize Beclin 1-dependent

autophagy [237]. Additionally, NAF-1 also interacts with

IP3Rs. Interaction with IP3Rs was also shown for different

BCL2 family members (reviewed in [233, 234, 238–240].

Future studies will have to further elucidate the interplay

between IP3Rs, other ER-localized proteins, BCL2 family

members, and Beclin 1. However, a central role for the

regulation of autophagy has also been attributed to mito-

chondria-localized BCL2. Strappazzon et al. showed that

the positive autophagy regulator AMBRA1 preferentially

binds to the mitochondrial pool of BCL2. Upon starvation,

AMBRA1 is released and competes with BCL2 for binding

to mitochondria- or ER-localized Beclin 1 [241]. Taken

together, it appears that BCL2 proteins interfere with

Beclin 1 function by at least two different ways, i.e.,

directly by binding of Beclin 1 or indirectly by binding to

the positive regulator AMBRA1 [241, 242].

To date, different models have been brought up to

explain the direct BCL2-dependent inhibition of Beclin 1

[243]. Pattingre et al. detected that BCL2 overexpression

interferes with the formation of the Beclin 1–VPS34

complex [222]. Furthermore, they confirmed that the

functional activity of the PtdIns3K class III complex is

reduced. Recently, Wei et al. reported that mitogen-acti-

vated protein kinase-activated protein kinase 2

(MAPKAPK2) and MAPKAPK3 positively regulate star-

vation-induced autophagy by phosphorylating Beclin 1 at
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serine 90 [244]. The authors suggest that BCL2 can block

this phosphorylation and thus inhibits autophagy. Noble

et al. demonstrated that Beclin 1 forms a dimer in solution,

which is bound by BCL2 proteins. UVRAG disrupts this

Beclin 1 dimer interface and thus UVRAG–Beclin 1 het-

erodimers are assembled, which presumably cause the

activation of autophagy. In turn, BCL2 proteins reduce the

affinity of UVRAG for Beclin 1 and thus stabilize Beclin 1

homodimers [245]. Generally, only ATG14, UVRAG and

Rubicon are stably associated with the PtdIns3K class III

core complex [172]. Accordingly, the unstable or transient

interaction of Beclin 1 with Bcl-2 proteins allows the

dynamic regulation of autophagic processes.

Crosstalk between ULK1 and PtdIns3K class III complexes

and downstream effectors of PtdIns3P

It appears that there is a direct crosstalk between the

autophagy-initiating ULK1 protein kinase and VPS34/Be-

clin 1 lipid kinase complexes (Figs. 2, 3, 4). Russell et al.

demonstrated that ULK1 directly phosphorylates Beclin 1

at S15 and thereby enhances the activity of the ATG14-

containing VPS34 complexes (Fig. 3) [246]. This is further

supported by the observation that ULK1 also phosphory-

lates AMBRA1 (Fig. 3) [162]. This phosphorylation

triggers the dissociation of AMBRA1 and the associated

PtdIns3K class III complex from dynein light chains 1/2.

The resulting relocalization of this complex to the ER

allows for the nucleation of autophagosomes [162]. Con-

sidering the results by Nazio et al. described in ‘‘The Atg1/

ULK1 complex’’, there apparently exists a mutual regula-

tory circuit involving ULK1 and AMBRA1, i.e., AMBRA1

regulates the stability and kinase activity of ULK1 by

controlling its ubiquitination, and in turn ULK1 regulates

the association of AMBRA1 with the cytoskeleton via

phosphorylation. Recently, Egan et al. reported the direct

phosphorylation of VPS34 by ULK1 [124].

There is not only crosstalk between the ULK1 complex

and the VPS34/Beclin 1 complex, but these two autophagy-

initiating complexes also share common upstream regula-

tors, such as AMPK, mTOR and AKT (Fig. 3). AMPK

phosphorylates both Beclin 1 and VPS34, respectively

[247]. Apparently, AMPK inhibits the non-autophagy

VPS34 complex by phosphorylating T163/S165 in VPS34,

but activates the pro-autophagy VPS34 complex by phos-

phorylating Beclin 1 at S91/S94 [247]. Additionally,

mTORC1 inhibits the PtdIns3K activity of the ATG14-

containing VPS34 complex by phosphorylating ATG14

[248]. Finally, AKT directly phosphorylates Beclin 1 and

inhibits autophagy by the formation of a phospho-Beclin

1/14-3-3/vimentin intermediate filament complex [249],

and active EGFR binds Beclin 1, leading to its multisite

tyrosine phosphorylation [196]. This phosphorylation

decreases VPS34 catalytic activity, thereby establishing a

direct link between oncogenic receptor tyrosine kinases

and the autophagy machinery.

The product of the PtdIns3K class III catalytic activity is

phosphatidylinositol 3-phosphate (PtdIns3P). This lipid

then recruits further downstream effectors such as DFCP1

(see ‘‘Types of autophagy and morphology’’) and proteins

of the Atg18/WIPI-family (see ‘‘Atg18/WIPI proteins and

Atg2/ATG2’’) (Fig. 3). This has been confirmed by two

studies, showing that knockdown of ATG14 or VPS34

leads to the disappearance of DFCP1- or WIPI1-positive

puncta, respectively [250, 251]. However, it has been

observed that autophagy might also be induced indepen-

dently of VPS34/Beclin 1 [252, 253]. On the one hand this

might be explained by alternative cellular sources of

PtdIns3P, e.g., through class II PtdIns3Ks [254] or class I

PtdIns3Ks in combination with the lipid phosphatases

SHIP and INPP4 [255]. On the other hand, Rubinsztein and

coworkers recently demonstrated that PtdIns5P can regu-

late autophagy via PtdIns3P effectors [256].

Atg9/ATG9A

Atg9 is the only multi-spanning transmembrane protein

among the Atgs (reviewed in [257, 258]) (Fig. 1, panel 3).

