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In striated muscle, the actin cytoskeleton is differentiated
into myofibrils. Actin and myosin filaments are organized
in sarcomeres and specialized for producing contractile
forces. Regular arrangement of actin filaments with uni-
form length and polarity is critical for the contractile
function. However, the mechanisms of assembly and
maintenance of sarcomeric actin filaments in striated
muscle are not completely understood. Live imaging of
actin in striated muscle has revealed that actin subunits
within sarcomeric actin filaments are dynamically
exchanged without altering overall sarcomeric structures.
A number of regulators for actin dynamics have been
identified, and malfunction of these regulators often
result in disorganization of myofibril structures or muscle
diseases. Therefore, proper regulation of actin dynamics
in striated muscle is critical for assembly and mainte-
nance of functional myofibrils. Recent studies have sug-
gested that both enhancers of actin dynamics and
stabilizers of actin filaments are important for sarcomeric
actin organization. Further investigation of the regulatory
mechanism of actin dynamics in striated muscle should
be a key to understanding how myofibrils develop and
operate. VC 2010 Wiley-Liss, Inc.
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Introduction

Actin is one of the major cytoskeletal proteins in eukaryo-
tic cells and plays essential roles in a number of cellular

processes including cell migration, cytokinesis, vesicle trans-
port, and contractile force generation [Pollard and Cooper,
2009]. Recent advancements in live cell imaging techniques
have revealed dynamic aspects of the actin cytoskeleton in a
number of cell biological events. Myofibrils in striated mus-
cle are not exceptions to the dynamic actin cytoskeleton.

Striated myofibril is one of the most differentiated forms of
the actin cytoskeleton, in which actin, myosin, and other regu-
latory components are organized into sarcomeres and produce
contractile forces in a calcium-regulated manner [Squire,
1997; Clark et al., 2002]. Skeletal and cardiac muscles in ver-
tebrates are representative striated muscle, and a number of
invertebrates also have transversely or obliquely striated muscle
[Hooper et al., 2008]. It is actually surprising to realize that a
number of sarcomeric proteins within actively contracting
myofibrils undergo dynamic turnover without compromising
overall organization [Littlefield and Fowler, 2008; Sanger and
Sanger, 2008]. In particular, sarcomeric actin filaments are
aligned with similar lengths and yet exhibit dynamic exchange
of actin subunits within the filaments. Dynamics of sarcomeric
actin filaments have been described in a number of reports,
and some regulatory mechanisms have been revealed. Recent
studies have suggested a link between actin dynamics and mus-
cle diseases. This review summarizes current understanding of
the regulation of actin filament dynamics in striated muscle
and its biological significance.

Arrangement of Actin Filaments in
Sarcomeres

Sarcomeres are composed of regularly aligned thin and thick
filaments for efficient production of contractile forces (Fig.
1C). Myosin-based thick filaments have myosin heads in
bipolar orientations and registered in the middle of sarco-
meres. Actin-based thin filaments are oriented in opposite
directions at each end of a sarcomeric unit (Fig. 1C), which
is essential for production of contractile forces by unidirec-
tional movement of the myosin motors. The barbed ends of
actin filaments are anchored to the Z-bands that separate
each sarcomeric unit (Fig. 1C). a-actinin crosslinks actin fila-
ments near their barbed ends in the Z-bands and stabilizes
polarized registration of the thin filaments. On the other
hand, the pointed ends of actin filaments are not bound to a
particular structure (Fig. 1C). Nonetheless, uniform lengths
of thin filaments are maintained in striated muscle. The
mechanism of the regulation of thin filament length is still a
major unsolved problem and is discussed in other review
articles [Littlefield and Fowler, 1998, 2008].
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Cardiac and skeletal muscles in vertebrates are transversely
striated (cross-striated) muscle in which thin and thick fila-
ments are laterally aligned perpendicularly to the Z-bands
(or Z-discs). Thin filaments in skeletal muscle are relatively
constant in length, while those in cardiac muscle are present
in variable lengths [Robinson and Winegrad, 1977, 1979].
Sarcomeres are delineated by the Z-bands that are linked to
the plasma membrane through attachment structures, desig-
nated as costameres [Ervasti, 2003]. Among invertebrates,
arthropods have similarly organized cross-striated muscle.
Therefore, the indirect flight muscle of the fruit fly Drosoph-
ila melanogaster has been used as a model to study assembly
and function of cross-striated myofibrils [Fyrberg and Beall,
1990]. Many invertebrates including nematodes, annelids,

and molluscs have obliquely striated muscle in which sarco-
meres are aligned obliquely to the Z-band-like structures
[Rosenbluth, 1965]. The body wall muscle of the nematode
Caenorhabditis elegans is a representative example and has
been extensively studied using genetic and cell biological
approaches [Waterston, 1988; Moerman and Fire, 1997;
Moerman and Williams, 2006]. The barbed ends of actin fil-
aments are anchored to the dense bodies, which are cone-
shaped structures with their bases attached to the plasma
membrane [Lecroisey et al., 2007]. The base of the dense
body is an integrin-based attachment structure and resembles
the costamere in cross-striated muscle. The cytoplasmic por-
tion of the dense body is enriched in a-actinin and anchors
actin filaments similarly to the Z-bands in cross-striated mus-
cle. Thus, striated muscles in vertebrates and invertebrates
share many common structural and functional features, and
studies in these different organisms have contributed to
understanding the dynamics and organizations of actin fila-
ments in striated muscle.

