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Abstract

Research Article

IntroductIon

Subclassification of the diagnosis of several types of tumors, 
including breast cancers, brain tumors, adrenal cortical 
carcinomas, thyroid cancers, and neuroendocrine neoplasms, 
has been based on the quantitation of proliferation.[1-8] The 
classification and risk stratification of these diagnostic entities 
include mitotic counts and the assessment of a Ki67 labeling 
index.[9] Ki67 was initially identified as an antigen associated 
with mitosis in mammalian cells by investigators in Kiel (hence 
the Ki in the name).[10] The use of this biomarker has become 
the subject of intense controversy.[6] The labeling index of 
this antigen has been counted by eyeballing slides, by manual 
counts of printed images photographed at the microscope, 
and by automated image analysis algorithms. Because the 
reproducibility of Ki67 positive cell counts is poor, particularly 
when eyeballing[7,11-13] careful manual counts of printed images 
or automated image analysis have been recommended to 

improve the accuracy of this biomarker.[12-14] In addition, 
staining results are subjected to interlaboratory variation that is 
dependent on both tissue fixation and staining technology.[8,15]

In an effort to ensure accurate and reproducible Ki67 labeling 
indices, we implemented an image analysis tool in the 
Department of Pathology at the University Health Network, 
Toronto. The validation was undertaken by the endocrine 
pathologists who assess a large number of cases, for which 
the Ki67 labeling index is used to grade neuroendocrine 
neoplasms.[3,14] During the course of validation, we compared 
this tool to the previous method of calculating the Ki67 
labeling index, manual counts of printed images of the region 
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of interest (ROI). We report here the results of this validation in 
terms of accuracy, time, and reproducibility. More importantly, 
during this validation, it became apparent that different types 
of specimens, specifically biopsies or resections, alter the 
availability of tissue for analysis, and some biopsies did not 
yield the recommended number of cells; the availability of 
this tool allowed comparisons of different ROIs based on the 
number of cells and number of regions selected for analysis.

MaterIals and Methods

Materials
According to guidelines,[16] following primary use-case 
validation of digital pathology using at least 60 cases, 
each additional use-case validation requires 20 additional 
cases. For this study, we collected 20 consecutive cases of 
neuroendocrine neoplasms; these tumors had Ki67 labeling 
indices reflective of the wide range of these tumors, from very 
low (approximately 0.1%) to high (approximately 75%). These 
included primary neuroendocrine tumors of stomach, small 
bowel, appendix, pancreas, lung and ovary, liver metastases 
from lung and small bowel neuroendocrine tumors, and 
paraganglioma. Sections of 5-µm thickness were stained on the 
Roche Ventana Benchmark using the MIB1 antibody (Dako, 
Santa Clara, CA, USA). Slides were scanned with a Leica 
Aperio AT2 Scanner (Leica Biosystems, Vista, CA, USA) 
and accessed through the CoPathPlus laboratory information 
system (Cerner, Kansas City, MO, USA) interfaced with 
Aperio eSlideManager through Aperio ImageScope (Leica 
Biosystems) as previously described.[17] The pretuned nuclear 
algorithm (Leica Biosystems) was used for automated analysis 
of slides stained for Ki67.

Validation of image analysis algorithm
Since the program used does not have the ability to identify 
the regions of highest labeling, also known as “hotspots,” 
we identified ROIs on the digital slides by visually selecting 
the area of highest labeling. We outlined the ROI using a 
frame and then annotated the area within the frame using the 
ImageScope software to manually outline stroma for exclusion 
in the ImageScope analysis [Figure 1]. The selected and 
annotated regions were photographed, printed, and distributed 
to four pathologists (OM, SP, DAG, and SLA) who performed 
manual counts as per their usual practice following the WHO 
recommendation that “manual counting using printed images 
is advocated.”[14] The outlined ROIs in the whole slide image 
were subjected to image analysis using the image analysis 
nuclear algorithm for determination of the Ki67 labeling index 
on three occasions. Each analysis was timed from the onset of 
analysis to completion. This timing did not include the time 
required for ROI selection and annotation, as the annotations 
were made in advance and then the ROI was printed ×4 for 
manual counting by each individual who was blinded to the 
results of the other users and the image analysis algorithm.

