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Cyclic intensive light exposure induces retinal
lesions similar to age-related macular
degeneration in APPswe/PS1 bigenic mice
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Abstract

Background: Intensive light exposure and beta-amyloid (Ab) aggregates have been known as a risk factor for
macular degeneration and an important component in the pathologic drusen structure involved in this disorder,
respectively. However, it is unknown whether Ab deposition mediates or exacerbates light exposure-induced
pathogenesis of macular degeneration. Several studies including the one from us already showed accumulation of
Ab deposits in the retina in Alzheimer’s transgenic mice. Using histopathological analysis combined with
electroretinographic functional assessment, we investigated the effects of cyclic intensive light exposure (CILE) on
the architecture of retina and related function in the APPswe/PS1bigenic mouse.

Results: Histopathological analysis has found significant loss of outer nuclear layer/photoreceptor outer segment
and outer plexiform layer along with abnormal hypo- and hyper-pigmentation in the retinal pigment epithelium
(RPE), remarkable choroidal neovascularization (CNV), and exaggerated neuroinflammatory responses in the outer
retina of APPswe/PS1 bigenic mice following cyclic intensive light exposure (CILE), whereas controls remained little
change contrasted with age-matched non-transgenic littermates. CILE-induced degenerative changes in RPE are
further confirmed by transmission electron microcopy and manifest as formation of basal laminar deposits, irregular
thickening of Bruch’s membrane (BrM), deposition of outer collagenous layer (OCL) in the subretinal space, and
vacuolation in the RPE. Immunofluorescence microscopy reveals drusenoid Ab deposits in RPE as well as
neovessels attached which are associated with disruption of RPE integrity and provoked neuroinflammatory
response as indicated by markedly increased retinal infiltration of microglia. Moreover, both immunohistochemistry
and Western blots detect an induction of vascular endothelial growth factor (VEGF) in RPE, which corroborates
increased CNV in the outer retina in the bigenic mice challenged by CILE.

Conclusions: Our findings demonstrate that degenerative changes in the outer retina in the APPswe/PS1 bigenic
mouse induced by CILE are consistent with these in AMD. These results suggest that an Alzheimer’s transgenic
animal model with accumulation of Ab deposits might be an alternative animal model for AMD, if combined with
other confounding factors such as intensive light exposure for AMD.

Background
Age-related macular degeneration (AMD) is a degenera-
tive disease in the eye, which causes irreversible blind-
ness in elderly and is one of the major causes of
blindness in developed countries [1]. Drusen and

choroidal neovascularization (CNV) are the two patholo-
gical hallmarks of AMD, of which drusen accumulates
in the subretinal pigment epithelium (RPE) space and
CNV is characterized by new angiogensis from choroidal
blood vessels which break through Bruch’s membrane
(BrM) and RPE layer and is often associated with sub-
retinal hemorrhage [2]. Recent studies suggest that beta-
amyloid (Ab) peptide, a major molecular signature in
the brain of Alzheimer’s disease, might play an impor-
tant role in the pathogenesis of AMD [3]. Ab aggregates
have been identified as one of the major components in
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drusen as well as in RPE cells in the retina of AMD
[4-7]. Similarly to the brain, several groups of investiga-
tors including us also demonstrate perivascular deposi-
tion of Ab in the retina in human CNV as well as
different lines of Alzheimer’s-related transgenic mice
[8,9]. Importantly, immunotherapy that targets Ab sig-
nificantly attenuated retinal lesions and improved retinal
function in an AMD mouse model [10,11]. Moreover,
growing evidence has indicated smoking [12], extensive
sun light exposure [13], and ageing [14] as important
risk factors for AMD. CILE is detrimental to the BrM,
RPE, photoreceptor and other retinal structures due to
induction of the reactive oxygen species and inflamma-
tory response [15,16]. CILE induced drusen formation
or stimulated CNV through upregulation of vascular
endothelial growth factor (VEGF) as well as induction of
oxidative stress in rodent models [17-20].
Nevertheless, the molecular basis of the pathogenesis of

AMD, particularly about the role of Ab deposition in the
development of RPE lesions and CNV, remains elusive. In
this study we examined the effects of constitutional expres-
sion of Ab deposits on retinal lesions induced by CILE in
the APPswe/PS1 bigenic mouse model of Alzheimer’s dis-
ease, and found that CILE significantly increased Ab
deposition linked with AMD-like retinopathies in the
transgenic mice. By contrast, there were no significant
changes in the retina of either non-transgenic mice
received equal light exposure or age-matched transgenic
control.

