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In targeted proteomics using liquid chromatography-tandem triple quadrupole mass spectrometry 
(LC/MS/MS) in the selected reaction monitoring (SRM) mode, selecting the best observable or visible 
peptides is a key step in the development of SRM assay methods of target proteins. A direct comparison of 
signal intensities among all candidate peptides by brute-force LC/MS/MS analysis is a concrete approach 
for peptide selection. However, the analysis requires an SRM method with hundreds of transitions. �is 
study reports on the development of a method for predicting and identifying hopeless peptides to reduce 
the number of candidate peptides needed for brute-force experiments. Hopeless peptides are proteotypic 
peptides that are unlikely to be selected for targets in SRM analysis owing to their poor ionization charac-
teristics. Targeted proteomics data from Escherichia coli demonstrated that the relative ionization e�ciency 
between two peptides could be predicted from sequences of two peptides, when a multivariate regression 
model is used. Validation of the method showed that >20% of the candidate peptides could be successfully 
eliminated as hopeless peptides with a false positive rate of less than 2%.
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INTRODUCTION
Targeted proteomics is a method that is used to determine 

the abundance of target proteins in biological samples.1–3) A 
crude protein fraction from a biological sample is digested 
to produce a mixture of proteotypic peptides (PTPs). �e 
amounts of pre-selected peptides derived from the target 
proteins are determined by the selected reaction monitor-
ing (SRM) mode of liquid chromatography-tandem triple 
quadrupole mass spectrometry (LC/MS/MS).4) In usual 
SRM assay methods, 2–4 PTPs are selected for the analysis 
of each target protein, the amounts of which are determined 
by 3–4 SRM transitions per peptide.5,6) Selecting the best-
observable or visible peptides is a key step in the develop-
ment of the SRM assay method for the selective and sensi-
tive analysis of target proteins. �is is because numerous 
peptides with various lengths, sequences, and ionization ef-
�ciencies are produced when a protein is digested with tryp-
sin. For example, in the analysis of a phosphoglucokinase in 
yeast (Pgk1p from Saccharomyces cerevisiae) using the SRM 
method, 4 suitable peptides were selected from more than 
30 candidate PTPs (6–25 amino acid residues) produced by 
trypsin digestion (Supplementary Table S1).7,8)

A�er establishing comprehensive SRM assay methods, 
such as the SRMAtlas of human and yeast proteins,9–13) 
these methods could be reused owing to their basic com-
patibility among triple quadrupole mass spectrometers.14) 
However, SRM assay methods for the targeted proteome 
analysis of non-model organisms, such as various industri-
ally important bacteria for biomaterial productions, are 
under continuous development.15,16) For the e�cient devel-
opment of SRM assay methods, heuristic rules have been 
proposed for selecting suitable peptides.17,18) In silico tools 
such as PeptideSieve, CONSeQuence, and PeptideRank have 
also been reported to predict the best-observable, visible, 
or �yer peptides from a sequence of the target protein.19–21) 
�ese algorithms were developed based on training data 
containing lists of observable peptides in shotgun pro-
teomics datasets. However, a literature-reported SRM assay 
method showed that these rules do not always explain the 
selected peptides. For example, the selection rules recom-
mended using peptides within 8–20 residues and to avoid 
peptides that contained His residues. However, 4% and 10% 
of the peptides violated these rules in the yeast SRM as-
say method for the central metabolism-related enzymes.7,8) 
Moreover, the selected peptides in the SRM assay method 
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do not coincide with the results of in silico predictions. A 
peptide, VLENTEIGDSIFDK, which is employed in the 
SRM assay method for Pgk1p, is ranked at 25th and 15th by 
CONSeQuence and PeptideRank, respectively (Supplemen-
tary Table S1).

�ese results suggest that predicting the best-observable 
peptides still includes a measure of uncertainty, and a brute-
force experiment using LC/MS/MS is the most reliable ap-
proach for selecting suitable peptides from large numbers 
of candidate peptides in the development of an SRM assay 
method.4,6,22) For example, an SRM method with more than 
200 channels is required for an experimental survey of all y 
series product ions produced from divalent precursor ions 
[M+2H]2+ derived from candidate peptides of S. cerevisiae 
Pgk1p.

