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A comprehensive understanding of the integrative nature of the molecular network in thrombosis would be very helpful to develop
multicomponent and multitarget antithrombosis drugs for use in traditional Chinese medicine (TCM). This paper attempts to
comprehensively map the molecular network in thrombosis by combining platelet signaling, the coagulation cascade, and natural
clot dissolution systems and to analyze the topological characteristics of the network, including the centralities of nodes, network
modules, and network robustness. The results in this research advance understanding of functions of proteins in the thrombosis
network and provide a reference for predicting potential therapeutic antithrombotic targets and evaluating their influence on the
network.

1. Introduction

Thromboembolic disorders are a major cause of death and
disability and affect millions worldwide. Thrombosis can
occur in either the arterial or the venous circulation and
results in different clinical symptoms, such as pulmonary
emboli, deep vein thrombosis, strokes, and heart attacks.

While antithrombotic drugs, including anticoagulants,
antiplatelet drugs, and thrombolytic drugs, have been widely
used for the prevention and treatment of arterial and venous
thrombosis, new targets, more effective agents against exist-
ing targets, as well as new therapeutic strategies still need
to be developed for overcoming resistance to current drugs,
suppressing the stimulus in platelet activation, and regulating
the anticoagulation effect more conveniently [1].

Traditional Chinese medicine (TCM), especially
HuoXueHuaYu Chinese medicines, has long been used to
treat thrombosis. The significant efficacy of TCM in treating
thrombosis has been reported in the literature and in recent
pharmacological experiments [2–4]. Thus, TCM seems to
offer a possible route to the discovery of new targets, agents,

and therapeutic strategies for the treatment of thrombosis.
It is widely believed that the mechanism of multicomponent
and multitarget may be of great essence for TCM to exert
integrative treatment effects [5–7]. To better understand
the potential of TCM in the treatment of thrombosis, the
molecular network involved in the disease needs to be
elucidated.

Moreover, several studies have been so far conducted to
evaluate the efficacy of different compounds against platelet
aggregation, exhibit formula-target relations, and develop
model to predict coagulation response [8–10]. However, little
is known about the system-wide effects of molecules of
thrombosis from a holistic perspective with the comprehen-
sive consideration between efficacy and safety referring to the
balance of antithrombosis and bleeding.

On the other hand, the rapid progress of bioinformatics
and systems biology has provided not only a systems-level
understanding of biological processes and disease complexity
but also an efficient and promising approach, such as network
analysis, for integrative drug development [5, 11]. Csermely
et al. presented a comprehensive review of analytical tools
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of network topology and dynamics and advances in appli-
cations for drug discovery [12]. Moreover, potential targets
were identified by detecting key nodes in a disease-specific
network with important topological properties [13, 14].

In this context, this research attempts to comprehensively
map the thrombosis molecular network and analyze topo-
logical characteristics of the network from several perspec-
tives, including the centralities of nodes, network modules,
and network robustness. This research is of significance to
improve the understanding of molecular functions in the
thrombosis network and further predict potential targets for
the treatment of thrombosis by evaluating their influence on
the network.

2. Methods

2.1. Network Construction. Reactome is a curated and peer-
reviewed pathway database that functions as a data-mining
resource and electronic textbook, with the focus on Homo
sapiens [15]. Details of pathways, such as constituent reactions
and participating complexes and relationships, are elucidated
in Reactome. We retrieved pathways and reaction infor-
mation from the Reactome database that were relevant to
thrombosis. These included (1) platelet activation, signal-
ing, and aggregation, (2) the clotting cascade, and (3) the
dissolution of fibrin clots. We organized these pathways
and reactions as elementary reactions that contained one
reactant and its corresponding product, regardless of small
molecules. In this step, protein complexes were involved in
the majority of elementary reactions. To identify potentially
effective therapeutic targets against thrombus, we split the
complexes in the elementary reactions into separate single
proteins forming reactant group and product group. Then,
the splitting proteins are reconnected from each reactant
to each different product, except self-connections. Finally,
the relations between the proteins with reacting directions
were detected. Gephi software (http://gephi.github.io/) was
then used to construct an evidence-based and integrative
thrombosis network (Figure 1) [16].