Results
Cyclic intensive light exposure induces abnormal pigment
deposition in RPE, CNV and degenerative changes in the
retina of APPswe/PS1 bigenic mice
To evaluate the effect of CILE on the retina of mice, the
fundus was examined before and after CILE based on
fundus photographs. Apparently, increased pigment
deposits and shrunken vessels were detected in APPswe/
PS bigenic mice after CILE, particularly in these after
6-month CILE compared with age-matched control
or non-Tg mice after the exposure (Additional file 1,
Figure 6). Nevertheless, neither yellowish retinal depos-
its/drusen nor retinal hemorrhage was found in the fun-
dus photos from both bigenic and non-Tg mice. These
observations are in agreement with conventional light
microscopic analysis following H&E staining on retinal
cross sections (Figure 1). There is no conspicuous difference
in the architecture of the retina between a non-Tg (Figure
1A) and an age-matched bigenic control (Figure 1B) mouse.
By contrast, a series of remarkable degenerative changes are
visible in the retina in all the animals from the groups of
bigenic mice following CILE (Figures 1C-J) compared with
the control (Figure 1B). Significant loss of the outer nuclear
layer (ONL)/photoreceptors is visible following 3-month

CILE (Figure 1C), the entire outer plexiform layer (OPL)
and ONL/photoreceptor outer segment (OS) layer are
barely remaining after 6-month CILE (Figures 1D, H, and
1I), which is consistent with the thickness loss as confirmed
by thickness measurement (Figure 1K). Importantly, abnor-
mal pigment deposition, i.e., hypopigmentation (Figure 1E)
or hyperpigmentation which appears in association with
RPE proliferation as indicated by the hypertrophic appear-
ance of RPE cells in the retina in the bigenic mice after
6-month CILE (Figure 1F). Moreover, CILE-induced CNV
is usually shown here as the disruption of the Bruch’s mem-
brane (BrM) due to invasion of new vessels that enclose red
blood cells from choroicapillaris (CC) (Figures 1D, G-J).
Quantification of newly generated vessels shows 75% of the
mice (9 of 12) with about 4.8 ± 2.2 evident new vessels per
cross retinal section in the group with 6-month CILE,
but no new vessel was detected in the other groups at all
(Figure 1L). In addition, no typical drusen structures were
found in these mice.
To evaluate the CILE-induced pathological lesions in the
retina further, we performed transmission electron
microscopy to examine the ultrastructure in the retina. A
representative micrograph demonstrates typical normal
ultrastructure of the outer retina in the 12-month old
non-Tg mice (Figure 2A). There is no obvious difference
in the general ultrastructure as well as the RPE-BrM-CC
complex between non-Tg and age-matched APPswe/PS1
bigenic controls (Figure 2B). Conversely, intracellular
vacuoles along with membranous debris (Figures 2C, D),
small basal laminar deposits (Figure 2E), and thickened
BrM (Figures 2C, F) are commonly seen in the RPE layer
in the group of bigenic mice that received 6-month CILE.
Noticeably, shrunken and disrupted architecture of basal
infoldings of RPE is also detected in most eyes from
these animals as well (Figures 2F, G, and 2J). In some
cases, loss of the continuity of BrM elastic layer (Figure
2G), outer collagenous layer deposition (Figure 2H), and
infiltration of microglia (Figures 2G and 2I) around the
BrM-CC complex are evident as previously demonstrated
[21,22]. Importantly, CILE also induces invasion of chor-
oicapillaris into the RPE layer resulting in formation of
neovessels, which usually demonstrate as vascular buds
as shown in Figures 2I and 2J.