In this study, a method for predicting and identifying 
hopeless PTPs was investigated. Hopeless peptides refer to 
peptides that are unlikely to be selected as targets of SRM 
analysis owing to their poor signal intensity in the SRM 
chromatogram. �e prediction of hopeless PTPs will reduce 
the number of candidate peptides to be investigated in a 
brute-force experiment. For this purpose, an SRM assay da-
taset was obtained from 203 lines of E. coli that overexpress 
central metabolism related enzymes. Using the total peak 
area data for 3,856 peptides derived from 203 di�erent pro-
teins, a multivariate regression model was constructed that 
permits the relative total peak areas between two peptides 
to be predicted. �e prediction method developed in this 
study was able to reduce the number of candidate peptides 
by >20% with a false positive rate of less than 2%.

MATERIALS AND METHODS
Sample preparation

Escherichia coli K-12 strains overexpressing the cen-
tral metabolism-related enzymes were obtained from the 
E. coli ASKA library. �e ASKA library is a complete set 
of an E. coli K-12 ORF archive including E. coli strains 
that overexpress each ORF.23) Each E. coli strain was cul-
tured in 15 mL of Luria–Bertani (LB) medium containing 
30 mg/mL chloramphenicol, with shaking at 150 rpm at 
37°C. When the OD600 level reached 0.3, isopropyl β-D-1-
thiogalactopyranoside (IPTG, �nal conc. 1 mM) was added 
to the culture. Crude proteins were extracted from E. coli 
cells in the exponential growth phase (OD600=1.0) by a pre-
viously described method using a cell lysis bu�er contain-
ing 50 mM Hepes (pH 7.5), 5% glycerol, 15 mM dithiothrei-
tol, 100 mM KCl, 5 mM ethylenediamine-tetraacetic acid, 
and complete protease inhibitors cocktail (Roche, Basel, 
Switzerland, 1 droplet/50 mL).7,8) Protein concentrations 
were determined by the Bradford method.24) Trypsin diges-
tion was performed by the method described by Uchida 
et al.17) �e peptide solutions were desalted using GL-Tip GC 
micropipette tips (GL Science, Tokyo, Japan).

Acquisition of test dataset
For each target protein, the multiple SRM series of single 

charged y series product ions, produced from a [M+2H]2+ 
precursor ion of all tryptic peptides that were comprised of 
7–30 residues, were constructed using scripts written with 
Perl5.6. Miss cleavages at [RK|P] sites were considered in 
this study. In addition to y-ions whose m/z values were larg-

er than that of the precursor ion, additional y-ions with �rst, 
second, third largest m/z values were employed in the SRM 
transitions. Peptide samples (3 µL) were analyzed by the 
SRM method using a nano-liquid chromatography-ultrafast 
mass spectrometry (nanoLC-UFMS) system (LC-20ADnano 
and LCMS-8040, Shimadzu, Kyoto, Japan), a nanospray 
interface (N8040, AMR, Tokyo, Japan), and a spray tip 
(Fortis tip 150–20, AMR). �e analytical conditions were 
as follows: HPLC column, L-column ODS (pore size: 5 µm, 
0.1×150 mm, CERI, Tokyo, Japan); trap column, L-column 
ODS (pore size: 5 µm, 0.3×5 mm, CERI); solvent system, ace-
tonitrile (0.1% formic acid) : water (0.1% formic acid); gradi-
ent program, 10 : 90, v/v at 0 min, 10 : 90 at 10 min, 40 : 60 at 
45 min, 95 : 5 at 55 min, and 90 : 10 at 65 min; and �ow rate, 
400 nL/min. MS detection parameters were as follows: inter-
face temperature, 350°C; DL temperature, 120°C; heat block 
temperature, 200°C; drying gas �ow, o�; CID gas pressure, 
290; interface voltage, +1.6 keV; and detection mode, MRM 
positive.14) �e data were recorded with the aid of LabSolu-
tions LCMS version 5.6 (Shimadzu). Chromatographic data 
was processed using Skyline version 3.1.25)

Data analyses
Multivariate regression analyses were performed by lm 

and step functions on R3.1.3. �e AAindex (amino acid 
index) dataset was obtained from the KEGG database 
(http://www.genome.jp/aaindex/).26) Other data processing 
was performed by scripts written with Perl5.6.