In this network, nodes represent proteins related to
thrombosis, and edges with direction between nodes indicate
their interacting connections. The direction of the edges
denotes the reaction stream, from the node at the start of
the arrow to the node downstream at the end of the arrow.
The edge of a double-headed arrow denotes the bidirectional
reaction of a protein pair. Based on the principle of network
generation, the double-headed arrows imply that the proteins
function in complexes.

2.2. Centrality Analysis. The centrality definition of a node
in a network is related to the concept of importance. Dozens
of centrality measures have been developed to understand
network structure, and these have been widely used to
find central nodes in various biological systems [12, 17]. In
this research, we examined the node degree, betweenness
centrality, and closeness centrality of the nodes to shed
light on key druggable proteins that might serve as targets
in thrombosis. The centralities are calculated based on the
algorithms referred by Gephi [18].

The degree of node V, 𝐶deg(V), is calculated by the follow-
ing equation:

𝐶deg (V) = ∑
𝑢∈𝑉,𝑢 ̸=V
𝑑 (V, 𝑢) , (1)

where 𝑑(V, 𝑢) is 1, if and only if node V and node 𝑢 are
connected by an arrow, no matter where V positions are (the
start or the end of the arrow); otherwise, it is 0. Nodes 𝑢 and V
are different nodes from node set 𝑉 of network. Thus, degree
is limited in the scope of nodes that are directly connected to
a node, but not including the indirect connections.

We used 𝑘 to denote a node’s degree in thrombosis
network. Then, we tested the degree distribution 𝑝(𝑘) of
the network, giving the fraction of nodes with degree 𝑘,
(𝑘 = 1, 2, . . .) (Figure 2). We performed a goodness-of-fit
test to determine the degree distribution of the constructed
thrombosis network whether it follows power-low. The hub
of a network refers to a node with a much higher degree than
the average.The network hubs are listed by degree order from
high to low in Table 1.

The betweenness centrality of node V, 𝐶bet(V), measures
the number of shortest paths that pass through the node:

𝐶bet (V) = ∑
𝑢,𝑤∈𝑉,𝑢 ̸=V ̸=𝑤

𝜎
𝑢,𝑤
(V)
𝜎
𝑢,𝑤

, (2)

where 𝜎
𝑢,𝑤
(V) is the number of shortest paths from node 𝑢

to node 𝑤 that pass through the node V; 𝜎
𝑢,𝑤

is the number
of shortest paths between node 𝑢 and node 𝑤. A node
with high betweenness centrality serves as a bridge between
other nodes in the whole network. Thus, the communication
between other nodes becomes more dependent on this node
in the network.

Unlike the degree, closeness centrality of a node examines
the direct and indirect links connected to the nodes. The
closeness centrality of node V, 𝐶clo(V), is the mean shortest
path of the node connecting to all other nodes in the network:

𝐶clo (V) =
∑
𝑢∈𝑉,𝑢 ̸=V dis (V, 𝑢)
∑
𝑢∈𝑉,𝑢 ̸=V 𝑛 (V, 𝑢)

, (3)

where dis(V, 𝑢) denotes the distance between nodes V and 𝑢,
that is, theminimum length of any path connecting V and 𝑢 in
network. In this equation, 𝑛(V, 𝑢) is 1, if there is a path linking
node V and node 𝑢; otherwise, it is 0. For an isolated node, its
closeness centrality is 0.

2.3. Identification of Network Module. Network modules are
classicalmeasures ofmesoscopic network structures. A group
of nodes that is connected more closely to group members
than others outside this group is regarded as a module or
a community that has fewer connections between modules.
In this paper, the module detection Louvain algorithm
incorporated in Gephi was used to explore the modularity
structure of the network [19].Themodular function was then
analyzed to shed light on the complex relationship among
the modules. The modular hubs (i.e., the nodes with a higher
degree than the other nodes in the samemodule) are listed in
Table 2.
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Figure 1: Visualized thrombosis network. The colors of the different nodes represent their involvement in diverse functions in thrombosis,
as determined from the Reactome pathway analysis. The red node means protein taking part in platelet activation, signaling, or aggregation,
which owns most participants. The blue and yellow represent function of clotting cascade and fibrin clot dissolution process, respectively.
The size of node corresponds to its degree. Nodes involved in a module are marked within the largest component, and modules are sorted by
number of involved nodes.