Cyclic intensive light exposure-induced retinal lesions are
associated with accumulation of b-amyloid deposits in
the RPE of APPswe/PS1 bigenic mice
Previous studies have demonstrated a link between accu-
mulation of Ab deposits and retinal degenerative changes
in age-related macular degeneration [5,6]. Both APP and
Ab deposits have also been found in the retina of
APPswe/PS1 bigenic mouse (Additional file 1, Figure 7),
we therefore investigated whether CILE-induced retinal
lesions are directly associated with retinal accumulation of
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Figure 1 Degenerative changes and neovascularization in the retina of bigenic mice following cyclic intensive light exposure.
Hematoxylin and eosin (H & E) staining was performed on retinal cross sections as described in Methods. (A) A part of a retinal cross section
through the optic nerve head of a 12-month old non-Tg control mouse (non-Tg) showing normal architecture and morphology. (B) A part of a
retinal cross section from an age-matched APPswe/PS1 bigenic control mouse (control) (demonstrates similar morphology to the non-Tg
control). (C) A part of a retinal cross section from a bigenic mouse following 3-month CILE (light-3 m) shows remarkable thinning outer nuclear
layer/photoreceptor outer segment. (D) A part of a retinal cross section from a bigenic mouse following 6-month CILE (light-6 m) exhibits
thinning neuroepithelial layers and newly-developed vessels. (E-G) Cross sections from the bigenic mice after 6-month CILE showing hypo-
pigmentation (E, arrowheads), proliferating RPE (F, arrow), hyperpigmentation and a newly-developed vessel originated from choroicapillaris
disrupt the RPE layer with red blood cells inside (G, arrow) in the RPE layer. (H-J) Show different types of newly-developed vessels that disrupt
retinal architecture. Boxed area in (H) is shown in (I) at a higher magnification, in which the arrow indicates a red blood cells in the newly-
developed vessel. (K) Quantification of the retinal thickness for each group of animals. (L) Quantification of neovessels in the outer retina on the
cross section for each group of animals. Bars depict mean ± SEM. *: P < 0.001 (N = 6-8). CC: choroicapillaris; RPE, retinal pigment epithelium; OS,
outer segment; ONL, outer nuclear layer; OPL, outer plexiform layer; INL, inner nuclear layer; IPL, inner plexiform layer; RGC, retinal ganglion cell
layer. Scale bars = 50 μm for (A-D), 20 μm for E, F, G, J, 50 μm for H, 15 μm for I.
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Figure 2 Transmission electron microscopic analysis of retina. Transmission electron microscopy was conducted as described in the
Methods. Representative micrographs covering the RPE regions are shown here. (A) Normal morphology of photoreceptor outer segment (OS),
RPE and Bruch’s membrane (BrM) is detected in non-Tg control mouse. (B). APP/PS1 bigenic control mouse retina demonstrates slight
degenerating changes in the RPE but with normal morphology of Bruch’s membrane. (C-J) In the retina from the group of bigenic mice
following 6-month CILE (light-6 m), micrographs show massive vacuoles in the RPE cells and disrupted photoreceptor outer segments (C),
vacuoles in RPE cells at a higher magnification (D), degenerative changes with small basal laminar deposits in RPE (E, arrowhead, dashed line
enclosure), abnormal appearance of basal infoldings (G, arrowhead), breaks of the elastic layer of Bruch’s membrane (G, open arrowheads), and
thickened or distorted Bruch’s membrane (BrM) in RPE cells (F&G). Bold arrows in (D-J) indicate endothelial fenestrations of choriocapillaris (CC)
and infiltration of microglia (G&I, thin arrows) is seen in the RPE-Bruch’s membrane interface. (H) The outer collagenous layer (OCL) is observed
adjacent to Bruch’s membrane. (I) Neovascularization (NV) and adjacent capillary (CC) are found on both sides of Bruch’s membrane. An image
from an adjacent section to the boxed area in (I) is shown in (J) at a higher magnification. Scale bar = 4 μm forA, B, H, I, 2 μm for E, 1 μm for, 3
μm for C, G, 1.5 μm for D, F, and J.
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Ab. As shown previously [23], immunohistochemistry fol-
lowing labeling with a specific antibody 22C11 against for
three major isoforms of human APP, reveals robust immu-
noreactivity in the retinal cross sections in the APPswe/
PS1 bigenic mice with 6-month CILE (Additional file 1,
Figure 7C), whereas only moderate APP staining and a
relatively low background is found in the age-matched
controls and non-Tg mice (Additional file 1, Figures 7A,
B). As speculated, increased APP abundance in the retina
is also followed by an increase in accumulation of Ab

deposits with CILE in the RPE as visualized by immuno-
fluorescence microscopy following staining with 6E10
antibody (Figures 3A-F), which predominantly recognizes
Ab peptides in the current staining protocol as described
[8], though 6E10 can bind to other APP fragments con-
taining Ab1-16 epitope. Pathological deposition of Ab in
the RPE shares very similar pattern to Ab plaques in the
brain, appearing diffusive (Figure 3C), vasculature-asso-
ciated (data not shown) and/or with a condensed core
(Figure 3F) as shown by confocal Z-stack microscopy.