In yeast, it was demonstrated that Atg9 concentrates in

clusters that comprised vesicles and tubules, and that these

compartments contribute to the de novo formation of the

PAS [259]. Yamamoto et al. reported that single-mem-

brane and Golgi-derived Atg9-vesicles with a diameter of

30–60 nm (containing approximately 30 Atg9 molecules)

assemble to the PAS upon starvation [260]. These vesicles

apparently become part of the phagophore and the outer

autophagosomal membrane. Upon autophagosome com-

pletion, Atg9 clusters are recycled back to the cytoplasm

[260]. It has been shown earlier that Atg9 is recruited to the

PAS by Atg17 and that Atg9 cycling depends on Atg1–

Atg13 and Atg18–Atg2 complexes, respectively [67, 261].

Additionally, several groups identified proteins that are

involved in Atg9 trafficking, including Atg11, Atg17,

Atg23, Atg27, Trs85, Arp2/3 and actin [262]. Recently,

Backues et al. identified a core minimal machinery nec-

essary and sufficient for the trafficking of Atg9 to the PAS,

i.e., Atg11, Atg19, Atg23 and Atg27 [262]. Finally, Suzuki

et al. recently reported that the Atg13 HORMA domain

(described in ‘‘The Atg1/ULK1 complex’’) can interact

with Atg9 and thus recruits Atg9 vesicles during

autophagosome formation (Fig. 4) [72]. As described

above, Atg1-dependent phosphorylation of Atg9 is appar-

ently important for the efficient recruitment of Atg8 and

Atg18 to the site of autophagosome formation (Fig. 4) [68].

However, it has also been noted that the Atg9-positive

vesicles described above are unlikely a major supplier of
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lipids for autophagosome biogenesis and thus likely pos-

sess an additional important function for autophagosome

biogenesis [260].

In 2006, it has been reported that the mammalian Atg9

ortholog ATG9A (also referred to as mAtg9 or Atg9L1) is

localized in the trans-Golgi network and in early, late and

recycling endosomes [263, 264]. Upon starvation, ATG9A is

redistributed to peripheral, endosomal membranes positive

for the autophagosomal marker GFP-LC3 (see ‘‘Two ubi-

quitin-like conjugation systems in autophagy: Atg12/

ATG12–Atg5/ATG5 and Atg8/LC3–PE’’) [264]. Like in

yeast, this redistribution depends on the mammalian Atg1

homolog ULK1 [264]. An ATG9A compartment in mam-

mals has been proposed which is similar to the one observed

in yeast [263]. The authors suggest that ATG9A resides on a

distinct tubular-vesicular compartment, and that this

‘‘ATG9A reservoir’’ continuously emanates from vacuolar

recycling endosome-like structures by tubulation. They

observed that subcellular ATG9A localization is regulated

by ULK1 and WIPI2. However, ULK1 and WIPI2 are not

required for the recruitment of ATG9A to early DFCP1-

positive omegasomes [263]. Similar observations were pre-

viously made by other groups. For example, it has been

demonstrated that ATG9A and ULK1 independently local-

ize to the autophagosome formation site during canonical

autophagy and Parkin-mediated mitophagy (see ‘‘Two

ubiquitin-like conjugation systems in autophagy: Atg12/

ATG12–Atg5/ATG5 and Atg8/LC3–PE’’), and that ATG9A

and ULK1 are independently recruited to Salmonella-con-

taining vacuoles during xenophagy [265, 266]. Although

ATG9A is essential for the formation of phagophores, it

appears that ATG9A only transiently interacts with

autophagosomes and does not integrate into the autophago-

somal membrane [263]. Recently, Popovic and Dikic

reported that TBC1D5 and the AP2 complex are important

novel regulators of ATG9A trafficking towards the sites of

autophagosome formation [267]. Finally, Puri et al. reported

that ATG9A localizes on the plasma membrane in clathrin-

coated structures and is internalized through early and then

recycling endosomes [268]. Notably, the authors describe

that ATG16L1 (see ‘‘Two ubiquitin-like conjugation sys-

tems in autophagy: Atg12/ATG12–Atg5/ATG5 and Atg8/

LC3–PE’’) is also internalized by clathrin-mediated endo-

cytosis but via different clathrin-coated pits. The ATG9A-

and ATG16L1-containing vesicles then ‘‘meet’’ in recycling

endosomes in a VAMP3-dependent manner [268].

Atg18/WIPI proteins and Atg2/ATG2

The Atg18 proteins constitute the second important family

of PtdIns3P effectors (Fig. 1, panel 4). Whereas in yeast

three family members have been identified so far, i.e.,

Atg18, Atg21 and HSV2/Ygr223c, in mammals four Atg18

homologs have been isolated, i.e., WD-repeat protein

interacting with phosphoinositides 1–4 (WIPI1-4) [8, 269,

270]. DFCP1 binds to PtdIns3P via its FYVE domain,

which was named after the first four proteins shown to

contain it, i.e., Fab1, YOTB/ZK632.12, Vac1, and EEA1

[271]. In contrast, the Atg18/WIPI proteins bind to PtdIns-

3P (and PtdIns(3,5)P2) via a seven-bladed b-propeller.
Accordingly, the three yeast proteins and the four WIPIs

have been called ‘‘PROPPINs’’ [272]. These proteins are

WD40-repeat containing proteins and require an FRRG-

motif for PtdIns3P-binding [270, 273, 274]. Two groups

reported the crystal structure of yeast HSV2/Ygr223c, and

these works indicate that there are two phosphoinositide

binding sites in PROPPINS [275, 276]. Yeast Atg18 is

important for autophagy, whereas Atg21 and HSV2/

Ygr223c are rather involved in the Cvt pathway and in

micronucleophagy, respectively [8, 277–279]. In 2010,

Nair et al. reported that Atg18 and Atg21 facilitate the

recruitment of Atg8–PE to the site of autophagosome for-

mation [280]. During autophagy, Atg18 is in complex with

Atg2 [281], and it was demonstrated that autophagosome

formation can be achieved in the absence of Atg18 by

expressing engineered PAS-targeted Atg2 [282]. In mam-

mals, WIPI1 and WIPI2 share highest homology to Atg18

and have thus been reported to be involved in autophagy

[283]. During autophagosome biogenesis, WIPI1/2 colo-

calize with the Beclin 1/VPS34 complex component

ATG14, but not with the second PtdIns3P effector DFCP1

[8, 250]. It has been suggested that WIPI1/2 localize to the

phagophore, whereas DFCP1 localizes to the omegasome

[8]. Subsequently, it was demonstrated that WIPI2 posi-

tively regulates LC3-lipidation (see ‘‘Two ubiquitin-like

conjugation systems in autophagy: Atg12/ATG12–Atg5/

ATG5 and Atg8/LC3–PE’’) and thus obviously contributes

to the maturation process of omegasomes to autophago-

somes [283]. Recently, Dooley et al. demonstrated that

ATG16L1 directly binds WIPI2b (one of five WIPI2 iso-

forms) (Fig. 4) [284]. They observe that WIPI2b is a

PtdIns3P effector upstream of ATG16L1 and is required

for LC3 conjugation [284].