The results of the analyses by each of the four pathologists and 
the algorithm were compiled [Table 1] and compared [Figure 2].

Reproducibility of the algorithm based on user 
determinations
Since some of the specimens were resection specimens with 
large tissue pieces, while others were biopsies with fewer cells, 
and some of the biopsies were intact cores, while others were 
multiple small fragments, we recognized that the selection of 
a “hot spot” varied from specimen to specimen. In resection 
specimens, the initial approach was to identify the single area of 
highest labeling and identify an area that had at least 1000 cells; 
in some cases, more than 1000 cells were counted. In some 
biopsies, it was difficult to obtain 1000 cells, and in fragmented 
biopsies, to achieve a total cell count of more than 500 cells, it 
was frequently necessary to identify multiple small “hotspots.”

To determine the impact of selection of the ROI on the outcome 
and classification of the tumor, we performed the analysis using 
multiple approaches. We carried out the automated analyses 
on a single tumor using different numbers of total cells and 
multiple small versus single large areas of hot spots.

results

Validation of image analysis algorithm
The results obtained using the automated image analysis 
algorithm compared with manual counts of the same annotated 
areas by multiple observers are shown in Table 1 and illustrated 
in Figure 2.

Analysis of annotated areas by the algorithm resulted in 
identical results when repeated multiple times. Overall, the 
automated analysis correlated with the pathologists’ results 
in the majority of cases. However, the manual counts varied 
from pathologist to pathologist [Figure 2] depending on the 
interpretation of the selected area. Specifically, there were two 
areas of difference. First, while the algorithm identifies any 

Figure 1: Sample photographs of annotated figures used for Ki67 
quantitation by manual counts and automated image analysis. These 
images illustrate examples of how annotations were applied for 
quantitation of Ki67 labeling index for validation of an automated algorithm. 
Sample slides were annotated with a square to identify the region of 
interest, then annotations were made to exclude the stroma. The resulting 
images were printed for manual counting and subjected to the automated 
algorithm for analysis
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staining as positive, there was discordance among pathologists 
regarding inclusion of very weak signals. Second, some 
pathologists counted all nuclei, while others omitted nuclei 
within the analysis area that could possibly be interpreted 
as stroma. These differences are known to contribute to 
interobserver variability in tumor grading.

Time savings by image analysis
The automated algorithm provided results within few seconds 
compared to up to 55 min per analysis when performed 
manually [Table 1]. This timing did not include the time 
required for annotation of the initial image; it only included 
the time for actual counting on printed images.

Reproducibility of the algorithm based on user 
determinations
We repeated the analysis of a given tumor using larger or 
smaller frames to include more or fewer cells in the same 
region that had been identified as the “hotspot.” We identified 
a consistent variation of the Ki67 labeling index based on 
cell number; the more cells counted, the lower the Ki67 
value obtained, with the highest variation at the low end of 
the spectrum [Figure 3]. This impacted the cutoff points that 
have been defined for the distinction of Grade 1 from Grade 2 
neuroendocrine tumors[3,14] such that counting 1000 cells could 
result in a tumor being classified as moderate grade (G2), 
whereas counting 2000 cells or more resulted in the same 
tumor being classified as low grade (G1). The same occurred 
for tumors close to the 20% cutoff for intermediate- versus 
high-grade (G3) classification.