Figure 3 Immunofluorescence microscopy of RPE flatmouts. (A-C) Dissected RPE flatmounts from a control and treated with CILE of APPsw/
PS1 bigenic mice were stained with 6E10 IgG for Ab (red). (D-F) RPE flatmounts were double-stained with 6E10 IgG for Ab (green) and
rhodamine-conjugated phalloidin for F-actin (red) and visualized by confocal microscopy. Druen-like Ab deposits and vessel-like structures are
evident in the mice following 6-month CILE (F). (G-H) Fluorescent microscopy reveals normal morphology of RPE cells by phalloidin staining
(red) in the control (G) and increased defects of RPE morphology (white circles) in mice received CILEs (H & I). (J-L) Fluorescent immunoreactivity
of IBA-1, a molecular marker for microglia, shows markedly increased number of microglia and microglial dendritic staining (green) in RPE from
the mice following CILEs (K & L) compared with the control (J). Cell nuclei are counterstained blue by 4’-6-diamidino-2-phenylindole (DAPI). Scale
bars = 20 μm for (A-C), 40 μm for (D-L). (M-P). Quantifications of Ab deposits (M), RPE morphological defects (N), infiltration of microglia (O), and
the length of microglial dendrites. Bars depict mean ± SEM. *: P < 0.001 (N = 8).
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Quantification of Ab immunoreactivity on the RPE flat-
mounts demonstrate a significant induction of Ab deposits
by CILE (Figure 3M).
Since CILE as well as accumulation of Ab either intra-

or extra-cellular has been linked with oxidative stress and
subsequent cell damage [24], we next examined the rela-
tionship between CILE and the general architectural
integrity of RPE. Accordingly, rhodamine-conjugated
phalloidin was used to stain F-actin, a membrane protein
that is directly relevant to the cell-cell junctions and is
commonly used for assessment of junctions of cells and
RPE integrity. Fluorescence microscopy demonstrates
well-organized typical hexagonal shape of RPE cells in
the control (Figure 3G), but disrupted staining pattern in
mice that were treated with CILE (Figures 3H and 3I).
Similar defect in F-actin staining is also obvious in the
Ab-immunoreactive regions (Figure 3F). Quantification
of F-actin-unstained area shows a significant increase in
loss of RPE integrity with CILE (Figure 3N).

Cyclic intensive light exposure provokes
neuroinflammatory response in the RPE layer in APPswe/
PS1 bigenic mice
Our previous study demonstrated a link of Ab deposition
with exaggerated neuroinflammatory response in the
retina of an Alzheimer’s mouse [8]. As CILE significantly
enhances accumulation of Ab in the RPE layer, we further
examined whether there is a corresponding change in the
inflammatory process. Following immune-labeling with an
antibody against IBA-1, a molecular marker for microglia,
in the RPE flatmounts, fluorescence microscopy demon-
strates notably increased immunoreactivity of IBA-1 in the
RPE/choroid complex from the two groups of bigenic
mice received CILE compared with these age-matched
controls (Figures 3J-L). In addition to more cells that were
stained by IBA-1, there was also a change in appearance in
which IBA-1 immunoreactive cells exhibited a hypertropic
appearance with much more and longer processes in the
flatmounts of CILE treated mice (Figures 3J, L). Quantifi-
cation of IBA-1-positive cells and total length of IBA-1-
positive dendrites in examined areas indicates a significant
increase in the number of microglia and the length of
their dendritic processes (Figures 3O and 3P), suggesting
an exacerbated inflammatory response with provoked acti-
vation of microglia in the RPE in the APPswe/PS bigenic
mice after CILE.