Two mammalian Atg2 homologs have been identified,

ATG2A and ATG2B, and their simultaneous silencing

causes a block in the autophagic flux [285]. Interestingly,

ATG2A/B also regulate lipid droplet morphology [285].

Two ubiquitin-like conjugation systems

in autophagy: Atg12/ATG12–Atg5/ATG5 and Atg8/

LC3–PE

Components of the two ubiquitin-like conjugation systems

Two ubiquitin-like conjugation systems are centrally

involved in the expansion of autophagosomes: (1) Atg12/
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ATG12–Atg5/ATG5 system and (2) Atg8/LC3-phos-

phatidylethanolamine (PE) system (reviewed in [286])

(Fig. 1, panels 5 and 6). Within these conjugation systems,

Atg12 and Atg8 represent the ubiquitin-like proteins,

which are conjugated by E1-, E2- and E3-like enzymatic

activities to Atg5 and PE, respectively. Within the first

system, Atg12 is activated by the E1-like enzyme Atg7.

Subsequently Atg12 is transferred to the E2-like Atg10 and

irreversibly conjugated to K149 (yeast sequence; corre-

sponds to human K130) of Atg5 [286–289]. The Atg12–

Atg5 conjugate interacts with Atg16, and this complex

forms a homo-oligomer [286, 290, 291]. All yeast Atgs

involved in the Atg12–Atg5 conjugation system have

mammalian counterparts with identical or similar func-

tions, including an Atg16-like protein (ATG16L1) [286,

292–295]. In yeast, this multimeric complex has a molec-

ular weight of approximately 350 kDa, and it has been

suggested that the complex consists of an Atg12–Atg5–

Atg16 tetramer [290]. In mammals, the complex eluted in

fractions corresponding to 400 and 800 kDa, indicating

that it might be composed of four or eight sets of ATG12–

ATG5–ATG16L1 [292]. However, a crystallographic study

combined with analytical ultracentrifugation experiments

revealed that yeast Atg16 forms a parallel coiled-coil dimer

[296]. The E1-like ATG7, the E2-like ATG3 and the

conjugation acceptor ATG5 are essential for autophagy,

and neonates of Atg7-/-, Atg3-/- and Atg5-/- mice die at

day 1 after birth due to the neonatal starvation period [297–

299]. Within the second conjugation system, Atg8 is acti-

vated by the common E1-like enzyme Atg7 and then

transferred to the E2-like Atg3 [286, 300]. However, prior

to Atg8 activation by Atg7, the C-terminal R117 has to be

removed by the proteolytic activity of Atg4 in order to

expose G116 [286, 301]. Interestingly, it has been

demonstrated that the Atg12–Atg5 conjugate possesses an

E3-like activity for Atg8 conjugation to PE [302, 303].

Although Atg16 is not important for efficient Atg8–PE

conjugation in vitro, it is required for Atg8–PE formation

in vivo [303]. Atg16 recruits Atg12–Atg5 to the PAS and

thus determines the site of Atg8 lipidation [15, 51]. Two

structural reports further support this link between the two

conjugation systems. First, the crystal structure of Atg12–

Atg5 indicates that Atg12 serves as binding module for the

E2-like Atg3, essentially facilitating the transfer of Atg8

from Atg3 to the PE in the membrane [304]. Second,

apparently the Atg12–Atg5 conjugate enhances the E2

activity of Atg3 by rearranging its catalytic site [305].

In the mammalian system, so far nine Atg8 orthologs

have been reported. These can be subdivided into two

families: (1) the LC3 subfamily consisting of microtubule-

associated proteins 1A/1B light chain 3A (MAP1LC3A or

briefly LC3A; two splice variants), LC3B, LC3B2, and

LC3C, and (2) the GABARAP/GATE16 subfamily

consisting of the c-aminobutyric acid receptor-associated

protein (GABARAP), GABARAPL1 (also termed ATG8L

or GEC1), Golgi-associated ATPase enhancer of 16 kDa

(GATE16, also termed GABARAPL2) and GABARAPL3

[306–315]. Additionally, four different mammalian ATG4

isoforms have been identified, i.e., ATG4A-D (also refer-

red to as autophagin-1–4) [316, 317]. LC3B is probably the

most extensively studied mammalian ATG8 protein, and it

is cleaved C-terminally of G120 within the first 6 min of

synthesis [309, 318]. ATG4-mediated cleavage of LC3

generates a cytosolic truncated LC3-I fragment of 18 kDa,

which lacks the 22 C-terminal amino acids of the pro-form

[318]. Interestingly, the different ATG4 isoforms possess

selective preferences regarding their ATG8 family sub-

strates [309, 319]. Subsequently, LC3-I is converted to the

lipidated LC3-II isoform in an E1/E2/E3-cascade similar to

the yeast system [295, 309, 320]. Accordingly, the mam-

malian ATG12–ATG5 conjugate interacts with ATG16L1,

which targets the conjugate to the phagophore [292, 321].

There the ATG12–ATG5–ATG16L1 complex exerts its

E3-like function and thus determines the site of LC3 lipi-

dation [322]. This has been supported by the observation

that forced expression of ATG16L1 at the plasma mem-

brane led to ectopic LC3 lipidation at that site [322].

Similarly to LC3 conversion, the other mammalian ATG8

family members are processed by ATG4 isoforms, form

E1- and E2-intermediates with ATG7 and ATG3, and are

targeted to the autophagosome [295, 309, 312, 320, 323].