Dynamics of Actin Filaments During
Myofibril Assembly

Myofibril assembly during muscle differentiation is a major
morphogenetic transformation of the actin cytoskeleton. In
skeletal myoblasts, actin is a component of stress fibers that
lack clear striated organization, while some components
including a-actinin and nonmuscle myosin are localized in a
striated pattern [Obinata et al., 1966; Pudney and Singer,
1980]. As the cells fuse to form myotubes, actin filaments
are registered to the Z-bands and laterally aligned with uni-
form length and polarity. As myotubes grow, myofibrils
expand by adding sarcomeric actin filaments from the sides
and at the tips of growing myotubes [Sanger et al., 2006].
Actin filaments in cardiac muscle are similarly assembled
during myofibrillogenesis [Rhee et al., 1994; LoRusso et al.,
1997]. Myofibrils in differentiated cardiac myocytes exhibit
greater levels of plasticity than those in skeletal muscle. Beat-
ing cardiac myocytes still undergo mitosis, and myofibrils
disassemble during cell division [Ahuja et al., 2004]. When
cardiac myocytes are detached from the substrates, they first
disassemble myofibrils and then reassemble myofibrils or
newly assemble myofibrils after reattachment on appropriate
substrates [Sanger et al., 1984; Imanaka-Yoshida et al.,
1996]. During this process, actin is initially organized in a
nonstriated manner, originally called stress fiber-like struc-
tures [Dlugosz et al., 1984]. However, a number of muscle
isoforms of sarcomeric proteins are localized to these struc-
tures, and they are defined as premyofibrils and nascent
myofibrils [Sanger et al., 2006, 2010], in which actin
remains nonstriated while a-actinin shows periodical punc-
tate localization (Figs. 1A and 1B). In the early phase of
myofibril assembly, actin filaments are also associated with
components of I-bands and Z-bands before they are associ-
ated with immature thick filaments [Schultheiss et al., 1990].
These structures are termed I-Z-I bodies, which are believed

Fig. 1. Actin assembly and organization during myofibrillogene-
sis. The assembly process of myofibrils is based on the premyofibril
model proposed by Sanger et al. [2006, 2010]. In premyofibrils
(A), actin filaments are nonstriated and associated with the Z-bodies
containing a-actinin and nonmuscle myosin filaments. At this stage,
high concentrations of G-actin are present. In nascent myofibrils
(B), alignment of the Z-bodies and nonmuscle myosin becomes
more ordered, while actin filaments are still nonstriated. Muscle
myosin is also assembled in a nonstriated manner. The ratio of G-
actin to F-actin likely decreases during this transition, although a
precise correlation of the assembly stages and G/F-actin ratios has
not been reported. In mature myofibrils (C), actin filaments, muscle
myosin filaments, and Z-bands are organized in sarcomeres. G-actin
concentrations drop to �1% of total actin, whereas 99% of actin is
present in myofibrils as F-actin. Note that size and compositions of
other myofibril proteins vary in different muscle types and
organisms.
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to be precursors of I-band:Z-band:I-band structures [Holtzer
et al., 1997]. In C. elegans embryonic muscle, actin and my-
osin assemble separately into distinct filaments before striated
myofibrils are formed [Epstein et al., 1993]. However, the
mechanism of initial assembly of thin filaments is currently
unknown.
In addition to this striking morphogenetic reorganization

of actin filaments, the ratios of actin monomer to polymer
change drastically during muscle development [Shimizu and
Obinata, 1986] (Fig. 1). In 10-day-old embryonic chick skel-
etal muscle, a-, b-, and c-actin are expressed [Shimizu and
Obinata, 1980] and 1 mg/mL (24 lM) of actin, which is
�40% of total actin, is maintained in a monomeric form
(G-actin) [Shimizu and Obinata, 1986]. However, in 20-
day-old muscle, the total amount of actin is tripled primarily
due to predominant expression of skeletal muscle a-actin,
whereas G-actin is reduced to 0.4 mg/mL (10 lM), which is
5% of total actin [Shimizu and Obinata, 1986]. In adult
muscle, the G-actin concentration is reduced further to 0.05
mg/mL (1 lM), which is less than 1 % of total actin and at
a level near the critical concentration of purified actin (0.2–
0.3 lM for actin alone and 0.6 lM for barbed-end-capped
actin) [Shimizu and Obinata, 1986]. These biochemical tran-
sitions of actin indicate that polymerization of actin is nega-
tively regulated to maintain high concentrations of G-actin
in embryonic muscle whereas actin rapidly polymerizes in
late embryonic muscle as myofibrils expand and become
mature.
In embryonic muscle, actin depolymerizing factor (ADF)/

cofilin, profilin, and b-thymosin, proteins which increase G-
actin concentrations, are abundantly expressed [Abe and
Obinata, 1989; Abe et al., 1989; Ohshima et al., 1989;
Nagaoka et al., 1996; Obinata et al., 1997]. In particular,
the functional significance of ADF/cofilin in striated muscle
has been described in several organisms (see below). These
G-actin binding proteins can cooperate with other F-actin
binding proteins including myosin to modulate actin poly-
merization in a spatially and temporally regulated manner
during muscle development. However, how actin polymeriza-
tion is regulated precisely to promote ordered assembly of
myofibrils is not clearly understood.

Dynamics of Actin Filaments in
Mature Myofibrils

Actin in mature striated myofibrils had been considered as a
very stable structural component. The half-life of actin in
striated muscle was reported as on the order of days [Zak
et al., 1977], while an exchange rate of actin subunits within
myofibrils with free G-actin was estimated to be on the order
of hours [Martonosi et al., 1960]. This estimate is indeed
consistent with a recent observation in cultured quail skeletal
myotubes in which actin filaments in mature myofibrils are
resistant to hours of treatment with latrunculin A, a drug
that induces depolymerization of dynamic actin filaments by
sequestering G-actin [Wang et al., 2005b]. However, nascent

myofibrils and newly assembled mature myofibrils near the
cell periphery are sensitive to latrunculin A [Wang et al.,
2005b]. Moreover, direct observations of microinjected fluo-
rescently labeled actin have demonstrated that mature sarco-
meric actin filaments in cardiac myocytes are capable of
rapidly incorporating exogenously microinjected G-actin
within minutes without altering the overall organization of
myofibrils [Glacy, 1983; McKenna et al., 1985; Dome et al.,
1988; LoRusso et al., 1992; Imanaka-Yoshida et al., 1993;
Hayakawa et al., 1996; Shimada et al., 1997; Suzuki et al.,
1998; Littlefield et al., 2001]. Similar studies using green flu-
orescent protein (GFP)-tagged actin agree with these observa-
tions [Wang et al., 2005a; Bai et al., 2007; Sanger et al.,
2009; Skwarek-Maruszewska et al., 2009] with a particular
emphasis that it occurs in vivo in zebrafish [Sanger et al.,
2009]. However, sites of myofibril incorporation of free actin
are different depending on experimental techniques or cell
types, and it requires further mechanistic studies to under-
stand how actin is exchanged in and out of myofibrils [Lit-
tlefield and Fowler, 1998]. Nonetheless, multiple studies
agree that free actin is initially incorporated at either pointed
or barbed ends or both ends of sarcomeric actin filaments
and eventually spread over the entire I-band [McKenna
et al., 1985; Dome et al., 1988; Shimada et al., 1997; Little-
field et al., 2001]. These observations indicate that ends of
sarcomeric actin filaments are capable of polymerizing and
depolymerizing even in the presence of capping protein
(CapZ) and tropomodulin that cap barbed and pointed
ends, respectively (see below). Experiments to disturb selec-
tively either barbed or pointed end of actin filaments indi-
cated that the length of actin filaments is altered when
capping of pointed ends but not barbed ends is disturbed
[Gregorio et al., 1995; Littlefield et al., 2001; Mardahl-
Dumesnil and Fowler, 2001; Bai et al., 2007]. Thus, regula-
tion of actin dynamics at the actin-filament pointed end is
suggested as an important mechanism to maintain constant
length of sarcomeric actin filaments [Littlefield and Fowler,
2008].