Upregulation of VEGF in the RPE-Choroid is related with
neovascularization in the retina in APPswe/PS1 bigenic
mice following cyclic intensive light exposure
VEGF has been considered as a major player in angiogen-
esis and an important mediator in the pathogenesis of
“wet” AMD [25,26]. To examine whether neovasculariza-
tion in the outer retina induced by the CILE was on

account of abnormal induction of VEGF, immunohisto-
chemistry using a specific antibody against VEGF was per-
formed on retinal cross sections and examined by
microscopy following ABC-mediated AEC staining. When
a very low basal level of VEGF signal is detected in
the outer retina region from 12-month old non-Tg mice
(Figure 4A), a lightly higher level of VEGF immunoreactiv-
ity is visible in the APPswe/PS1 bigenic littermates (Figure
4B). By contrast, robust staining is obvious in the 6-month
CILE group (Figure 4C). Quantification of the staining
results shows statistical significance of an increase in
VEGF immunoreactivity in the 6-month group of CILE
relative to the non-Tg as well as bigenic controls. An iden-
tical trend of VEGF expression is confirmed by Western
blots (Figure 4E).

Excessive light exposure-induced retinal lesions are
associated with the functional deficits in APPswe/PS1
bigenic mice
To investigate the possibility of functional deficits as a
result of CILE-induced retinal lesions, all three groups of
mice were tested by scotopic ERG recording before eutha-
nasia. Figure 5 illustrates both scotopic rod responses and
maximum amplitudes after flash from three tested groups
of mice. While no obvious change in a wave can be identi-
fied among the three groups of tested mice as the ampli-
tudes stayed at a very low level of background, the rod
response shows a conspicuous reduction in the amplitudes
of b wave in both groups of mice received 3- or 6-month
CILEs in contrast with control mice (Figure 5A), A strik-
ing decrease is also detected in the maximum amplitudes
flash-triggered b waves in the two groups of treated mice
compared with control (Figure 5B). Quantification of both
scotopic rod response and the flash-triggered maximum
amplitudes of b wave confirms the statistically significant
reduction with the time of CILE. But the latency periods
of b wave remain relatively stable in both rod and flash-
induced maximum response among the three tested
groups, as the implicit time stays almost unchanged in all
the groups.

Discussion
Studies have demonstrated abnormal light exposure as one
of important pathogenic factors for retinopathies
[15,27,28], particularly for inflammatory lesions and RPE
degeneration [29,30] in the retina. Here we show that
intensive light exposure exacerbates retinal degeneration
with significantly exaggerated local neuroinflammatory
response along with robust accumulation of Ab deposits
and CNV in the compartment of outer retina in an Alzhei-
mer’s transgenic mouse model. Although neither a typical
drusen structure nor lipofuscin buildup has been identified
in the model, these pathological changes are directly asso-
ciated with remarkable functional deficits demonstrated by
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ERG recordings and well mimicked the retinopathies in
AMD in human. In addition being known as a very impor-
tant player in Alzheimer’s disease [31,32], Ab aggregates
have been identified as a component of the drusen in
AMD [6,33]. Reports from several research groups includ-
ing us has evidenced deposition of Ab aggregates in the
retina in Alzheimer’s transgenic mice [8,23,34], however,
the data presented here are the first demonstration of not
only an enhancement of Ab aggregates by phototoxicity in
the retina but also a strong link between Ab deposition
and CNV along with disrupted RPE integrity in the outer
retina. Although a variety of animal models have been
developed for the study of AMD, they still have their lim-
itation to precisely recapitulate both pathological features
and functional deficits of this common visual disorder.
Increasing evidence has indicated an important role of Ab
in angiogenesis through induction of VEGF in Alzheimer’s
brain [35,36]. Interestingly, Ab deposition was also asso-
ciated with both drusenoid deposits and CNV found in
the outer retina in a human apolipoprotein E4 (apoE4)
knockin mouse line fed with high fat cholesterol-rich diet
[9] as well as other Alzheimer’s transgenic mouse lines
that result in human Ab accumulation in both brain and
retina (Tan’s group, unpublished observations). Further-
more, anti-Ab immunotherapy protected against loss of
RPE and functional performance in the apoE4 knockin
mouse challenged by high fat cholesterol-rich diet [11].
Taken together, our findings further corroborate the
notion about an important role of Ab in the pathogenesis
of AMD, particularly in relevance for signal transduction

of CNV. In this regard, our study also suggests that an
Alzheimer’s transgenic mouse model with overexpression
of human Ab deposits in the retina might be a valuable
animal model for AMD, when combined with other risk
factors such as intensive light exposures for AMD.
Our study also revealed significant exacerbation of neu-