Next to cleavage and lipidation, it has also been reported

that LC3 becomes phosphorylated. Jiang et al. observed that

T9 and T29 of LC3 can be phosphorylated by PKC [324].

However, mutations of these residues to either alanine or

aspartate/glutamate did not affect autophagy. In contrast,

Cherra et al. reported the PKA-mediated phosphorylation of

LC3 at S12, and this phosphorylation regulates the incor-

poration of LC3 into the autophagosomal membrane: the

pseudophosphorylated S12D mutant showed reduced

recruitment to autophagosomes, whereas the nonphospho-

rylatable S12Amutant exhibited enhanced puncta formation

[325]. Of note, Atg8 orthologs of yeast and D. melanogaster

lack this PKA site, and it is also absent in the mammalian

GABARAP/GATE16 subfamily [325].

Selective autophagy and autophagy receptors/adaptors

Both conjugates, i.e., ATG12–ATG5 and Atg8/LC3–PE, are

targeted to membranes during the autophagic process.

Whereas ATG12–ATG5–ATG16L1 is mainly found at the

phagophore [292, 321], Atg8/LC3–PE is present on the

autophagosomal membrane throughout the whole process of

vesicle biogenesis. The exact function of this ‘‘decoration’’

of the autophagosomal membrane is still intensely being

investigated. In 2007, Nakatogawa et al. reported that Atg8

Autophagy signal transduction by ATG proteins: from hierarchies to networks 4739

123



mediates the tethering and hemifusion of liposomes in vitro,

and the authors suggested that this function contributes to

the expansion of the phagophore in vivo [326]. Additionally,

it has been reported that the amount of Atg8 determines the

size of autophagosomes [327]. Generally it is tempting to

speculate that the different Atg8 family proteins are selec-

tively incorporated into the autophagosomal membrane

depending on the autophagic stimulus, the step during the

autophagic flux, or the cargo to be degraded. The latter two

aspects are supported by two works. The first study proposes

that LC3 proteins are rather involved in the elongation of the

autophagosomal membrane, whereas GATE-16/

GABARAP proteins function during the later stages of

autophagosome maturation [314]. The second work reports

that LC3C is required for efficient xenophagic clearance of

Salmonella typhimurium [328]. This observation leads over

to the best studied function of ATG8 family proteins, i.e.,

enabling the cell to differentially handle the cargo during

selective autophagy. In recent years, a new class of cargo-

recognition receptors has been identified and characterized,

and they have been termed autophagy receptors [329–334].

These autophagy receptors are centrally involved in the

recognition of cargo during selective autophagy processes,

e.g., mitophagy or xenophagy. In 2005, Bjørkøy et al. dis-

covered that p62 (alternatively called sequestosome 1,

SQSTM1) forms protein aggregates which are degraded by

autophagy [335]. In turn, inhibition of autophagy resulted in

an increase of p62 protein levels. The authors suggested that

p62 links polyubiquitinated proteins to the autophagic

machinery via LC3. The same group could demonstrate that

p62 directly binds to Atg8/LC3 [336]. They found an evo-

lutionarily conserved 22-residue amino acid sequence

within p62 which mediates the binding to LC3. This region

was dubbed the LC3-interacting region (LIR), LC3 recog-

nition sequence (LRS), or Atg8-family interacting motif

(AIM), respectively [336–338]. Johansen et al. compiled a

sequence logo from 25 different LIR motifs from 21 dif-

ferent proteins. It appears that LIR motif contains eight

amino acids and is X-3X-2X-1W0X1X2L3 [330]. In this

sequence,Wmight be replaced by F or Y (aromatic residue),

L by I or V (large, hydrophobic residue), and acidic amino

acids are frequently found in the X-3X-2X-1 positions. This

suggestion was later confirmed by a compilation of 26

published LIR sequences [339]. Next to the LIR, p62 possess

an ubiquitin-associated (UBA) domain and a Phox and

Bem1p (PB1) domain, through which p62 can homo-

oligomerize or bind to protein kinases. Accordingly,

Johansen et al. proposed three required features of

autophagy receptors: (1) existence of a LIR motif, (2)

specific recognition of cargo, and (3) ability to polymerize

[330]. Interestingly, Itakura et al. demonstrated that the

targeting of p62 to the autophagosome formation site

depends on the ability to self-associate, but not on LC3 or

any other classical ATG [340]. The authors suggest that

subsequently p62 oligomers are incorporated into

autophagosomes in an LC3-dependent manner. In addition

to p62, several additional autophagy receptors have been

identified to date, including neighbor of breast cancer 1

(NBR1), optineurin (OPTN), nuclear domain 10 protein 52

(NDP52; alternatively termed Ca2?-binding and coiled-coil

domain-containing protein 2, CALCOCO2), Toll interact-

ing protein (TOLLIP), or cellular Casitas B-lineage

lymphoma (c-Cbl) [341–345] (reviewed in [329–334, 346]).

Next to autophagy receptors which interact with both

ubiquitin and LC3, other proteins have been identified

which contribute to selective autophagy processes. These

include proteins which interact with ubiquitin (e.g.,

HDAC6), which bind to LC3 (e.g., NCOA4, BNIP3, Nix,

FUNDC1, BCL2L13, or FAM134B), or which indirectly

associate with ubiquitinated proteins or LC3 (e.g., Alfy,

BAG3, or Tecpr1) (reviewed in [333, 346]). FAM134B is

presumably the mammalian ortholog of yeast Atg40 and is

involved in ER-phagy [347]. Nuclear receptor coactivator 4

(NCOA4) was shown to mediate the delivery of ferritin to

lysosomes [348]. BNIP3, Nix, FUNDC1 and BCL2L13 are

mitochondrial proteins and are involved in the removal of

mitochondria from maturing reticulocytes, during hypoxia-

induced mitophagy, or induce mitochondrial fragmentation

and mitophagy. In contrast, mitophagy of damaged mito-

chondria involves the action of PTEN-induced putative

protein kinase 1 (PINK1) and the E3 ubiquitin ligase Par-

kin (reviewed in [349–351]). It has been suggested that

Parkin hyper-ubiquitinates targets in the outer mitochon-

drial membrane, which are then recognized by autophagy

receptors. The Parkin-dependent ubiquitylome in response

to mitochondrial depolarization has been reported, and the

authors found depolarization-dependent association of

Parkin with numerous targets of the mitochondrial outer

membrane, autophagy receptors, and the proteasome [352].