2.4. Analysis of the Robustness of the Network. The robustness
of a network reflects the tolerance of a network to failures or
its ability to withstand attacks. Robust networks maintain the
stability of system function against failures or attacks. Drug
action often fails or generates serious side effects due to high
network robustness or hitting unexpected points of networks
[20–22]. Here, in order to identify potential drug targets,
we investigated the robustness of a thrombosis network
under the simulation of random failure or a deliberate
attack. Random failures of cellular network are usually caused
by the oxidative damage, the indirect effect from somatic
mutations, and complex influence of ageing [23, 24], while
deliberate attacks refer to drug-driven influence to network.
As introduced by Albert et al., we used the indicator 𝑆 and
⟨𝑠⟩ to evaluate the network robustness and fragmentation
process [25]. When a fraction, 𝑓, of all the network nodes
was removed randomly (failure) or removed as degree order
(hub attack) or betweenness centrality order (bridge attack)

of nodes, we calculated the fraction of the size of the largest
component comparing to the total system size, 𝑆. Then, we
detected the average size ⟨𝑠⟩ of the isolated components
(all the components except the largest one) when the same
fraction of nodes was removed. The behavior of the network,
with an increasing 𝑓, is presented in Figure 4.

3. Results and Discussion

3.1. Visualization of the Network. We constructed a human
thrombosis network by combining serial signal pathways of
activating and recruiting platelets initiating blood coagula-
tion and generating thrombi and fibrin. These events occur
concomitantly (Figure 1). The resulting thrombosis network
provides a visual and relatively integrative perspective to
understand thrombosis in various diseases.

There are 149 proteins and 414 relations in the network,
which is made up of one large component and four small
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Figure 2:Thedegree distribution of the thrombosis network (scatter
spot and fitting curve in power law). The horizontal axis denotes
the number of connections of the nodes and the vertical denotes
the fraction of nodes with a specific degree. The distribution fitted a
power law, with 𝛾 = 1.25, 𝑝 < 0.001.

separated components. The network is composed of the
three parts of functions that connect with each other. It
includes most of the receptors and enzymes involved in
these three factors, such as integrin alpha IIb beta 3 (GP
IIb/IIIa), antithrombin III (ATIII), glycoproteins of the Ib,
IX, and V complex (GPIb-IX-V), von Willebrand factor
(vWF), thrombin, proteinase-activated receptor 1 (PAR1),
P2Y12, P2Y1, tissue pathway factor inhibitor (TFPI), plas-
minogen activator inhibitor-1 (PAI-1), and plasminogen acti-
vator inhibitor-2 (PAI-2). Interestingly, four nodes exhibited
two diverse functions: GPIb-IX-V, vWF, and thrombin were
particularly important contributors to both platelet signaling
and the coagulation cascade; the cross-linked fibrinmultimer
(CLFM) was the common target of the coagulation and
natural clot dissolution system.We consider the four proteins
(GPIb-IX-V, vWF, thrombin, and CLFM) as multifunctional
proteins. The average degree of each node was 2.78, and the
average shortest path length was 5.37.

The degree distribution 𝑝(𝑘) is an important measure of
the topological features of the network (Figure 2) [26]. The
degree distributions of most real-world networks, including
biological networks, follow a power law, 𝑝(𝑘) ∼ 𝐴𝑘−𝛾, where
𝛾 is the power-law exponent. The degree distribution in
network generated in this way obeys the following power law:
𝑝(𝑘) = 𝐴𝑘−1.25, 𝑝 < 0.001. The degree distribution of the
thrombosis network was approximately scale free (when 2 <
𝛾 < 3). As confirmed by the power law, most of the nodes
in this network only influenced a limited number of other
nodes, and a small number of nodes interacted with many
other nodes. These nodes are likely to play key roles in the
functional system [27].

3.2. Identification of Key Targets. Hubs with a high degree of
centrality occupy a critical position in a network, although
they house only a small number of all the nodes in a network.

If hubs are attacked, the integrity of the network deteriorates
more rapidly than nonhubs, which makes hubs attractive
drug targets [25]. Thus, it is useful to study the key proteins
contributing to thrombus formation as network hubs. There-
fore, hubs with degrees larger than 10 and their topological
properties were extracted (Table 1).