Since biopsies can be fragmented and yield multiple small 
pieces of tissue for analysis, we then examined the impact of 
selecting multiple small regions compared to a single large 
region to obtain the required number of cells [Figure 4]. It was 
evident that selection of multiple regions of intense labeling 
resulted in a higher value than selection of a single region of 
the same number of cells even if overall that represented the 
most intense hot spot.

conclusIons

This study was performed as part of the validation of new 
technology in the laboratory. Our results confirm that there 
is a significant benefit of automated image analysis as part of 
daily pathologists’ workflow, both in the consistency of the 
automated results and in the time savings for pathologists. Our 
study did not include the time required to identify hotspots or to 
annotate images for counting, we assume that the time required 
for such annotation would not be significantly different using 
printed images or the ROI on a computer screen since the work 
to do this is mainly a factor of pathologist recognition and 
labeling of stromal elements for exclusion. As new algorithms 
are developed that can recognize hot spots and perform 
automated segmentation to exclude stromal elements, the time 
required for these activities will be reduced.

The ability to perform fast and reliable image analysis 
for quantification of morphologic features allowed us the 
opportunity to pursue a more in-depth analysis of the impact 
of tissue annotation for the analysis of the Ki67 labeling 
index.

Table 1: Comparisons of results of Ki67 in 20 cases

Cases Nuclear algorithm Observer 1 Observer 2 Observer 3 Observer 4

Percentage Total 
# cell

Percentage Total 
# cell

Time, 
min

Percentage Total 
# cell

Time, 
min

Percentage Total 
# cell

Time, 
min

Percentage Total 
# cell

Time, min

Case 1 2.119 1463 1.84 1412 10 1.57 1400 30 1.99 951 9 1.76 1303 Time 
was not 
recorded 
for 
individual 
cases. 
Estimated 
time was 
between 
15 and 
30 min for 
each case

Case 2 0.107 931 0.12 853 8 0.17 574 13 0.16 618 7 0.12 799
Case 3 3.425 1664 3.84 1951 20 2.26 1944 50 6.53 826 10 2.91 1747
Case 4 4.145 3643 5.46 2380 22 3.85 2392 48 7.08 1581 20 4.49 2334
Case 5 6.586 911 6.98 1147 23 5.44 1047 15 12.15 576 9 3.18 2008
Case 6 1.606 2366 2.09 956 23 1.67 836 16 2.98 569 8 1.92 727
Case 7 1.497 1670 1.25 1600 22 1.44 1320 23 2.13 935 7 1.54 1422
Case 8 3.091 2556 3.89 2186 32 2.56 2104 45 7.68 924 15 3.75 1810
Case 9 2.870 1289 3.06 1177 25 2.32 1290 20 4.06 689 10 3.11 1123
Case 10 9.287 1346 11.31 1494 18 7.36 1522 40 13.23 922 13 9.66 1314
Case 11 2.027 1529 1.92 3122 28 1.16 2681 55 2.27 1540 21 1.58 2423
Case 12 5.849 1915 7.47 2125 22 4.88 1945 30 13.22 809 13 7.61 1510
Case 13 29.651 1059 31.02 1054 25 27.31 908 18 38.12 758 14 32.4 876
Case 14 1.971 558 2.11 427 9 2.76 326 6 2.76 289 3 2.44 368
Case 15 47.259 821 48.85 782 18 36.11 720 15 56.35 456 9 45.92 699
Case 16 5.151 1553 5.77 1525 20 3.97 1510 28 8.71 769 11 5.43 1269
Case 17 10.779 1375 9.55 1476 27 7.47 1405 22 15.29 817 11 9.35 1283
Case 18 1.692 2601 1.63 1778 25 1.32 1216 25 3.61 831 11 1.9 1315
Case 19 19.350 571 15.29 713 12 10.41 826 13 22.52 444 10 14.48 773
Case 20 73.374 661 81.24 485 10 62.30 573 13 86.64 614 9 81.74 586
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We have identified significant interobserver variation due to 
pathologist interpretation. Despite the instructions to use the 
prepared annotations, one pathologist had consistently higher 
Ki67 results when using manual counts of printed images. This 
was attributed to the fact that this pathologist excluded any cell that 
was perceived as stroma or blood vessel even if it was included 
in the countable region of the ROI. Therefore, the results would 
have differed whether using manual counts or automated image 
analysis. Some differences may possibly be related to the inclusion 
of very weak signals by some and not all observers, the algorithm 
is set to include even weak and/or focal staining as positive.