Interestingly, the autophagy receptors p62, NDP52, and

Tax1BP1 were found to be depolarization-dependently

ubiquitinated and associated with Parkin [352]. However,

the involvement of p62 in damage-induced mitophagy is

controversially discussed (reviewed in [349–351]). It

appears that p62 is recruited to ubiquitinated cargo at

damaged mitochondria and contributes to mitochondrial

clustering, but its exact contribution to the mitophagic

process itself awaits further clarification. Next to p62, it has

been reported that optineurin is an autophagy receptor for

damaged mitochondria in parkin-mediated mitophagy

[353]. During the last 2 years additional mechanistic

details have been deciphered with regard to PINK1/Parkin-

dependent mitophagy. Activated PINK1 phosphorylates

both Parkin and ubiquitin at S65, and these phosphoryla-

tions relieve the autoinhibition of Parkin, leading to an

active phospho-ubiquitin-dependent E3 ligase and a
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feedforward signaling amplification loop [354–356].

Recently, Lazarou et al. suggested that NDP52 and opti-

neurin are directly recruited to damaged mitochondria by

PINK1-generated phospho-ubiquitin and thus support both

Parkin-dependent and -independent mitophagy [357].

Generally, the interplay between these different routes of

mitophagy (i.e., BNIP3/NIX/FUNDC1/BCL2L13 and

PINK1/Parkin) is not entirely clarified. Furthermore, there

likely exist additional pathways like the cardiolipin-medi-

ated removal of injured mitochondria in neurons or the

recently reported AMBRA1-dependent mitophagy, which

can be both Parkin-dependent and -independent but

requires LC3-binding (Fig. 4) [358, 359]. So far, the

complementarity or even redundancy of the different

mitophagy mechanisms remains elusive.

Future studies will have to delineate how ubiquitin

signals regulate the selection of autophagy cargo. It is

likely that additional autophagy receptors will be identi-

fied in the future, and next to ‘‘classical’’ autophagy

receptors other forms of receptors will emerge. For

example, cargo recognition by Tecpr1 is ubiquitin-inde-

pendent. Instead, Tecpr1 binds to ATG5 and WIPI2 [139,

360]. Additionally, post-translational modifications such

as phosphorylation might influence the function of

autophagy receptors and presumably the cargo selection

process, as shown for p62 and optineurin [345, 361, 362].

Finally, recently it has been demonstrated that N-terminal

arginylation of the ER chaperone BiP is induced by

cytosolic misfolded proteins [363]. Furthermore, cytosolic

arginylated BiP binds to both the misfolded proteins and

the ZZ domain of p62, leading to p62 aggregation,

increased p62-binding to LC3, and targeting to

autophagosomes [363]. Next to autophagy receptors, the

term autophagy adaptor has been established [346].

Autophagy adaptors are ATG8 family-binding proteins

which serve as anchors for the autophagy signaling

machinery in order to facilitate autophagosome initiation,

elongation, transport and fusion to lysosomes [346].

Accordingly, autophagy adaptors include components of

the ULK1-complex (see below) and the Beclin 1/VPS34-

complex, proteins of the ubiquitin-like ATG5/ATG12 and

Atg8/LC3 conjugation systems, and proteins of the

autophagosome–lysosome fusion machinery [346].

Recently, Wollert and colleagues described that Atg8–PE

directly recruits Atg12–Atg5 conjugates through a non-

canonical AIM in Atg12 (Fig. 4) [364]. Then Atg16 ini-

tiates a membrane scaffold by crosslinking Atg8–PE/

Atg12–Atg5 complexes into a 2D meshwork [364]. The

authors postulate that cargo receptors compete with

Atg12–Atg5 for Atg8–PE binding, thus explaining why

Fig. 4 The ATG ‘‘spiderweb’’.

This scheme depicts the crosstalk

between the six ATG signaling

modules described in this review.

The adjacent positioning of

proteins within the single modules

does not necessarily reflect direct

interactions of the components.

Lines can indicate both interaction

and/or phosphorylation (by

ULK1). Crosstalks identified for

yeast orthologs are indicated by

red lines
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Atg8–PE can function both as a membrane scaffold and as

cargo receptor [364].

Apparently there is also crosstalk between the ULK1

complex and components of the ubiquitin-like conjugation

systems (Figs. 2, 4). Three articles focusing on the interac-

tion between Atg1/ULK1 and Atg8 family proteins have

been published in the recent past. Notably, the association of

ULK1withGate16 andGABARAPwas already described in

the year 2000 by Okazaki et al., and they mapped the inter-

action sites to ULK1 amino acids 287–416 [365]. In the first

of the three mentioned publications, Kraft et al. showed that

Atg8 binds to a LIRwithinAtg1 [57]. They suggest that Atg8

targets Atg1 to autophagosomes where it might contribute to

autophagosomematuration and/or their fusion to lysosomes.

Additionally, the Atg8–Atg1 interaction targets the Atg1

complex for vacuolar degradation. The authors also

demonstrated that mammalian ULK1 harbors a LIR and that

ULK1 interacts with GABARAP, Gate16 and LC3B, thus

directly confirming the results previously obtained by Oka-

zaki et al. Similar to their observations in yeast, ULK1 was

LIR-dependently targeted to autophagosomes [57]. In the

second manuscript, Nakatogawa et al. independently con-

firmed the association between yeast Atg8 and Atg1 [366].

Mutation of the Atg8 family interactingmotif (AIM) of Atg1

abolishes Atg1 transport to and degradation in vacuoles.

Interestingly, AIM mutation caused a significant defect in

autophagy, but did not affect PAS organization or the initi-

ation of phagophore formation [366]. This result suggests

that there are indeed two functions of Atg1/ULK1: (1) ini-

tiation of phagophore formation and (2) autophagosome

expansion/maturation and/or fusion to vacuoles/lysosomes.