RESULTS AND DISCUSSION
Hopeless proteotypic peptides

�ree types of proteotypic peptides (PTPs)—suitable, 
promising, and hopeless—are introduced in this study. For 
the case of the Pgk protein in Escherichia coli (UniProt ID: 
P0A799), an in silico analysis using the amino acid sequence 
(504 aa) indicated that 19 PTPs within 7–30 residues were 
produced by trypsin digestion (Table 1). To compare signal 
intensities among the PTPs, a tryptic peptide sample was 
prepared from an E. coli strain over-expressing Pgk and 
analyzed by LC/MS/MS using a brute-force approach (Fig. 
1). �e signal intensity of the peptide was determined as the 
total peak area of multiple SRM series of single charged y-
series product ions produced from a precursor ion [M+2H]2+ 
(See Materials and Methods). An SRM analysis showed that 
a signal derived from SLYEADLVDEAK was one of the 
most intense signals among the 19 candidate peptides (Table 
1). �e signal intensities of the candidate peptides were 
not correlated with the ranks predicted by CONSeQuence 
and PeptideRank20,21) (Table 1). �ese results suggest that 
the brute-force experiment using LC/MS/MS is promis-
ing in terms of developing a new SRM assay method. As 
mentioned above, 2–4 ‘suitable’ peptides for the SRM assay 
method were selected considering their signal intensity, re-
tention time, and overlap with interfering peaks. Here, the 
peptides whose total peak areas were more than 20% of that 
of the most intense peptide, were considered to be ‘promis-
ing’ candidates for use in SRM assay methods. For example, 
the literature-reported SRM assay method selected two suit-
able peptides, VATEFSETAPATLK and LTVLDSLSK, from 
the list of promising peptides.16)

In this study, PTPs whose total peak areas were less 
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than 20% of that of the most intense peptide were de�ned 
as ‘hopeless’ candidates for SRM assay methods. More 
strictly, the total peak area of hopeless peptide was required 
to be less than that of four or more other peptides, since 
3–4 peptides are typically employed for the SRM assay 
methods.17) �is indicates that there would be no hopeless 
candidates in the case of a small protein. For example, the 
YAALCDVFVMDAFGTAHR peptide from Pgk is a hope-
less peptide, since its signal intensity was only 2.4% of the 
most intense peptide (Table 1). �e �ndings also indicate 
that a sequence-based prediction of hopeless peptides would 
reduce the number of candidate peptides investigated by 
the brute-force experiment. It was also suggested that false 
positives should be avoided in the prediction, since suit-
able peptides would be overlooked by an error to consider a 
promising peptide as being classi�ed as hopeless.

Construction of the multivariate regression model
A multivariate regression analysis was conducted to pre-

dict hopeless peptides from amino acid sequences. In this 

study, the total peak area determined by the SRM series of 
multiple y-ions produced from [M+2H]2+ was considered. 
�e reason for this is that 82% and 100% of the literature 
report SRM methods for yeast and E. coli consist of transi-
tions of y-ions produced from [M+2H]2+, respectively.7,8,16) 
�e total peak area (the sum of the peak areas of all SRM 
transitions) was employed to represent the entire ionization 
e�ciency of the peptides. A test dataset was obtained from 
the 203 lines of E. coli23) overexpressing the central metab-
olism-related enzymes (Supplementary Table S2). For each 
enzyme, an E. coli strain over-expressing the target protein 
was cultured in synthetic medium, from which a crude 
protein extract was obtained. Following the preparation of a 
tryptic peptide sample by reduction, alkylation and protease 
digestion, the total peak area of all tryptic peptides pro-
duced from the overexpressed protein were determined by 
the SRM series of multiple y-ions produced from [M+2H]2+ 
(Supplementary Table S2). Total peak area values were 
determined for all 3856 target peptides from 203 separate 
LC/MS/MS analyses for the 203 proteins. �e values for the 

Table 1. Tryptic peptides derived from Escherichia coli Pgk protein.