This study analyzed hotspots that were identified by a 
pathologist. As image analysis tools become more sophisticated, 

automated tumor/stroma segmentation will become a common 
standard. However, the insights that we obtained in our study 
will need to be considered when developing those segmentation 
algorithms, to establish how to identify a hotspot based on the 
total number of cells available or required, whether a single 
area only should be analyzed, and if so, how such an algorithm 
can be applied to small biopsies.

While variation in Ki67 labeling results has been attributed 
to the known heterogeneity of different areas within 
neuroendocrine tumors,[18] we have also confirmed significant 
variation of the Ki67 labeling index based on the size and 
number of ROIs. Our data confirmed the obvious result that 
counting more cells skews the result for cases with relatively 
low Ki67 labeling. The same is true when selecting multiple 
very small areas compared with a large tissue region, even when 
the total number of cells is the same. This concentration effect 
has a significant impact when considering that much of current 
practice rests on results obtained from small biopsies that 
frequently have either too few cells for a complete analysis or 
may be fragmented, yielding multiple small regions. The ability 
to push a tumor from a G1 to G2 or G2 to G3 classification 
can be as simple as reducing the number of cells counted from 
1500 to 1000 or selecting multiple small hot spots rather than a 
single larger area of the same tumor. The literature has not dealt 
with this issue rigorously; the WHO has recommended that “the 
Ki67 proliferation index is based on the evaluation of equal 
and >500 cells in areas of higher nuclear labeling (so-called 

Figure 2: Results of manual and automated counts of Ki67 labeling 
index. (a) Includes the entire scale from 0% to 100%. (b) Is an expanded 
view of the cases close to the 20% cutoff for G2 versus G3 neuroendocrine 
tumors. (c) Is expanded to show the variability at the previous 2% and 
revised 3% cutoff to separate G1 from G2 neuroendocrine tumors

a

b

c

Figure 3: Results of automated counts using different numbers of cells. 
In the example shown in (a), counting a field that included 1906 cells 
provided a Ki67 labeling index of 2.99%; in contrast, counting 1455 cells in 
the same area using a smaller region of interest resulted in a Ki67 labeling 
index of 3.09% for this tumor. Using the current WHO classification, 
the difference makes this either a G1 or a G2 tumor. In (b), counting 
1421 cells provide a Ki67 of 19.49% and classification as a G2 tumor, 
whereas counting 992 cells results in a Ki67 of 21.27% and classification 
as a G3 tumor

a

b
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hotspots).”[14] The implication of this is that more is better, 
and some pathologists try to count as many cells as possible; 
with automated tools, it is easier to count more cells or even 
the entire slide, yet our data show that this alters the result in 
a way that can be significant to grading of a neuroendocrine 
tumor. Careful studies based on rigorous and consistent 
protocols are needed to prevent concentration or dilution 
effects and to determine the correct mechanism for counting 
that is clinically relevant. The application of this analysis in 
biopsies complicates the matter since often biopsies do not 
contain sufficient numbers of cells to achieve recommended 
counts. While some would argue that results close to a cutoff 
should be rounded up to the nearest whole integer,[14] there are 
no guidelines on this issue. There is a need for a rigorous study 
using image analysis tools and standardized numbers of cells to 
determine the diagnostic cutoffs that are clinically significant 
or to update the approach to this continuous variable. Indeed, 
it may be that the Ki67 labeling index should not have set 
cutoffs that can be manipulated as showed in this study. The 
impact of this on grading of neuroendocrine tumors and other 
tumor types will be significant.

In conclusion, we report that the application of automated 
image analysis for the enumeration of a Ki67 labeling index 
provides a fast and accurate tool for this methodology. 
However, we provide examples of variations that result from 
the size and number of selected fields to determine the ROI for 
analysis. These results highlight the importance of developing a 
standardized approach to quantitation in anatomical pathology 
and raise concerns about the rigid cutoffs for tumor grading 
that have been promoted based on nonstandard studies.
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