Finally, the ULK1 LIR domain (D356FVMV) was also

described by Alemu et al. [339]. Notably, they additionally

found LIR sequences within ATG13 (D443FVMI) and

FIP200 (D701FETI). Apparently, all three components of the

ULK1 complex have preferences towards the GABARAP-

subfamily of mammalian ATG8 proteins. As described

above, the GATE-16/GABARAP family was reported to

play a role in later stages of autophagy, indirectly suggesting

that theULK1 complex components have a function at a later

stage, too. Alemu et al. verified that the LIRmotif inULK1 is

required for the association of ULK1 with phagophores and/

or autophagosomes. However, in contrast to the two reports

by Kraft et al. and Nakatogawa et al., they state that ULK1 is

mainly degraded by the proteasome with only marginal

contribution from autophagy, which is in accordance to

observations made by Joo et al. [123]. Another level of

crosstalk between the ULK1 kinase complex and the ubi-

quitin-like conjugation systems was deciphered recently by

three works. Gammoh et al. and Nishimura et al. reported

that FIP200 can directly interact with ATG16L1 [94, 103].

Gammoh et al. mapped the binding site within ATG16L1 to

amino acids 229–242 and named this region FIP200-binding

domain (FBD). Importantly, deletion of the FBD does nei-

ther abolish ATG16L1-binding to ATG5 nor self-

dimerization. Expression of the FBD-deleted ATG16L1 in

the ATG16L1-negative background could not fully recon-

stitute autophagy induced by amino acid starvation or the

mTOR inhibitor Torin1 [94]. Similar results were reported

by Nishimura et al. [103]. They showed that the FIP200–

ATG16L1 interaction is independent of ATG14 or PtdIns3P,

and that the interaction is important for ATG16L1 targeting

to the phagophore. The authors narrowed down the interac-

tion domain to two regions of ATG16L1, i.e., amino acids

230–250 (roughly overlapping with the FBD reported by

Gammoh et al.) and 288–300. They additionally suggest that

the ATG12–ATG5–ATG16L1 complex and the ULK1–

ATG13–FIP200–ATG101 complex form one large unit in

the cytoplasm, which then targets the phagophore. Accord-

ingly, the authors describe their observation that ULK1 and

ATG5 are recruited to the same compartment with similar

kinetics (see ‘‘Molecular hierarchy of Atg/ATG proteins’’).

Most surprisingly, they observed a blockade of the

autophagic fluxwhen they express anATG16L1D (230–300)

mutant in Atg16l1-/- MEFs, but not when expressing the

ATG16L1 (1–230) version, which also lacks the FIP200-

interacting domain. They proposed a model involving a self-

inhibitory role for the C-terminal WD-repeat domain of

ATG16L1. If this domain is deleted, the N-terminal half of

ATG16L1 uncoordinatedly targets membranes, including

the autophagosome formation site [103]. Finally, Lim et al.

recently reported that ULK1 phosphorylates S405 and S409

within the ubiquitin-association (UBA) domain of p62 [361].

The S409 phosphorylation increases the binding affinity of

p62 to ubiquitin. Collectively, the observations described

above support a role of the ULK1 complex not only for

autophagy initiation, but also for later steps of the autophagic

cascade.

ATG8 proteins and monitoring autophagy

The detection of PE-conjugated GFP-LC3 at the

autophagosomal double-membrane by confocal laser

scanning microscopy is an established method for the

analysis of autophagic processes [367]. This method has

even been optimized by using the tandem fluorescence

mRFP-EGFP-LC3 fusion protein [368]. Upon fusion of

mature autophagosomes with lysosomes, the resulting low

pH quenches the GFP fluorescence and accordingly

autolysosomes can be detected as RFP-only structures

[368]. By this means, the autophagic flux can be monitored.

An improved tandem fluorescence-tagged mTagRFP-

mWasabi-LC3 has been described by Zhou et al. [369].

Alternatively, the conjugation of LC3 to PE can also be

detected by immunoblot analysis, since the lipidated

LC3-II exhibits a slightly increased mobility in SDS-PAGE
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compared to the unlipidated LC3-I. In contrast to the

Atg12/ATG12–Atg5/ATG5 conjugate, Atg8/LC3 proteins

can be deconjugated from PE by the activity of Atg4/ATG4

isoforms [301]. It appears that this deconjugation is

important to maintain an appropriate supply of Atg8/LC3

at early stages of autophagy, and to facilitate the matura-

tion into fusion-capable autophagosomes at later stages

[370]. Although the lipidation of LC3 is the basis for

several standard detection methods of autophagy, several

caveats have to be considered. Apparently, LC3 lipidation

can occur in an autophagy-independent manner (reviewed

in [371]). LC3-II can be detected in cells in which certain

ATGs are deleted, e.g., in Fip200-/- MEFs [82], Becn1-/-

ES cells [134], BECN1-/- DT40 (own unpublished

observation), Ulk1-/- MEFs [83, 110], Ulk1/2-/- MEFs

[84, 372], or in cells in which certain ATGs are severely

reduced by RNAi, e.g., Beclin 1 [134, 373], ATG13 [107,

109, 110], ULK2 [110], ATG14 [178], or VPS34 [178]. A

similar observation was made for the yeast system. Atg8–

PE was detected in yeast strains deficient for Atg1, Atg2,

Atg6, Atg9, Atg13, Atg14, Atg16, or Atg17, and slightly

also in strains deficient for Atg5 or Atg12 [15]. These

observations indicate that LC3 is lipidated under conditions

in which the autophagic flux is inhibited. Vice versa, a

recent report by Szalai et al. suggests that autophagy of

cytoplasmic bulk cargo does not require LC3 [374].

Finally, in 2007 Sanjuan et al. described that particles

that engage TLRs on macrophages while they are phago-

cytosed trigger LC3 recruitment to the phagosome [375].

This processed was termed LC3-associated phagocytosis

(LAP). LAP requires ATG5 and ATG7 and is preceded by

Beclin 1 recruitment and PtdIns3K kinase activity [375].

Importantly, LC3 recruitment to the phagosomes was not

associated with observable double-membrane structures.