A recent study on dynamics of GFP-tagged actin in car-
diac myocytes has identified a novel mode of actin filament
turnover in myofibrils. Previous fluorescence recovery after
photobleaching (FRAP) studies on fluorescein- or rhoda-
mine-labeled actin showed that fluorescently labeled sarco-
meric actin filaments recover their fluorescence after
photobleaching [Suzuki et al., 1998; Hasebe-Kishi and Shi-
mada, 2000]. However, the recovery appears to saturate in 2
h at 50–60% of the prebleached level of fluorescence, sug-
gesting the presence of two filament populations: dynamic
filaments recovering fluorescence rapidly and stable filaments
that do not or only slowly recover fluorescence. A compara-
tive study in quail skeletal myotubes and zebrafish skeletal
muscle also agrees with these observations [Sanger et al.,
2009]. A recent FRAP study using GFP-actin not only con-
firmed these results but also demonstrated that fluorescence
recovery of the dynamic filament population depends on
muscle contractility [Skwarek-Maruszewska et al., 2009].
Rapid fluorescence recovery of GFP-actin occurs in beating
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cardiac myocytes but not in myocytes that had spontaneously
stopped beating or had been treated with inhibitors of con-
tractility. Patterns of fluorescence recovery suggest that entire
actin filaments rather than just actin subunits at each end
turn over. Latrunculin A specifically eliminates the dynamic
filament population within sarcomeres. Although the mecha-
nism and significance of this new mode of contractility de-
pendent sarcomeric actin turnover are not understood, this
process may promote maturation of myofibrils, or eliminate
any misaligned or damaged filaments from contracting myo-
fibrils. Consistent with these observations, muscle contractil-
ity is required for assembly of striated organization of
myofibrils [Soeno et al., 1999; De Deyne, 2000; Ramachan-
dran et al., 2003; Kagawa et al., 2006]. However, whether
actin dynamics are perturbed by inhibition of contractility
during myofibril assembly is unknown.

Pathological Alterations of
Sarcomeric Actin Filaments

Alterations of sarcomeric actin filaments occur under patho-
logical conditions influenced by genetic and/or environmen-
tal factors. Congenital myopathies are genetic muscle
disorders that are characterized by weak skeletal muscle and
the presence of rods or aggregates containing actin and other
myofibrillar proteins [Clarkson et al., 2004]. Sarcomres are
normally formed under these conditions, but some types of
myopathies exhibit ‘‘cores’’ where disorganized sarcomeres are
found [Sewry, 2008]. The most common form of nondy-
strophic congenital myopathies is nemaline myopathy.
Nemaline myopathy is characterized by the presence of
nemaline rods, which are long (1–7 lm) cytoplasmic rods
containing actin and Z-band proteins. When the rods are
found in the nuclei, these cases are classified as intranuclear
rod myopathy. Whether actin in nemaline rods are derived
from sarcomeres or newly synthesized molecules is unknown.
Nemaline myopathy is caused by mutations in skeletal mus-
cle a-actin (ACTA1) [Nowak et al., 1999; Ilkovski et al.,
2001] or other actin-associated proteins including tropomyo-
sin (TPM2 or TPM3) [Laing et al., 1995; Donner et al.,
2002], nebulin, (NEB) [Pelin et al., 1999], troponin T
(TNNT1) [Johnston et al., 2000], and cofilin-2 (CFL2)
[Agrawal et al., 2007]. Actin myopathy is another type of
congenital myopathy, which is characterized by the presence
of excess actin filament inclusions and typically caused by
mutations in ACTA1. A number of myopathy-causing muta-
tions have been identified in skeletal muscle a-actin, which
are located throughout the molecule [Feng and Marston,
2009; Laing et al., 2009]. These actin mutations cause a
wide range of molecular defects in protein folding, binding
to actin-binding proteins, polymerization, and cytoskeletal
organization, and it has been difficult to correlate the molec-
ular defect with severity of the disease [Costa et al., 2004;
Bathe et al., 2007; Vandamme et al., 2009a,b]. A mutant
form of actin with defective polymerization or depolymeriza-
tion could impair normal actin filament turnover in muscle,

but whether a defect in actin dynamics is a major cause of
congenital myopathies remains to be determined.

Many of the myopathy-causing actin mutants induce actin
rods or aggregates when they are exogenously expressed in
muscle or nonmuscle cells [Costa et al., 2004; Bathe et al.,
2007; Domazetovska et al., 2007; Vandamme et al.,
2009a,b,c]. Although these actin rods and aggregates mor-
phologically resemble nemaline rods in patient muscle, the
presence of a-actinin, a component of in vivo nemaline rods,
is variable in cell culture models. Some actin mutants induce
a-actinin-positive actin rods, while other mutants induce a-
actinin-negative actin rods [Bathe et al., 2007; Domazetovska
et al., 2007; Vandebrouck et al., 2010]. A recent study has
shown that a-actinin-negative actin rods have ADF/cofilin
and are similar to stress-induced ADF/cofilin-actin rods in
the absence of actin mutations [Vandebrouck et al., 2010].
ADF/cofilin-actin rods have been detected in a wide variety
of eukaryotic cells and are often induced under stress or
pathological conditions [Bamburg and Wiggan, 2002; Ono,
2007]. In cultured vertebrate skeletal myoblasts and myo-
tubes, formation of ADF/cofilin-actin rods is induced by
treatment with dimethylsulfoxide within 1 h [Abe et al.,
1993; Ono et al., 1993] or by increasing the concentration
of ADF/cofilin by overexpression or microinjection [Hosoda
et al., 2007; Nagaoka et al., 1995; Ono et al., 1996]. ADF/
cofilin-actin rods can also be induced in the C. elegans stri-
ated muscle by overexpression of ADF/cofilin [Ono and
Ono, 2009]. Thus, formation of ADF/cofilin-actin rods
appears to be a conserved actin reorganization process in
muscle, but its biological significance and relationship to my-
opathy rods are not clearly understood. Pathological roles of
rods in neurodegenerative diseases [Minamide et al., 2000;
Whiteman et al., 2009] and a protective role against stress
by conserving cellular ATP usage [Bernstein et al., 2006]
have been proposed in other cell types. However, whether
these roles of rods also apply to muscle is not known. It will
also be interesting to determine whether nemaline rods and
ADF/cofilin-actin rods are mutually exclusive or functionally
related structures.