Table 1 shows 27 hubs with diverse functions including
the four multifunctional proteins. The locations of multi-
functional proteins indicate the mutually influential rela-
tion among the three functions in formation of thrombi.
Among these hubs, many have been well developed as
effective antithrombotic targets, involving U.S. Food and
Drug Administration- (FDA-) approved therapeutic targets
and preclinical developing targets. Thrombin, factor Xa, GP
IIb/IIIa, PAI-1, and urokinase plasminogen activator receptor
(uPAR) are typical targets of popular clinical medicines [28,
29]. However, there are plenty of proteins with a high degree,
such as the Rap1-interacting adaptor molecule (RIAM) com-
plex, that are not suitable for drug development [30].

On average, the targets of FDA-approved drugs tend to
have more connections than most peripheral nodes but do
not cover all the hubs [31].Hub connectors, such as factor XIa,
factor IXa, and 14-3-3 zeta, that connect GPIb-IX-V, ATIII,
and factor V with thrombin and connect plasminogen with
CLFM are linked to major hubs and provide very interesting
targeting options [24].

Different centrality measures indicate different impor-
tance of nodes in the network. Nodes with high betweenness
centrality indicate their particular targeting potential for
antithrombosis due to their bottleneck positions in the
thrombosis network. It should be noted that 16 out of 27 hubs
also have high betweenness centrality. Moreover, high degree
and betweenness centralities exhibit essential topological
significance in thrombosis network by serving as network
hubs and bridges.

On the other hand, a substantial number of key proteins
in Table 1 are enzymes related to cell survival, growth, and
metabolism and activate or promote the development of
thrombosis signaling series, such as Src family kinases,
the PI3K/AKT pathway, and Syk. The topological positions
of enzymes in network highlight their potential roles as
therapeutic targets. Enzyme signal pathways are increasingly
recognized as targets of antithrombosis drugs.The activation
of Src family kinases (SFKs), a family containing eight
structurally related tyrosine kinases, namely, Lyn, Fyn, Src,
Fgr, Blk, Hck Yes, and Lck, is an important event downstream
of integrin adhesion signaling that is involved in initiating
and amplifying signals in platelets [32, 33]. Research on mice
has provided preliminary but important implications for
exploring inhibitors targeting individual SFKs, in particular,
Lyn [32]. The central role of Syk identified by both high
degree and betweenness centrality in numerous signaling
cascades also highlights its promise in the development of
novel antithrombotic therapeutics [34]. All these appear to
be consistent with the prediction derived from network
centrality implication exhibited in Table 1. However, as these
enzymes have multiple roles in other biological processes, an
appropriate drug-delivery system is needed that specifically
targets the thrombus system.
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Table 1: Topological information on key proteins in the thrombosis network, ranked by degree.

Rank Nodes Degree Betweenness Closeness Functionsa

1 Talin-RIAM complex 25 689 6.2 Platelet signaling
2 GP IIb/IIIa 23 215 6.2 Platelet signaling
3 Thrombinb 19 3089 2.7 Multifunction
4 GPIb-IX-Vb 18 2818 2.9 Multifunction
5 p-Y419-Src 18 2866 4.8 Platelet signaling
6 Syk 16 686 4.7 Platelet signaling
7 Plasmin 15 294 1.5 Clot dissolution
8 CSK 14 151 6.3 Platelet signaling
9 vWFb 13 542 3.4 Multifunction
10 CLFMb 13 992 1.7 Multifunction
11 Fyn 12 133 5.6 Platelet signaling
12 GPVI-FcR 12 133 5.6 Platelet signaling
13 Lyn 12 133 5.6 Platelet signaling
14 p-Y348-Syk 12 288 6.4 Platelet signaling
15 Factor Xa 12 1032 3.5 Coagulation
16 Collagen 11 9 6.4 Platelet signaling
17 uPAR 11 145 1.5 Clot dissolution
18 Src 10 396 5.4 Platelet signaling
19 PDK1 10 21 1.0 Platelet signaling
20 AKT 10 21 1.0 Platelet signaling
21 PAI-1 10 177 1.7 Clot dissolution
22 Crk 10 502 5.5 Platelet signaling
23 p-Y397, 407, 576, 577, 861, 925-FADK1 10 414 6.4 Platelet signaling
24 TF 10 213 4.4 Coagulation
25 Thrombin-activated PAR 10 803 1.8 Platelet signaling
26 G-protein Gq 10 338 1.5 Platelet signaling
27 uPA (two-chain) 10 53 1.6 Clot dissolution
aFunctions refer to platelet signaling, coagulation, clot dissolution, or multifunction identification summarized from Reactome.
bThrombin, GPIb-IX-V, vWF, and CLFM are multifunctional proteins serving as two functions. The first three combining functions are in platelet signaling
pathways and coagulation cascades, while CLFM is in coagulation and clot dissolution system.