Next to TLR ligand-coated particles, LAP was observed

upon phagocytosis of beads with LPS, killed yeast, or

E. coli bacteria [375]. This indicates that autophagy pro-

teins contribute to the elimination of pathogens not only

through canonical autophagy/xenophagy, but also through

LAP. Finally, a similar decoration of single membrane

structures with LC3 was also described for phagosomes

containing apoptotic cells, macropinosomes, and entotic

vacuoles [376, 377] (reviewed in [378]).

Molecular hierarchy of Atg/ATG proteins

Genetic hierarchy of Atg/ATG proteins

The functional units established by the Atg/ATG proteins

are recruited to the PAS or the phagophore in a defined

order, and historically the analysis of the hierarchical

appearance of Atgs/ATGs has been subject of several

investigations. In 2007, Suzuki et al. reported the hierar-

chy of Atg proteins in PAS organization of yeast [8, 51].

Apparently, Atg17 functions as scaffold for the recruit-

ment of the other Atgs to the PAS. Atg1–Atg13, Atg9 and

the PtdIns3K complex I act in initial stages, whereas

Atg18–Atg2, Atg16–Atg5–Atg12 and Atg8–PE units are

recruited to the PAS subsequently. In 2013, Suzuki et al.

fine-mapped the localization of Atgs during autophago-

some formation in yeast [379]. The authors defined

specific localization sites: (1) the vacuole-isolation

membrane contact site (VICS), (2) the isolation mem-

brane (IM), and (3) the edge of the IM close to the ER

(IM edge). They showed that Atg13, Atg17 and the yeast

PtdIns3K complex I localize to the VICS, whereas Atg1,

Atg8 and the Atg16–Atg5–Atg12 complex label the VICS

and the IM. Finally, Atg2–Atg18 and Atg9 localized at

the IM edge [379].

Itakura et al. performed a hierarchical analysis of

mammalian ATGs [250]. Upon starvation, ULK1, ATG14,

WIPI1, LC3 and ATG16L1 are recruited to the identical

compartment, whereas DFCP1 localizes adjacently to these

ATGs. Apparently, the ULK1 complex is the most

upstream unit, and this unit is required for the recruitment

of the ATG14-containing PtdIns3K class III complex.

Puncta formation of DFCP1 and WIPI1 requires the pres-

ence of FIP200 and ATG14. Finally, LC3 and the

ATG16L1–ATG5–ATG12 complex are the most down-

stream units [250]. Later it could be shown that ATG9A

and FIP200 independently localize to the autophagosome

formation site, but that both are necessary for the recruit-

ment of the downstream factors ATG14 and WIPI1 [265].

Notably, the ATG recruitment hierarchy appears to

depend on the autophagic stimulus. For example, ULK1

and ATG9A localize independently to the autophagosome

formation site during starvation-induced autophagy, mito-

phagy, and Salmonella xenophagy [265, 266]. In contrast,

LC3 recruitment depends on FIP200 and PtdIns3K class III

complex during starvation-induced autophagy, whereas

LC3 recruitment to CCCP-depolarized mitochondria or

Salmonella-containing vacuoles (SCVs) is independent of

FIP200 or ATG9A, respectively [265, 266]. These data

indicate that there exist differences between canonical

autophagy and selective autophagy processes such as

mitophagy or xenophagy. With regard to Salmonella

xenophagy, Noda et al. proposed a ‘‘Three-axis model’’ for

ATG recruitment [380]. In this model, ULK1 and ATG9A

are recruited independently to SCVs. Within the third axis,

LC3 is recruited to SCVs by the ATG16L1 complex, but

this recruitment does not depend on the other factors. The

authors propose that the SCVs might represent an alter-

native membrane target for ATG16L1 recruitment, which

is not present during starvation-induced autophagy [380].
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Temporal hierarchy of Atg/ATG proteins

The above described analyses of the genetic hierarchy of

Atg/ATG proteins revealed the functional interdependence

among the single components. However, this does not

necessarily correspond to the temporal recruitment of Atg/

ATG proteins to the autophagosome formation site. The

temporal aspect of ATG recruitment—i.e., the timing of

accumulation peaks among mammalian ATG proteins—

was addressed by Koyama-Honda et al. [381]. This study

indicates that ULK1 and ATG5 complexes were syn-

chronously recruited, although they are differently

positioned in the genetic hierarchy. This might be

explained by the above-mentioned interaction between

FIP200 and ATG16L1. Furthermore, this observation led

the authors to reassess the dependency of ULK1/ATG5

recruitment on PtdIns3K activity. It appears that both

ULK1 and ATG5 can be stabilized by PtdIns3P at early

stages, and that the ULK1 complex but not the ATG5

complex can become partially PtdIns3P-independent at

later stages of autophagy [381]. Finally, the authors

observe that the different ATGs are recruited to pre-exist-

ing vacuole membrane protein 1 (VMP1)-positive

structures of the ER, although it has previously been sug-

gested that VMP1 functions at a later step of autophagy

[250, 381].

Network of Atg/ATG proteins

In recent years, it became more and more evident that the

genetic interdependence of different ATGs combined with

the differential association and dissociation of ATGs from

the phagophore/autophagosomal membrane allow for the

plasticity of an ATG-dependent autophagic response.

Accordingly, the molecular regulation of autophagy rather

resembles a ‘‘spiderweb-like’’ network than a one-way

signaling cascade (see Fig. 4). Along these lines, different

‘‘signaling and scaffolding platforms’’, which orchestrate

the interplay between Atg/ATGs and non-Atg/ATGs dur-

ing autophagy, have been proposed. For example, the

exocyst complex has been implicated as protein scaffold

for the autophagy machinery. The exocyst is a hetero-oc-

tameric complex involved in post-Golgi trafficking and

vesicle tethering to the plasma membrane [382]. Bodemann

et al. discovered that two exocyst subcomplexes containing

either Sec5 or Exo84 regulate starvation-induced auto-

phagy [383]. In this model, the Sec5 exocyst subcomplex

exhibits a perinuclear localization and harbors the ULK1

kinase and PtdIns3K class III complexes. However, this

subcomplex is autophagy-inactive. Along these lines,

mTORC1 associated with the Sec5-subcomplex. Upon

nutrient-deprivation, the Ras-like small GTPase RalB is

activated, interacts with the exocyst, and promotes the

replacement of Sec5 by Exo84. The Exo84-subcomplex is

autophagy-active, and serves as platform for catalytically

active ULK1 and Beclin 1/VPS34 complexes. Furthermore,

the autophagy-active Exo84-subcomplex is localized to

cytosolic puncta, presumably representing sites of

autophagosome formation [382, 383]. Whereas the exocyst

represents a signaling platform during non-selective star-

vation-induced autophagy, there likely exist corresponding

platforms during selective autophagy processes. Of note,

Deretic and colleagues recently described two alternative

platforms which are connected to xenophagic processes.