Peptides1) Total peak area2) Rank by  
Peptide-Rank3)

Rank by 
CONSeQuence4)

Predicted  
hopeless peptide5)

SLYEADLVDEAK 176134453 11 7
VLPAVAMLEER 144832556 6 8
VATEFSETAPATLK 143831394 3 3
ASLPTIELALK 134061614 2 6
FADVACAGPLLAAELDALGK 127059698 9 1
ADLNVPVK 101454545 15 17
LTVLDSLSK 91342029 12 13
TILWNGPVGVFEFPNFR 49526961 5 5
ADEQILDIGDASAQELAEILK 46055365 16 4
ISYISTGGGAFLEFVEGK 42893285 10 10
LLTTCNIPVPSDVR 42865623 4 2
MTDLDLAGK 38311752 7 18
DYLDGVDVAEGELVVLENVR 31981496 17 12
YAALCDVFVMDAFGTAHR 4227097 14 11 hopeless
EPARPMVAIVGGSK 1364859 1 16
IADQLIVGGGIANTFIAAQGHDVGK 703672 8 9 hopeless
DDETLSK 132247 19 19
AQASTHGIGK 106236 13 14 hopeless
VMVTSHLGRPTEGEYNEEFSLLPVVNYLK 1000 18 15 hopeless

1) Peptides less than 7 and more than 30 residues were removed from the candidates. 
2) A total peak area of multiple SRM series of all y series product ions produced from a precursor ion [M+2H]2+. 
3) Bartonella henselae was selected as the model organism. 
4) Predicted from the result of score mode. 
5) �reshold for an S score of more than 4.

Fig. 1. Selected reaction monitoring (SRM) chromatogram of 19 tryptic peptides with residues in the range of 7–30 derived from phosphoglucoki-
nase in Escherichia coli by nano-liquid chromatography-ultrafast mass spectrometry. A crude peptide sample was prepared from an E. coli 
strain over-expressing Pgk. Signal intensities of peptides were determined from total peak areas of multiple SRM series of single charged 
y-series product ions produced from a precursor ion [M+2H]2+.



PreDIctIon oF HoPeLess PePtIDes Vol. 6 (2017), A0056 

 Page 4 of 7

undetectable peptides were imputed with a value close to the 
noise level (1000) (Supplementary Table S2). Using the total 
peak area values as an objective variable, a multivariable re-
gression model was constructed as follows: 

 ,
,log interceptAA x

x AA AA p p p x
x

N
I a b PL= + +    (1) 

where, Ix and Lx indicate the total peak area and the length 
of peptide x, respectively. NAA, x is the number of amino acid 
residues AA in the peptide x. Pp, x indicates values of param-
eter p of peptide x. aAA and bp are coe�cients, as shown in 
Table 2. Parameters (P) were selected from the amino acid 
index (AAindex) considering Akaike information criterion 
(AIC) level.26) �e coe�cient of determination (R2) of the 
prediction model was 0.567. A comparison between the 
predicted and measured total peak area Ix (Fig. 2a) suggests 
that a direct prediction of the total peak area was di�cult 
when the regression model was used. �is can be attributed 
to a variation in the overexpressed protein levels among the 
samples of the training dataset.

�us, the relative total peak areas among the two peptides 
derived from an identical protein were used as an objective 
variable to develop the following modi�ed model: 
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Here, x and y indicate two peptides derived from an identi-
cal protein. �e value of R2 of the prediction model was 
0.658, indicating that, when the relative total peak area 
among two peptides was employed, the prediction was im-
proved (Fig. 2b). Factors correlated to ionization e�ciency 
could be estimated from the results of multivariate regres-
sion (Table 2). In addition to the so called hydrophobic 
residues (I, L, and V), aromatic amino acids (F, W, and Y) 
are also preferable for ionization e�ciency. However, the 
positive charge derived from R, and K has a strong negative 
e�ect, probably due to the formation of multiple charged 
ions. �e negative coe�cient for M suggests that peptide 
abundance could be a�ected by the partial oxidation of 
methionine side chain. Furthermore, several factors related 

to peptide length, steric conformation, and hydrophobicity 
also contribute to ionization e�ciency, as suggested in pre-
vious studies.19,27)

Fig. 2. Multivariate regression analyses for predicting the total peak area of peptides. (a) A comparison between total peak area predicted by Eq. 
(1) (Ix′) and measured data (Ix). (b) A comparison between relative total peak area predicted by Eq. (2) ((Ix/Iy)′) and measured data (Ix/Iy). 
Coe�cients of determination (R2) of the prediction model were also represented.