Regulators of Actin Filament
Dynamics in Striated Muscle

Enhancers of Actin Filament Turnover

Although actin by itself can spontaneously polymerize and
depolymerize in vitro, its turnover rate is too slow to support
rapid cytoskeletal reorganization in many dynamic cellular
processes in vivo. A number of actin-binding proteins have
activities in enhancing actin filament turnover by promoting
polymerization, depolymerization, or filament severing [Paa-
vilainen et al., 2004; Nicholson-Dykstra et al., 2005; Ono,
2007]. Among them, ADF/cofilin plays an essential role in
organized assembly of sarcomeric actin filaments [Ono,
2003a, 2007]. ADF/cofilin enhances actin filament turnover
by severing actin filaments and promoting dissociation of
actin monomers from the pointed ends [Van Troys et al.,
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2008]. Mammals have three ADF/cofilin isoforms: ADF
(destrin), cofilin-1 (nonmuscle cofilin), and cofilin-2 (mus-
cle-cofilin) [Matsuzaki et al., 1988; Moriyama et al., 1990;
Ono et al., 1994]. Birds have two isoforms: ADF and cofilin
[Abe et al., 1990; Adams et al., 1990]. In mammals, cofilin-
2 is the predominant isoform in skeletal muscle, while cofi-
lin-1 and cofilin-2 are expressed in cardiac muscle [Ono
et al., 1994; Thirion et al., 2001; Vartiainen et al., 2002].
Expression of cofilin-2 is detected early in myogenesis in the
mouse myotome and limb buds [Mohri et al., 2000]. In
birds (chickens), ADF and cofilin are expressed in embryonic
skeletal muscle, but only the expression of cofilin persists in
adult muscle [Abe and Obinata, 1989; Abe et al., 1989].
Although ADF and cofilin similarly sever and depolymerize
actin filaments and bind to G-actin, cofilin has much weaker
actin-monomer sequestering activity than ADF [Vartiainen
et al., 2002; Yeoh et al., 2002; Chen et al., 2004]. Mouse
cofilin-2 has higher affinity for G- and F-actin than cofilin-1
[Vartiainen et al., 2002; Nakashima et al., 2005]. However,
whether these biochemical differences among ADF/cofilin
isoforms are related to muscle-specific function is unknown.
Microinjection of high concentrations of cofilin into skele-

tal myotubes induces disruption of sarcomeres and formation
of cytoplasmic actin-cofilin rods [Nagaoka et al., 1995].
However, the activity of microinjected cofilin is gradually
suppressed over time. In nonmuscle cells, phosphorylation of
ADF/cofilin at conserved Ser-3 inactivates its actin-regulatory
activities [Van Troys et al., 2008]. In muscle cells, an S3A
mutant of cofilin that cannot be phosphorylated is still inac-
tivated over time, and direct binding of phosphoinositides to
cofilin has been proposed as a regulatory mechanism
[Hosoda et al., 2007]. Recently, muscle LIM protein has
been shown to bind to cofilin-2 and enhance the cofilin-2
activity, which might be a novel mechanism to regulate actin
dynamics [Papalouka et al., 2009]. Depletion of cofilin from
cardiac myocytes by RNA interference causes disorganization
of sarcomeric actin filaments [Skwarek-Maruszewska et al.,
2009]. Thus, these observations suggest that cofilin is impor-
tant for maintenance of sarcomeric actin organization and
that its activity is under control.
Isoform-specific and muscle-specific function of ADF/cofi-

lin in actin filament organization has also been demonstrated
in the nematode C. elegans. C. elegans has two ADF/cofilin
isoforms, UNC-60A and UNC-60B, which are generated by
the unc-60 gene by alternative splicing [McKim et al., 1994;
Anyanful et al., 2004]. UNC-60A and UNC-60B are �30%
identical in their amino acid sequences and show no specific
correlation to mammalian ADF/cofilin isoforms based on
sequence comparison. UNC-60A has very weak actin-fila-
ment severing activity but has strong actin-monomer seques-
tering activity. In contrast, UNC-60B has strong actin-
filament severing activity but has very weak actin-monomer
sequestering activity [Ono and Benian, 1998; Yamashiro
et al., 2005; Ono et al., 2008]. UNC-60B is specifically
expressed in striated muscle, and loss-of-function and null
mutations of unc-60B cause severe disorganization of sarco-
meric actin filaments from embryonic stages [Ono et al.,

1999, 2003]. Actin filament severing activity of UNC-60B
can be eliminated without altering its G-actin binding activ-
ity by mutations near the C-terminus [Ono et al., 2001],
and these mutants fail to function properly in organizing sar-
comeric actin [Ono et al., 1999, 2008], indicating that actin
filament severing by UNC-60B is important for sarcomeric
actin organization. Furthermore, actin-interacting protein 1
(AIP1) that is encoded by the unc-78 gene cooperates with
UNC-60B to disassemble actin filaments and is essential for
sarcomeric actin organization [Ono, 2001; Mohri and Ono,
2003; Mohri et al., 2004, 2006; Ono et al., 2004]. Although
AIP1 is an evolutionarily conserved partner of ADF/cofilin
in regulation of actin dynamics [Ono, 2003b], its function
in vertebrate muscle has not been reported.