Table 2: Modularity of the thrombosis network and the identification of modular hubs.

Modules Number of nodes Modular hubs Mechanisms

1 31 Thrombin, GPIb-IX-V, vWF, factor Xa Platelet adhesion signaling and classic
coagulation cascade system

2 22 Talin-RIAM complex, GP IIb/IIIa,
p-Y419-Src, CSK

Platelet activation and aggregation
through GP IIb/IIIa

3 21 Syk, Fyn, GPVI-FcR, Lyn, p-Y348-Syk Platelet activation through GPVI-FcR
and Syk signal

4 19 Thrombin-activated PAR, G-protein Gq,
GNB-GNG complex

Accumulation of soluble agonists for
platelet recruitment

5 18 Plasmin, CLFM, uPAR, PAI-1 Fibrin formation and dissolution events

6 14 p-PLCG2, p-SLP-76 Signalosome formation for promoting
full platelet activation through PLCG2

7 10 Kininogen, kallikrein, C1q bp,
prekallikrein Kallikrein-kinin system

8 6 Src, activated PAR1 Typical platelet activation signal via ERK
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Figure 3: The centralities of multifunctional and nonmultifunctional proteins: (a) average degree; (b) average betweenness; (c) average
closeness.

Nodes with overlapping function are key determinants
of network cooperation. Overlapping nodes occupy specific
network positions and can providemore subtle regulation. As
shown in Figure 1 and Table 1, four multifunctional proteins
cross-linking coagulation cascade and platelet signaling or
clot dissolution affect both sides broadly, due to their high
degree and betweenness centralities. The potential of GPIb-
IX-V and vWF as antiplatelet adhesion targets has been
investigated in mounting evidence from basic research and
clinical evaluations for antiplatelet agents identification [35,
36]. Inhibitors against thrombin are also the focus of much
research to improve the treatment of thrombus [37].

We compared the average degree, betweenness centrality,
and closeness centrality of multifunctional proteins with
those of the nonmultifunctional proteins shown in Table 1
to identify their specific topological characteristics. Figure 3
shows the difference in the betweenness and closeness
centrality of these multifunctional and nonmultifunctional

proteins. Multifunctional nodes bridging the three compo-
nents of thrombosis (i.e., platelet signaling, the coagulation
cascade, and the natural clot dissolution system) show much
higher betweenness and interact with other nodes closely.
These likely contribute to such encouraging performance of
functional overlaps as attractive targets for antithrombotic
treatment.

3.3. Implications of Network Modularity. To facilitate the
interpretation of the complex relationships in the thrombosis
system, themodular structure of the systemwas explored.We
marked eight modules positioned in the largest component
in Figure 1 and sorted them by the number of involved
nodes in Table 2. The mechanism of each module and
the functional interdependencies among the modules are
illustrated in Table 2. The findings provide insight into the
complex biological process of thrombosis corresponding to
the functional modules’ network positions.
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Figure 4: Network fragmentation under random failures, hub attacks, and bridge attacksmeasured by (a) the relative size of the largest cluster
𝑆 and (b) the average size of the isolated components ⟨𝑠⟩.

In module 1, GPIb-IX-V and vWF not only were impor-
tant components of platelet adhesion but also strongly asso-
ciated with the classic coagulation cascade by factor XI and
factor VIII [38]. In addition, thrombin, as the most potent
platelet agonist, coordinates the process of platelet activation
and aggregation with coagulation [1]. Together with factor
Xa [39], they serve as modular hubs and are considered
important targets in antithrombotic treatment. Network hubs
are scattered throughout diverse modules. Most are modular
hubs.

Otherwise, modular hubs which are not network hubs
should also be emphasized in view of their local influence
on some specific functions. For example, phosphorylated
phospholipase C gamma 2 (p-PLCG2), as a hub of module
6, and kininogen and prekallikrein as hubs in the kallikrein-
kinin system have been demonstrated by previous studies
to show the potential as antithrombotic targets [40–43].
Another study also showed that hub-related properties sig-
nificantly affectedmodular functions,making themattractive
network drug targets when partial modulating against spe-
cific thrombosis processes [44].The aforementioned suggests
that putative targets can be identified by their modular status
as well.