Table 2. Coe�cients of multivariate regression analysis.

Terms
Total peak area

Relative total peak 
areas

Coe�cient p-Value Coe�cient p-Value

Intercept 27.6 <0.001 −0.0211 0.0714
Amino acid (AA)
A −1.87 <0.001 −1.48 <0.001
C — −5.92 <0.001
D — 1.21 <0.001
F 9.67 <0.001 7.80 <0.001
G — −2.49 <0.001
I 8.10 <0.001 6.72 <0.001
K −53.0 <0.001 −60.5 <0.001
L 9.32 <0.001 8.18 <0.001
M −3.65 <0.001 −3.03 <0.001
N −2.17 <0.001 −2.13 <0.001
P 2.69 0.002 1.81 <0.001
R −52.5 <0.001 −48.9 <0.001
S −2.45 0.002 −2.42 <0.001
T −2.21 0.007 −1.85 <0.001
V 6.09 <0.001 3.49 <0.001
W 15.5 <0.001 3.04 <0.001
Y 4.28 <0.001 5.10 <0.001
Parameters (P)
Number of hydrophobic 

residue in N-terminal
−4.40 <0.001 −2.34 <0.001

Miss cleavage  
(KP and RP)

4.97 0.049 15.7 <0.001

Peptide length — −1.21 <0.001
Positive charge26) −1.63 <0.001 −1.63 <0.001
Absolute entropy26) −0.00913 <0.001 —
Partition coe�cient26) −0.284 <0.001 —
Retention coe�cient in 

TFA26)
0.0151 <0.001 —

�e number of bonds in 
the longest chain26)

— −0.0942 <0.001

Activation Gibbs energy  
of unfolding,  
pH 7.026)

— 0.0476 <0.001
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Prediction of hopeless peptide
Since the regression model, Eq. (2), predicts a relative 

total peak area between two peptides, a heuristic procedure 
was employed for selecting hopeless peptides as follows:

1. All sequences of proteotypic peptides within 7–30 resi-
dues were generated from a sequence of the target protein by 
in silico trypsin digestion.

2. �e values of predicted relative total peak area 
(log(Ix/Iy)′) were calculated between peptide x and all other 
peptides y, using Eq. (2). �e values were compared with a 
threshold value (thres) to determine the score (S) of peptide 
x, as the number of cases with log(Ix/Iy)′<thres. A peptide 
with a larger S would be hopeless because the total peak area 
of this peptide was signi�cantly smaller than that of many 
other PTPs.

3. A peptide was considered to be hopeless if its S score 
was larger than 0.2×N. Here, N is the total number of pro-
teotypic peptides produced from a target protein. In the case 
of a small protein (0.2×N<4), a peptide with S>4 was consid-
ered to be hopeless, since 3–4 peptides are employed for the 
SRM assay methods.17)

Since there is one variable (thres) in the procedure, a 
relationship between thres, total number of false positives, 
and the total number of predicted hopeless peptides was 
investigated. In the case of predicting the hopeless pep-
tides for 203 E. coli proteins used in the training dataset, 
33.1% (1275/3856) of the PTPs were predicted to be hope-
less when the threshold level was thres=−2.0. A comparison 
with the predicted hopeless peptides and the measured 
promising peptides indicated that the false positive rate was 
3.0% (50/1645). When a more rigorous threshold such as 
thres=−2.5 was employed, 27.1% (=1045/3856) of the total 
PTPs were still predicted to be hopeless, and the number 
of false positive rate was reduced 1.1% (18 cases in total) 
(Supplementary Table S3).

�e identical 203 E. coli proteins were also analyzed by 
the CONSeQuence web tool to predict hopeless peptides. 

�e results showed that 20.4% (=787/3856) of the PTPs were 
predicted to be hopeless (with CONS levels=0). However, 
a relatively large false positive rate (18.1%=297/1645) was 
found (Supplementary Table S3). �e results suggest that 
the method developed in this study is capable of e�ciently 
removing hopeless peptides from candidate PTPs with a low 
false positive rate.