Functional significance of cofilin in muscle has recently been
further emphasized by the finding that a mutation in the human
cofilin-2 gene (CFL2) causes nemaline myopathy [Agrawal
et al., 2007]. The mutation converts Ala-35 into Thr and signif-
icantly reduces the cofilin-2 protein level in skeletal muscle and
impairs solubility when recombinant cofilin-2 is expressed in a
bacterial system, suggesting that the myopathy-causing mutation
is a loss-of-function mutation. In the patient muscle, actin is
abnormally accumulated in two kinds of distinct structures:
nemaline bodies that contain components of the Z-bands and
separate aggregates that do not contain a-actinin [Agrawal et al.,
2007]. To date, mutation in CFL2 is rare and found only in two
patients who are siblings in a family of Middle Eastern origin
[Agrawal et al., 2007]. Now that CFL2 is known as a disease
gene, mutations in CFL2 can be investigated in a targeted man-
ner. Additional clinical studies on cofilin-dependent nemaline
myopathy and development of a mouse model of this disease
should provide insight into the pathogenesis of nemaline myop-
athy as well as the normal function of cofilin in sarcomeric actin
assembly and maintenance.

Gelsolin is a member of another class of actin-severing pro-
teins that sever actin filaments and cap their barbed ends in a
calcium-dependent manner [Sun et al., 1999; McGough et al.,
2003; Silacci et al., 2004]. Although expression of gelsolin in
striated muscle has been reported for many years, its role in
regulation of sarcomeic actin is not clearly understood. Despite
the fact that gelsolin strongly severs and caps purified muscle
actin filaments in vitro, it localizes along the thin filaments in
vertebrate striated muscle [Yin et al., 1981; Rouayrenc et al.,
1984; Carron et al., 1986; Dissmann and Hinssen, 1994].
Purified gelsolin can bind to the side of thin filaments without
severing them in permeabilized skeletal muscle cells [Gonsior
and Hinssen, 1995]. In vitro, tropomyosin protects actin fila-
ments from severing by gelsolin [Fattoum et al., 1983; Ishi-
kawa et al., 1989] and directly binds to gelsolin [Maciver
et al., 2000]. However, in permeabilized muscle cells, gelsolin
can still bind to the side of thin filaments without severing
even after extraction of tropomyosin by a high-salt buffer
[Gonsior and Hinssen, 1995], and the regulatory mechanism
of gelsolin in muscle is currently unknown.

Besides gelsolin, a number of gelsolin-related proteins are
present, and some of them are expressed in striated muscle
[Ono, 2007]. Conventional gelsolin has six homologous
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domains of 100–120 amino acids [Kwiatkowski et al., 1986].
Flightless-1 is a conserved gelsolin-related protein with six gel-
solin-like repeats and additional leucine-rich repeats at the N-
terminus [Campbell et al., 1993]. Flightless-1 mutants in Dro-
sophila have disorganized myofibrils in the indirect flight mus-
cle [Miklos and De Couet, 1990]. Similarly, mutations of a
Flightless-1 homolog (FLI-1) in C. elegans causes actin fila-
ment disorganization in striated muscle [Deng et al., 2007; Lu
et al., 2008]. One report shows that the gelsolin-related por-
tion of C. elegans FLI-1 severs actin filaments in a calcium-
independent manner [Goshima et al., 1999]. However, the
biochemical activity of Flightless-1 has not been extensively
characterized, and its actin-regulatory function is not clearly
understood. In addition, C. elegans has gelsolin-like protein-1
(GSNL-1) with four gelsolin-like repeats and calcium-depend-
ent actin filament severing and capping activities [Klaavuniemi
et al., 2008; Liu et al., 2010]. Although GSNL-1 is enriched
in striated muscle [Fox et al., 2007], a gene knockout of
GSNL-1 does not cause a detectable phenotype in sarcomeric
actin organization [T. Klaavumiemi and S. Ono, unpublished
data], and its function in muscle is currently unknown.

G-Actin-Binding Proteins

Proteins that bind to G-actin influence actin dynamics by
altering polymerization/depolymerization kinetics and
exchange rates of actin-bound ATP or ADP [Paavilainen
et al., 2004]. Vertebrate striated muscle expresses major G-
actin-binding proteins such as thymosin b4 and profilin, but
levels of these proteins decrease during muscle development
[Babcock and Rubenstein, 1993; Nagaoka et al., 1996]. In
adult skeletal muscle, G-actin concentrations are near the
level of critical concentration of purified actin [Shimizu and
Obinata, 1986], and functions of these G-actin-binding pro-
teins are not clearly understood. Nonetheless, vertebrates
have isoforms of profilin (profilin II) [Honore et al., 1993]
and cyclase-associated protein (CAP2) [Bertling et al., 2004;
Peche et al., 2007; Wolanski et al., 2009] that are highly
expressed in striated muscle, suggesting that they have spe-
cific functions in muscle. C. elegans has three profilin iso-
forms, and two of them (PFN-2 and PFN-3) are expressed
in striated muscle [Polet et al., 2006]. Although profilin-null
mutations cause only minor alterations in sarcomeric actin
organization, it enhances actin disorganization when tropo-
modulin, a pointed-end capping protein, is also depleted
[Yamashiro et al., 2008]. Profilin inhibits actin elongation at
the pointed ends [Pantaloni and Carlier, 1993]. Therefore,
profilin and tropomodulin may cooperatively regulate actin
dynamics at the pointed ends. Two cyclase-associated protein
isoforms are present in C. elegans, and one of them (CAS-1)
is expressed in striated muscle [S. Ono, unpublished data].
However, the function of CAS-1 is currently unknown.