roinflammatory response in the outer retina of APPswe/
PS1 bigenic mice resulting from CILE, which is in agree-
ment with previous findings about activation of microglia
in association with photoreceptor degeneration induced
by intensive light exposure [37,38]. Retinal infiltration of
microglia could be the crucial player to mediate the loss
of photoreceptors and adjacent retinal neurons [38],
since anti-inflammatory strategies can efficiently against
this type of phototoxicity to the retina [39]. Importantly,
Ab has shown directly activating microglia both in vivo
and in vitro [40-42]. It is therefore possible that intensive
light exposure-induced retinopathies might occur
through the Ab approach. Indeed, we also detected a
moderate level of APP induction in the outer retina in
non-Tg mice following CILE (Figure 7, Additional file 1),
though the level of Ab is still relatively low (Figure 4A).
In comparison with non-Tg mice, in fact, 6-month CILE
has significantly removed photoreceptors along with
adjacent outer plexiform layers (Figures 1E-J) thereby
physically disabled the retinal response to light stimuli as
demonstrated in ERG recording (Figure 5B). Neverthe-
less, retinal infiltration of microglia may be mediated
through microglia-Muller cell interaction in the retina
[43]. Further studies are therefore warranted to further

Figure 4 Expression of VEGF in RPE/choroid of mice. (A-C) Immunohistochemistry using a specific antibody for VEGF visualized by 3-Amino-
9-ethylcarbazole (AEC, red) staining and microscopy reveals increased immunoreactivity of VEGF in the region of outer retina in mice received
CILE (C) compared with both non-transgenic (non-Tg) and the bigenic control (B). Scale bar = 20 μm. (D) Quantification of VEGF
immunoreactivity Bars depict mean ± SEM. *: P < 0.001 (N = 6). (E) Western blots using the same antibody for VEGF confirms increased
immunoreactivity of VEGF in the retina of mice following 6-month CILE.
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uncover the molecular basis of light-induced Ab accumu-
lation and related photoreceptor degeneration.

Conclusion
In summary, our observations demonstrate degenerative
changes in the outer retina with accumulation of Ab

deposits, CNV and dramatically exaggerated neuroinflam-
matory response in the APPswe/PS1 bigenic mouse chal-
lenged by CILE. These results suggest that an Alzheimer’s
transgenic animal model with accumulation of Ab deposits
might be an alternative animal model for AMD, if com-
bined with other confounding factors for AMD.

Figure 5 Electroretinogram analysis in APPswe/PS1 bigenic mice. Dark-adapted ERG amplitudes were measured in control and groups
received 3-month (light-3 m) and 6-month (light-6 m) CILEs as described in the Methods. (A) The rod-isolated ERG response stimulated by a
flash at 0.008 cd/m2 s (-25 dB). (B) The maximal ERG response by a flash at 2.5 cd/m2s (0 dB). T indicates start of the test; N, the baseline of the
recording when light stimulation was given. Quantifications include measures from 12 mice for each group, i.e., N = 12. *: P < 0.001, Bars depict
mean ± SEM.
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Methods
Antibodies and other reagents
Antibodies used in this study are listed in Table 1 in the
Additional file 1. Tropicamide and 0.5% proparacaine
were obtained from Xingqi Pharmacectical (Shengyang,
China) and Alcon Laboratories (Fort Worth, Texas),
respectively. The primary antibody dilution buffer, the avi-
din-biotin complex (ABC) kit for 3-Amino-9-ethylcarba-
zole (AEC) staining was bought from Boster (Wuhan,
China), and 4,6-diamidino-2-phenylindole (DAPI) was
purchased from Vector Laboratories (Burlingame, CA).
Rodamine-conjugated phalloidin was obtained from Invi-
trogen (Carlsbad, CA). Total protein assay kit was from
Bio-Rad (Hercules, CA). The enhanced chemilumines-
cence (ECL) detection system and the horse radish peroxi-
dase-conjugated secondary antibody were purchased from
Cell Signaling (Danvers, MA). Hematoxylin and eosin
(H&E), and all other chemical reagents used in the experi-
ments, unless indicated, were purchased from Sigma-
Aldrich (St. Louis, MO).