They found that tripartite motif protein family (TRIM)

members regulate selective autophagy in multiple ways

[384, 385]. On the one hand, several TRIM family mem-

bers can act as platforms to assemble ULK1- and VPS34/

Beclin 1-complexes (‘‘TRIMosomes’’). On the other hand,

TRIMs can also function as autophagy receptors which

directly bind their cargo, as exemplified by TRIM5 [384,

385]. TRIM5 recognizes and targets HIV-1 for autophagic

destruction by directly binding both the viral capsid and

ATG8 family proteins [384]. By this means, TRIM5

combines scaffolding and receptor properties [384, 385].

Similarly, Deretic and colleagues reported that immunity-

related GTPase family M protein (IRGM)—which is a risk

factor in Crohn’s disease—can assemble the core auto-

phagy machinery and link it to innate immunity receptors,

collectively promoting antimicrobial autophagy [386]. In

the future, additional scaffolding platforms are likely to be

identified.

Conclusion

Over the past 20 years, the signal transduction of auto-

phagy has become a central research field in cell biology.

The molecular understanding of this process has been ini-

tiated by the identification of Atg/ATG proteins, and at

present the network character of this signaling machinery

and the identification of scaffolding/signaling platforms are

shifting into focus. Furthermore, the importance of selec-

tive vs non-selective bulk degradation of cytoplasmic cargo

is more and more appreciated. Generally, autophagic

responses are constituted by two different branches. The

short-term regulation mainly relies on protein–protein

interactions and post-translational modifications such as

phosphorylation, ubiquitination, or acetylation. In contrast,

the long-term regulation of autophagy depends on tran-

scriptional alterations [387], and the crosstalk between

these two regulatory systems represents another important

field of research.

Autophagy and its dysregulation have been implicated

in different human diseases or processes, such as cancer,

neurodegeneration, microbial infections, or aging. It is
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entirely conceivable that the modulation of autophagic

signaling pathways represents a therapeutic target for

several of these (patho-)physiological settings. The detailed

understanding of the autophagy signaling machinery and

its crosstalk is of central importance for the design of tar-

geted therapies. One important example is tumorigenesis.

In recent years, the ambivalent role of autophagy for cancer

development has been characterized. On the one hand, it

was demonstrated that various ATGs suppress tumor

growth and that accordingly different autophagy-compro-

mised mice are tumor-prone, e.g., Becn1?/- mice [388]. In

addition to its tumor suppressing effects, it has been pos-

tulated that autophagy might function as an alternative cell

death mechanism. Collectively, these data form the basis

for various preclinical studies supporting autophagy

induction for cancer treatment [389]. On the other hand,

autophagy functions as a cyto-protective mechanism, and

thus contributes to the survival of cancer cells under

nutrient-deprived conditions frequently found in tumors or

metastasizing cancer cells [390]. Additionally, it could be

shown that these cyto-protective effects support the resis-

tance of cancer cells to metabolic or genotoxic stress

induced by hormonal deprivation, chemotherapy or radia-

tion [6, 389]. Furthermore, some cancer types have been

shown to be ‘‘autophagy addicted’’, and they depend on

autophagy even in the absence of external stresses (e.g.,

RAS-driven cancers) [391]. Accordingly, the disruption of

autophagic signaling pathways has also evolved as a ther-

apeutic strategy and is applied in many preclinical studies

and ongoing clinical trials [389]. In summary, it has been

proposed that the pro- and anti-tumorigenic potential of

autophagy is tumor stage-dependent [392]. Taking this into

consideration, therapies based on autophagy induction

might be beneficial for the prevention of tumorigenesis or

tumor progression, whereas treatments employing the

inhibition of autophagy likely support tumor regression or

enable the overcoming of therapy resistance [6].

So far, the availability of autophagy-inhibiting com-

pounds used in preclinical studies or even clinical trials is

very limited. Currently, all clinical trials pursuing the

inhibition of autophagy make use of the antimalarial

lysosomotropic drugs chloroquine or hydroxychloroquine,

which inhibit the fusion of autophagosomes with lyso-

somes [389]. However, several non-autophagic effects of

these compounds have been reported [389]. With regard to

preclinical studies, additional autophagy-inhibitory regi-

mens have been tested, including bafilomycin A1,

ammonium chloride, 3-methyladenine, or siRNA against

several essential ATGs [389, 391]. However, these com-

pounds are not specific or cannot be employed for clinical

trials. Recently, three different VPS34-selective inhibitors

have been reported, i.e., VPS34-IN1, SAR405, and PIK-III

[255, 393, 394]. For SAR405, the authors reported a

synergistic antiproliferative activity in renal tumor cell

lines in combination with the mTOR inhibitor everolimus

[394]. With regard to the ULK1 complex, the structure of

the ULK1 kinase domain in complex with multiple inhi-

bitors has been reported [118]. Furthermore, recently the

first ULK1/2 inhibitors have been reported and character-

ized, i.e., MRT67307/MRT68921 and SBI-0206965 [124,

395]. Similar to the results obtained with the VPS34-in-

hibitor SAR405, the ULK1-inhibitor SBI-0206965

synergizes with mTOR inhibition to induce cell death in

A549 non-small cell lung cancer cells [124]. Generally, it

has become evident that MTOR inhibitors and other anti-

cancer drugs induce cytoprotective autophagy, ultimately

leading to a compromised efficacy of these compounds.

Therefore, combinatorial therapies employing these agents

and parallel ULK1 and/or VPS34 inhibition represents a

promising anticancer strategy. Collectively, the develop-

ment of targeted therapies—based on the molecular

understanding of the autophagy signaling machinery—will

be a central task for the coming years.
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