F-Actin-Side-Binding Proteins

Proteins that bind to the side of actin filaments are integral
components of sarcomeric thin filaments and commonly sta-
bilize actin filaments. Tropomyosin is perhaps the best char-

acterized side-binding protein that regulates muscle
contraction as well as actin filament stability [Gunning et al.,
2008]. Tropomyosin by itself stabilizes actin filaments in
vitro by inhibiting spontaneous actin polymerization and de-
polymerization [Lal and Korn, 1986; Hitchcock-DeGregori
et al., 1988; Broschat et al., 1989; Broschat, 1990]. Further-
more, tropomyosin protects actin filaments from severing by
ADF/cofilin [Bernstein and Bamburg, 1982; Ono and Ono,
2002] or gelsolin [Fattoum et al., 1983; Ishikawa et al.,
1989]. In C. elegans striated muscle, tropomyosin functions
antagonistically to ADF/cofilin and AIP1 to stabilize sarco-
meric actin organization [Ono and Ono, 2002; Yu and Ono,
2006]. Importantly, a number of mutations in three of the
four tropomyosin genes are associated with human heart and
skeletal muscle diseases [Kee and Hardeman, 2008; Wiec-
zorek et al., 2008]. Mutations in TPM1 cause hypertrophic
and dilated cardiomyopathies [Thierfelder et al., 1994; Wat-
kins et al., 1995; Olson et al., 2001]. Mutations in TPM2
cause nemaline myopathy [Donner et al., 2002], distal
arthrogryposis (type 1: DA1) [Sung et al., 2003], and cap
myopathy [Lehtokari et al., 2007]. Mutations in TPM3
cause nemaline myopathy [Laing et al., 1995] and cap my-
opathy [De Paula et al., 2009]. Most of the disease-causing
mutations in tropomyosin are genetically dominant, in that
heterozygous carriers have disease. Biochemical and physio-
logical studies on mutant tropomyosins have revealed
impaired muscle contraction and relaxation, but the effects
of the mutations on actin dynamics have not been investi-
gated. A missense mutation (M9R) in TPM3 causes nema-
line myopathy and reduces affinity of tropomyosin with
tropomodulin, a pointed-end capping protein, thereby
potentially influencing the actin dynamics at the pointed
ends [Akkari et al., 2002; Ilkovski et al., 2008; Gokhin
et al., 2010] (see below for functions of Tmod).

Nebulin is a large protein (600–800 kDa) that has been
proposed to be a ruler that determines lengths of sarcomeric
thin filaments [McElhinny et al., 2003]. Nebulin is expressed
at high levels in skeletal muscle, while it is at low levels in
cardiac muscle [Kazmierski et al., 2003]. A nebulin-like pro-
tein, nebulette (107 kDa), is expressed in cardiac muscle and
may have an overlapping function with nebulin [Moncman
and Wang, 1995]. Nebulin is associated with sarcomeric thin
filaments, and a single nebulin molecule spans the entire
length of the filament [Wright et al., 1993]. Mutations in
the human nebulin gene (NEB) cause nemaline myopathy
[Pelin et al., 1999; Ilkovski, 2008]. The amino acid sequence
of nebulin contains �200 homologous modules of �35 resi-
dues, called nebulin-like repeats. Some nebulin fragments
containing multiple modules exhibit stoichiometric binding
to actin that corresponds to one module per actin subunit
[Zhang et al., 1998]. These fragments can promote actin po-
lymerization under low-salt conditions in which actin alone
does not polymerize [Chen et al., 1993; Gonsior et al.,
1998; Root and Wang, 2001], and also inhibit actin depoly-
merization [Chen et al., 1993]. Antibody-inhibition or
depletion of nebulin disturbs organized assembly of sarco-
meric actin filaments in cultured skeletal myotubes [Nwe
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and Shimada, 2000; McElhinny et al., 2005]. Furthermore,
depletion of nebulin from cardiac myocytes induces elonga-
tion of actin filaments from their pointed ends [McElhinny
et al., 2005]. These observations support the ‘‘nebulin ruler’’
hypothesis for regulation of thin-filament lengths. However,
in cardiac muscle, the expression level of nebulin is so low
that a single nebulin molecule would need to regulate multi-
ple thin filaments [Horowits, 2006]. Castillo et al. recently
reported that nebulin does not extend to the pointed ends of
thin filaments in rabbit skeletal muscle [Castillo et al.,
2009]. Furthermore, in nebulin-deficient mice, thin filaments
are assembled with uniform but shorter length than those in
wild-type in neonatal skeletal muscle, becoming more vari-
able in length during postnatal development [Bang et al.,
2006; Witt et al., 2006]. Similarly, short thin filaments are
found in human nemaline myopathy patients with nebulin
mutations [Ottenheijm et al., 2009]. These observations
reinforce the idea that nebulin stabilizes thin filament lengths
by preventing actin disassembly. However, since thin filament
lengths are still regulated, nebulin alone does not determine
length of thin filaments. Nebulin also binds to capping pro-
tein (CapZ) [Pappas et al., 2008] and tropomodulin [McEl-
hinny et al., 2001], which are actin barbed-end and pointed-
end capping proteins, respectively. A new study has demon-
strated that nebulin stabilizes sarcomeric thin filaments not
only by inhibiting actin depolymerization but also by stabi-
lizing other thin filament proteins including tropomyosin
and tropomodulin [Pappas et al., 2010]. Thus, these recent
functional studies on nebulin strongly suggest that nebulin is
not a strict ruler for thin filaments but rather a regulator of
dynamic exchange of actin subunits and other thin filament
proteins.
Several actin-binding proteins with multiple immunoglob-

ulin-like (Ig) repeats are expressed in striated muscle and
associated with myofibrillar actin filaments. The palladin/
myopalladin/myotilin family of Ig-repeat proteins localize to
the Z-band and play important roles in sarcomeric organiza-
tion [Otey et al., 2005, 2009]. Myotilin is highly expressed
in skeletal muscle [Salmikangas et al., 1999], while myopalla-
din is enriched in cardiac muscle [Bang et al., 2001]. Palla-
din is widely expressed in both muscle and nonmuscle
tissues in embryos, but its expression is diminished in adult
muscle [Parast and Otey, 2000]. Myotilin and palladin
directly bind to actin filaments, and myotilin stabilizes actin
filaments by inhibiting spontaneous depolymerization in
vitro [Salmikangas et al., 2003; Dixon et al., 2008]. Muta-
tions in the human myotilin gene (MYOT) cause myotilin-
opathy that includes three known types of skeletal muscle
diseases: limb girdle muscular dystrophy type 1A, myofibril-
lar myopathy, and spheroid body myopathy. Myotilinopathy
patients commonly exhibit progressive disorganization of sar-
comeres with disarrayed Z-bands [Olive et al., 2005], sug-
gesting that myotilin is important for stability of sarcomeres
at the Z-bands. However, disease-causing mutations in myo-
tilin do not affect actin-binding activity of myotilin [von
Nandelstadh et al., 2005]. Myotilin binds to other actin-
binding proteins including a-actinin and filamin and may

function as an adaptor molecule at the Z-bands. A mutation
in myopalladin is associated with dilated cardiomyopathy
[Duboscq-Bidot et al., 2008], but how this mutation affects
myotilin interactions with actin and its role in actin filament
dynamics are not understood. Thus, the palladin/myopalla-
din/myotilin family of proteins clearly has important func-
tions in muscle, but whether they function as stabilizers of
actin filaments or adaptors for signaling and structural pro-
teins is a subject of further investigation.