Animal and treatment
A breeding pair of the bigenic mouse line that harbors a
human amyloid precursor protein with Swedish mutations
(K595N/M596L, APPswe) and a mutant human presenilin
1 (PS1-dE9, PS1) were obtained from the Jackson Labora-
tory (Bar Harbor, ME, USA) [44]. As described, this
mouse line was originally derived from a hybrid of C57BL/
6 J and C3H/HeJ, which carries rd1 mutation (Pde6brd1)
that confounds spontaneous retinal degeneration. To
exclude possible disturbance of rd1 gene, all rd1-positive
mice were identified by PCR genotyping and excluded in
breeding (see Additional file 1). Mice were normally main-
tained in the institutional transgenic mouse facility with
12/12 h light-dark cycle with food and water ad libitum.
APPswe/PS1 bigenic mice and none-transgenic littermates
(non-Tg) at the age of 6 months were grouped (N = 12)
for treatments. When the groups of control mice were
kept in normal conditions, CILE for the treated groups of
mice was replaced by a source of 10,000-Lux cool full
spectrum light (wavelength ranges from 380 nm - 780
nm) for 3 months (light-3 m) or 6 months (light-6 m).
The light intensity exposed to the animals was confirmed
by a light meter (Thermo Fisher Scientific, Pittsburgh,
PA). Temperature in animal cages during the light expo-
sure was maintained between 22-24°C. To ensure the effi-
cacy of light exposure, both eyes of each mouse were also
topically given 1% atropine long-lasting emulsion once a
week during the entire period of CILE. All animal proce-
dures were conducted in accordance with the guidelines of
the Association for Research in Vision and Ophthalmology
Statement for the Use of Animals in Ophthalmic and
Vision Research and an approval of the Institutional

Animal Care and Use Committee (IACUC) of the Zhong-
shan Ophthalmic Center of Sun Yet-sen University.

Fundus photography
Fundus photography was performed as described with
minor modification [19]. Briefly, following papillary dila-
tion with 1% tropicamide and 2.5% phenylephrine in HCl
solution and sedation with 4.3% chloral hydrate in PBS
(intraperitoneal injection, i.p.), mice were placed under the
microscope operation system platform (OMS-800, Top-
con, Japan) and fundus images were directly captured
using a Canon G9 digital camera attached to the scope
over the eye that was covered by one drop of 1% hydroxy-
propyl methylcellulose over the cornea to compromise
refractor errors.

Electroretinogram analysis
Scotopic electroretinogram (ERG) was recorded as
reported previously [34]. Each group of animals was
assayed with a RETIPORT ERG recording system (RETI
Technologies, Gaithersburg, Germany). Before measuring,
all animals were kept in dark overnight for at least 8 hours
for dark-adaptation. Following papillary dilation with 1%
tropicamide and 2.5% phenylephrine in HCl solution,
sedation with 4.3% chloral hydrate in PBS (i.p.) and cor-
neal anesthesia with 0.5% proparacaine, the gold loop elec-
trodes were placed on the cornea, the reference electrode
was plug into the mouth underneath of the tongue, and a
ground electrode was subcutaneously inserted into the
midway of the tail. The rod-only responses were recorded
after stimulation by white light flashes with intensity of
0.008 cd/m2s (-25 dB), whereas the maximal response
from the mixed rod/cone- responses (max response) was
recorded with light flashes of 2.5 cd/m2s (0 dB). Three
independent stimuli within 3 sec intervals were recorded
as a single ERG recording. At least 3 recordings were
obtained from each eye. The amplitudes and the latency of
a and b waves were measured.

Tissue preparation
Mice were euthanized with 4.3% chloral hydrate (0.1 ml/g)
followed by transcardiac perfusion with ice-cold 0.1 M
phosphate buffered saline (PBS, pH 7.4). Eyes were then
immediately enucleated and fixed in 4% paraformaldehyde
(PFA) in PBS (pH7.4) overnight at room temperature (RT)
or dissected to extract retina for preparation of tissue
lysates for Western blots. Fixed eyes were then preserved
in PBS containing 20% sucrose and 0.05% sodium azide at
4°C, gradually dehydrated in 70% - 100% isopropanol, and
embedded in paraffin blocks. Retinal cross sections (4 μm
thickness) through the center of pupil-optic nerve head
were prepared for histopathological analysis. To be pre-
pared for transmission electron microscopy (EM), about 2
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mm × 2 mm size of retina with attached RPE/choroid/
sclera was dissected from the proximity of the optic nerve
head (within 5 mm range) from some enucleated eye cups
following PBS perfusion. Dissected retina-chorid-sclera tis-
sues were immediately fixed in 2.5% glutaraldehyde and
1% PFA in 0.1 M sodium cacodylate-HCl (pH 7.4) (24 h at
4°C) followed by further post-fixation in 1% osmium tetr-
oxide in 0.1 M cacodylate buffer-HCl (pH 7.4) for 4 h, gra-
dually dehydrated in 50%-100% alcohol followed by
immersion in propylene oxide, and embedded in epoxy
resin for preparation of ultrathin sections. RPE/choroid
flatmounts were prepared as described previously [45]. In
general, fixed eyes were split equatorially and retinas were
carefully removed from the eyecup under a stereoscope.
After the extraocular muscles were removed, the posterior
eye segment containing the RPE/choroid complex of each
eye was spread into four quarters by four radial cuts.