Validation by other datasets
�e prediction method was also validated using by the 

literature reported SRM assay methods for 393 proteins of 
E. coli.16) �e prediction of hopeless peptides for the 393 pro-
teins of E. coli by the developed method showed that 23.3% 
(1952/8371) of tryptic peptide can be classi�ed as hopeless 
with a threshold level at thres=−2.5 (Table 3). A comparison 
of the predicted hopeless peptides with the literature report-
ed SRM assay method revealed that the false positive rate 
was 0.4% (3/670 suitable peptides), although the training 
and validation datasets were obtained using di�erent mass 
spectrometers (Shimadzu LCMS8040 and Sciex5500 QTrap, 
respectively).

In the case of the SRM assay methods for 106 proteins in 
a model cyanobacteria (Synechocystis sp. PCC 6803, con-
structed for �ermo Scienti�c TSQ Vantage),15) two types of 
precursor ions, including [M+2H]2+ and [M+3H]3+, were em-
ployed for the analysis of suitable peptides. �e numbers of 
suitable peptides selected for the SRM assay from [M+2H]2+ 
and [M+3H]3+ were 216 and 36, respectively.

�e results showed that 24.5% (470/1919) of the tryptic 
peptides was predicted to be hopeless with a threshold level 
at thres=−2.5 (Table 3). A comparison between the predicted 
hopeless peptides and suitable peptides reported in the 
literature indicated that the false positive rate was 0.5% 
(1/216 suitable peptides) when suitable peptides analyzed 
using [M+2H]2+ were considered. On the contrary, the false 
positive rate increased to 27.8% (10/36) for suitable pep-
tides analyzed using [M+3H]3+. �is is because the training 

Table 3. Performance of the prediction method.

thres
Total number of 

peptides
Number of predicted  

hopeless peptide
Number of promising or suitable 

peptides for SRM assay
Number of false  

positive hits
False positive 

rate (%)

E. coli (203 proteins, Shimadzu LCMS8040, this study)

−2 3856 12751) 1645 from [M+2H]2+ 2) 50 3.0
−2.5 3856 10451) 1645 from [M+2H]2+ 2) 18 1.1
−3 3856 8691) 1645 from [M+2H]2+ 2) 6 0.4

E. coli (394 proteins, Sciex 5500QTAP)16)

−2.5 8371 19471) 670 from [M+2H]2+ 3) 3 0.4

Synechocystis sp. PCC 6803 (106 proteins, �ermoScienti�c, TSQ Vantage)15)

−2.5 1919 4701) 252 from [M+2H]2+ & [M+3H]3+ 3) 11 4.3

216 from [M+2H]2+ 3) 1 0.5
36 from [M+3H]3+ 3) 10 27.8

S. cerevisiae (204 proteins, Sciex 4000QTRAP)7)

−2.5 4716 12161) 411 from [M+2H]2+ & [M+3H]3+ 3) 32 7.8

331 from [M+2H]2+ 3) 1 0.3
80 from [M+3H]3+ 3) 31 38.8

1) Numbers of hopeless peptides determined by the method developed in this study. 
2) Numbers of promising peptides. 
3) Numbers of suitable peptides employed in the literature reported SRM assay methods.
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dataset only includes data derived from [M+2H]2+. Similar 
trends were also observed for the literature-reported SRM 
assay methods for S. cerevisiae enzymes developed by Sciex 
4000QTRAP (Table 3).7)

CONCLUSION
In this study, a method for predicting hopeless peptides 

was investigated using a test dataset including total peak 
area values for 3,856 peptides derived from 203 E. coli 
proteins. �e method developed in this study successfully 
predicted hopeless peptides without suitable peptides being 
overlooked. �is indicates that the number of SRM channels 
required for a brute-force experiment could be decreased by 
>20% with a false positive rate of less than 2%. �e required 
number of SRM channels could be further reduced by devel-
opment of more e�cient prediction methods by introducing 
a more sophisticated regression model using larger amounts 
of training data, and considering additional multivalent 
ions such as [M+3H]3+ and the contribution of other product 
ions, such as b series ions.
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