Kettin is a large protein of 500–700 kDa with 30-35 Ig-
repeats that is specifically present in invertebrate striated
muscle. Kettin directly binds to actin filaments and localizes
to the I-band and Z-band [Lakey et al., 1993; Maki et al.,
1995; van Straaten et al., 1999; Ono et al., 2006]. Although
a direct effect of kettin on actin dynamics in vitro has not
been determined, kettin is implicated in assembly and stabil-
ity of myofibrils in Drosophila and C. elegans. Kettin is asso-
ciated with actin filaments during early myofibrillogenesis in
Drosophila muscle [Ayme-Southgate et al., 2004], and a
mutational analysis originally suggested that kettin was essen-
tial for myofibril assembly [Hakeda et al., 2000]. However,
subsequent genetic studies on the kettin gene have shown
that kettin is expressed from the sallimus (sls) gene that also
encodes zormin and connectin/titin by complex alternative
splicing [Machado and Andrew, 2000; Zhang et al., 2000;
Burkart et al., 2007]. Connectin/titin is particularly known
as an important elastic component of sarcomeres [Mar-
uyama, 1997], and interpretation of the sls mutant pheno-
types is complicated due to defects in multiple sarcomeric
proteins. By contrast, C. elegans kettin is encoded by ketn-1
that is a separate gene from other connectin/titin-related
genes in C. elegans [Ono et al., 2005, 2006]. Depletion of
C. elegans kettin by RNAi causes disorganization of sarco-
meric actin filaments when muscle is subjected to chemically
induced hypercontraction, suggesting that kettin is important
for stability of sarcomeric actin during contraction. C. elegans
kettin cooperates functionally with a-actinin and ALP-
enigma [Ono et al., 2006; Han and Beckerle, 2009], suggest-
ing that these proteins reinforce stability of actin filaments at
the dense bodies.

Xin is a muscle-specific protein in vertebrates that stabil-
izes actin filaments. Xin contains 15–28 repeats of 16-
amino-acid sequence, called Xin repeats. Xin repeats directly
bind to actin filaments in vitro and stabilize actin filaments
in stress fibers when Xin repeats are expressed in cultured
smooth muscle cells [Pacholsky et al., 2004]. Structural anal-
ysis demonstrated that Xin repeats bind to the side of actin
filaments in a similar manner to nebulin repeats [Cherepa-
nova et al., 2006]. Xin is enriched in intercalated discs in
cardiac muscle and myotendenous junctions in skeletal mus-
cle, where actin filaments are anchored to the plasma mem-
brane [Sinn et al., 2002]. Xin also interacts with the
cadherin-catenin complex [Choi et al., 2007], and this inter-
action may promote specific functions of Xin at the actin-
membrane interface and functional differentiation between
Xin and nebulin. In agreement with these observations, Xin-
deficient mice exhibit cardiac myopathy with disorganized
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intercalated discs [Gustafson-Wagner et al., 2007; Otten
et al., 2010; Wang et al., 2010]. Whether Xin functions as
an actin-filament stabilizer or a reinforcement of the link
between actin and the cadherin-catenin complex has not
been determined.
UNC-87 is a calponin-like protein that stabilizes actin fila-

ments and is found only in nematode muscle [Goetinck and
Waterston, 1994a]. Mutations of UNC-87 in C. elegans
cause disorganization of sarcomeric actin filaments in body
wall muscle, but this phenotype is suppressed when muscle
contraction is reduced, suggesting that UNC-87 stabilizes
actin filaments during actomyosin contraction [Goetinck and
Waterston, 1994b]. UNC-87 contains seven calponin-like
(CLIK) repeats that are found in the C-terminus of mamma-
lian calponin, but it has no calponin-homology (CH) do-
main. UNC-87 binds directly to the side of actin filaments
and stabilizes actin filaments when it is exogenously
expressed in mammalian cells [Gimona et al., 2003; Krane-
witter et al., 2001]. Furthermore, UNC-87 protects actin fil-
aments from severing by ADF/cofilin in vitro and
antagonizes ADF/cofilin in vivo [Yamashiro et al., 2007].
Since C. elegans does not have nebulin or Xin, UNC-87
might be a functional homologue of these actin stabilizing
proteins in striated muscle.

Capping Proteins

Both pointed and barbed ends of sarcomeric actin filaments
are capped by capping proteins. However, as described above,
sarcomeric actin filaments are capable of exchanging actin
monomers at both ends, indicating that the filaments have
dynamic caps rather than permanent caps. The barbed ends
of sarcomeric actin filaments are capped by CapZ (also
known as capping protein or b-actinin) and aligned in regis-
ter at the Z-band [Casella et al., 1987]. During myofibril as-
sembly, CapZ is absent from premyofibrils and becomes
associated with nascent myofibrils in a nonstriated manner
and gradually assembled into striated Z-bands in nascent
myofibrils prior to the striated appearance of actin filaments
[Wang et al., 2005; Schafer et al., 1993]. Inhibition of CapZ
by microinjection of an antibody or by expression of a domi-
nant-negative CapZ mutant disturbs assembly of sarcomeric
actin filaments into myofibrils in cultured skeletal myotubes
[Schafer et al., 1995]. Transgenic expression in mouse heart
of a CapZ mutant that binds poorly to actin causes myofibril
disorganization and cardiac defects [Hart and Cooper, 1999].
These observations suggest that CapZ is important for regu-
lar alignment of the actin barbed ends at the Z-bands. How-
ever, the mechanism of this function is still unclear. CapZ
binds directly to the C-terminus of nebulin, and this interac-
tion is one mechanism for proper alignment of actin barbed
ends and CapZ at the Z-bands [Witt et al., 2006; Pappas
et al., 2008]. CapZ also binds to a-actinin [Papa et al.,
1999], although the functional significance of this interaction
is not understood. Limiting actin elongation at the barbed
end is probably another important function of CapZ. CapZ
itself is dynamic in the Z-band of cardiomyocytes [Hartman