Histopathology, immunohistochemistry and
immunofluorescence microscopy
Hematoxylin and eosin (H&E) staining was performed for
general histopathological assessment as previously
described [8]. For immunohistochemistry, paraffin-
embedded retinal cross sections were deparaffinized, rehy-
drated, and autoclaved (121°C × 5 minutes in 10 mM
citrate buffer, pH 6.0) for antigen retrieval. Following
quenching of endogenous peroxidase activity with 3%
H2O2 (20 min at RT), sections were blocked with 5% goat
serum in PBS containing 0.1% Triton-X 100 and 20 mM
L-lysine incubated with an appropriate primary antibody
as listed in Table 1 (Additional file 1) at 37°C for 1 h. Spe-
cific immunoreactivity was then visualized by microscopy
following incubation with a biotinylated secondary anti-
body, ABC kit and AEC staining. To detect Aß, outer
retina flatmounts were treated by 70% formic acid for
5 min, washed with PBS, blocked with 4% bovine serum
albumin in PBS containing 0.1% Triton X-100 (30 min,
RT), and incubated with an appropriate primary antibody
in primary antibody dilution buffer overnight at 4°C. Fol-
lowing appropriate washing with PBS, retinal flatmounts
were incubated with an appropriate fluorophore-conju-
gated second antibody, counterstained with DAPI, cover-
slipped onto microslides, and visualized using a Zeiss
LSM510 Meta Confocal Microscope. For quantification,
four non-overlapped areas were randomly selected along
the equatorial zone which is about 300 μm away from the
optic disc, under the magnification of 400X. Images were
captured using an Axioplan 2, Zeiss camera and further
quantified with Image Pro-Plus1.42q (National Institutes
of Health, USA). Total Aß-positive area, number of IBA-
1-immunoractive cells, and total length of IBA-1-immu-
noractive dendrites of microglia within the four selected
regions were quantified. Disorganization of RPE alignment

was scored as percentage of phalloidin-negative area over
the entire RPE flat mounts.

Western blot
Western blotting was conducted as previously described
[46,47]. Briefly, dissected retinas were homogenized in
lysis buffer (50 mM Tris-HCl/pH7.5, 5 mM EDTA, 150
mM NaCl, 0.5% NP-40, protease inhibitor cocktail mix-
ture) and pelleted. The concentrations of total protein
in the supernatants were assayed using Bio-Rad Protein
Assay kit. About 35 μg total protein of lysate from each
samples was resolved in 10% SDS-polyacrylamide gel,
blotted on PVDF membrane followed by incubation
with Blotto (0.1% Tween-20 and 5% milk in PBS, × 1 h),
a specific primary antibody in 5% milk in PBST (over-
night at 4°C) and with a horse radish peroxidase-conju-
gated secondary antibody in RT with appropriate
washing. The immunoreactivity was visualized with ECL.

Transmission electron microscopy
The ultrathin (70 nm) sections were prepared using a
Leica UltraCut S Microtome, counterstained with uranyl
acetate and lead citrate, and examined under a JEOL
100CX II electron microscope (JEOL, Tokyo, Japan) at
80 kV. Microscopic images were acquired using X-ray
films.

Statistical analysis
In all of the graphs, the data points represent the means
± S.E.M. from all individuals in each group of animals
(N = 6-12). Applicable comparisons were performed by
one-way analysis of variance followed by Student’s t-test
for multiple groups or independent samples or T-test
for two groups by SPSS13.0 software. The difference
between groups was considered as statistically significant
when the value of p was ≤ 0.05.

Additional material

Additional file 1: Supplementary data [48-54].
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