3.4. Analysis of Network Robustness. Robustness is an intrin-
sic property of networks. It refers to the ability of a network
to continue functioning in the face of various perturbations.
The action of drugs can be perceived as a disease network
perturbationmodulating disordered network towards a func-
tional state [45, 46]. Drugs that target a single node destroy
the connections between that node and other nodes. In this

context, a network approach can shed light on the effect of
different drugs on various targets.

Due to advances in the theoretical understanding of
network structure, it is possible to quantitatively describe
a network with graph concepts. As the degree distribution
of the thrombosis network conforms to power law, and
the network is relatively scale free (Section 3.1), it is likely
resistant to random damage but sensitive to the targeted
removal of nodes [25]. Networks have a number of vulnerable
points, such as hubs and bridges, and they can be attacked
at any of these. In this paper, we simulated hub attacks and
bridge attacks to examine the robustness of a thrombosis
network (Figure 4).

As shown in Figure 4, the response of the thrombosis
network to attacks and failures differed. When nodes were
removed continuously from the network (up to 𝑓 = 0.1),
the size of the largest component 𝑆 remained the dominating
position under random failure but fell apart to moderate size
obviously when hubs or bridges were attacked (Figure 4(a)).
When one or two nodes were removed, only bridge attacks
had much of an effect on the network, pointing to the
importance of targeting nodes with high betweenness when
developing single-target agents. As 𝑓 increased, the size of
the network largest component decreasedmore rapidly under
hub attacks than bridge attacks. When hubs were attacked,
𝑆 displayed threshold-like behavior. At 𝑓 ≈ 0.03 (about five
nodes were removed), 𝑆 ≈ 0.2, and the network experienced
catastrophic fragmentation. As shown in an earlier study, the
fragmentation would break off continuously but less severely
when larger fraction than 0.1 of nodes was removed [25].

The fact that the average size ⟨𝑠⟩ of the isolated compo-
nents increased slowly indicated that increasing failure level
led to the isolation of single nodes, not large components
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(Figure 4(b)). In the attack mode, the system was sensitive to
the removal of key nodes and was separated into certain size
of components, which explains the rapid increased ⟨𝑠⟩ for the
small𝑓. Similar threshold of ⟨𝑠⟩was detected in attackmode,
where the main component broke into small pieces and also
led to the size of fragments peaks. As we continued to remove
nodes, the isolated components became deflated, leading
to a descending ⟨𝑠⟩. The aforementioned behavior provides
evidence that the thrombosis network shows topological
stability against random failures but that it fragments in
response to attacks on a small number of nodes. Obviously,
bridge attacks are more sensitive than attacks on hubs, and
hub attacks causemore serious fragmentation of the network.
These observations of the global influence of network attacks
could provide clues for seeking fragile targets and designing
multitarget therapeutic strategies against thrombosis.

4. Conclusions

Network analysis has the advantage of providing system-
level perspectives on complex issues. Topological analysis
can help to extract valuable information hiding in large-scale
and complex experimental data. In summary, on the foun-
dation of evidence-based data, we constructed an integrated
thrombosis network composed of platelet signaling, the
coagulation cascade, and the natural clot dissolution system
and conducted various network topological analyses. The
degree distribution followed a power law, and the network
was relatively scale free. With this in mind, local topology
analysis was conducted to identify central nodes that could
be putative drug targets. The results showed that targets can
also be predicted from their modular position by modularity
analysis. The analysis of the robustness of the thrombosis
network demonstrated that it was highly resistant to random
failure but sensitive to hub and bridge attacks. Such studies
can elucidate the function of proteins in thrombosis network,
help discover new targets for the treatment of thrombus using
TCM, and contribute to the development of new targets of
TCM and multitarget strategies.

Network analysis seems to provide a valuable prediction
of therapeutic targets, but it is still insufficient to validate the
effectiveness of targets. Further pharmaceutical experiments
are necessary for eventual validation of network results.
Network approach can serve as a valuable complement to the
experimental efforts, while a combination between simulated
and experimental studies is of great significance for effective
drug discovery in future.
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