et al., 2009]. Thus, dissociation of CapZ from actin can
allow incorporation of actin monomers at the barbed end.
Therefore, actin elongation and CapZ dynamics must be bal-
anced to maintain alignment of actin-filament barbed ends
at the Z-band. In cardiomyocytes, hypertrophic stimuli,
endothelin-1 and phenylephrine, enhance CapZ dynamics,
and phosphatidylinositol 4,5-bisphosphate (PIP2) and pro-
tein kinase C mediate this enhancement [Hartman et al.,
2009]. PIP2 directly binds to CapZ and inhibits its capping
activity [Heiss and Cooper, 1991], but whether PIP2 is able
to dissociate CapZ from the actin barbed end in vitro is con-
troversial [Kim et al., 2007; Kuhn and Pollard, 2007]. A
number of proteins are known to regulate capping protein in
nonmuscle cells, but their functions in striated muscle are
largely unknown [Cooper and Sept, 2008]. Therefore, PIP2
and other CapZ regulators may collaborate to regulate the
dynamics of CapZ in striated muscle.

The pointed ends of sarcomeric actin filaments are capped
by tropomodulin (Tmod) [Fowler et al., 1993]. Tmod caps
the actin pointed ends and inhibits both polymerization and
depolymerization. During myofibril assembly in cultured em-
bryonic chick skeletal myotubes and embryonic heart, Tmod is
associated with actin filaments before striation of actin is estab-
lished [Almenar-Queralt et al., 1999]. A similar localization
pattern is observed in the mouse embryonic heart [Fritz-Six
et al., 2003; Ehler et al., 2004]. However, during reassembly
of myofibrils in cultured embryonic chick cardiac myocytes,
Tmod is assembled into myofibrils after actin and tropomyosin
have already established a striated organization [Gregorio and
Fowler, 1995], suggesting that the cardiac-myocyte model is
somewhat different from in vivo muscle in the regulation of
Tmod localization. Genetic studies show that Tmod is impor-
tant for myofibril assembly in the mouse heart [Chu et al.,
2003; Fritz-Six et al., 2003; McKeown et al., 2008], Drosoph-
ila [Bai et al., 2007], and C. elegans [Stevenson et al., 2007;
Yamashiro et al., 2008]. A critical role of Tmod in regulating
the length of thin filaments has been demonstrated in multiple
experimental systems. Overexpression of Tmod shortens thin
filaments, whereas knockdown or inhibition of capping activity
of Tmod elongates thin filaments [Gregorio et al., 1995; Suss-
man et al., 1998; Littlefield et al., 2001; Mardahl-Dumesnil
and Fowler, 2001; Bai et al., 2007]. These results suggest that
Tmod regulates actin elongation at the pointed ends in sarco-
meres. Tmod is dynamic at the pointed ends under normal
conditions, while Tmod overexpression stabilizes the pointed-
end capping and prevents elongation. In contrast, loss of the
Tmod cap allows excessive elongation of actin at the pointed
ends. Intriguingly, Tmod1 null cardiac myocytes develop fewer
and thinner myofibrils than wild-type cells but with sarcomeric
organization of uniformly aligned actin filaments [Ono et al.,
2005], suggesting that a Tmod-independent mechanism to reg-
ulate the length of thin filaments exists as proposed previously
[Gregorio and Fowler, 1995; Gregorio and Fowler, 1996].

Tmod cooperates with other actin-regulatory proteins and
regulates length or stability of thin filaments. Tropomyosin
binds to Tmod and enhances its capping activity [Fischer
and Fowler, 2003]. A missense mutation (M9R) in TPM3
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causes nemaline myopathy and reduces the affinity of tropo-
myosin for Tmod [Akkari et al., 2002; Greenfield and
Fowler, 2002; Ilkovski et al., 2008]. Interestingly, inhibition
of the Tmod-tropomyosin interaction by antibody injection
induces disassembly of thin filaments [Mudry et al., 2003].
It is accompanied by dissociation of tropomyosin, suggesting
that Tmod stabilizes tropomyosin at the pointed end and
protects actin filaments from depolymerization and severing.
However, this effect of Tmod-tropomyosin inhibition is
remarkably different from that of simple knockdown of
Tmod, and whether this effect is independent of its capping
activity still needs to be determined. Pointed-end capping by
Tmod inhibits actin depolymerization induced by ADF/cofi-
lin in vitro [Yamashiro et al., 2008]. However, in C. elegans
muscle, TMD-1 (C. elegans Tmod) appears to cooperate with
ADF/cofilin and AIP1 in sarcomeric organization of actin fil-
aments [Yamashiro et al., 2008]. Both Tmod and ADF/cofi-
lin might function to maintain constant length of actin
filaments by preventing excessive actin elongation at the
pointed-end. In contrast, Drosophila sarcomere length short
(SALS) functions to enhance elongation of thin filaments by
antagonizing the activity of Tmod [Bai et al., 2007]. In the
Drosophila striated muscle, knockdown of SALS shortens the
length of thin filaments, while overexpression of SALS elon-
gates thin filaments from their pointed ends. The sals gene
encodes two SALS isoforms that have one or two WASP
homology 2 (WH2) domains. However, in vitro, a SALS
fragment containing two WH2 domains binds to the actin
pointed ends and inhibits elongation rather than promoting
elongation as expected from the in vivo observations. There-
fore, the precise mechanism of SALS-mediated thin filament
elongation remains unclear. An ortholog of SALS appears to
be absent in vertebrates and nematodes, and it remains to be
determined whether a functional homolog of SALS exists in
other organisms.
Leiomodin (Lmod) is a Tmod-related protein with a

unique C-terminal extension containing a poly-proline
sequence and a WH2 domain [Conley et al., 2001]. Verte-
brates have three Lmod isoforms (Lmod1, Lmod2, and
Lmod3). Lmod1 is expressed in smooth muscle, while
Lmod2 is specifically expressed in striated muscle [Conley
et al., 2001; Tsukada et al., 2010]. Lmod3 is a fetal iso-
form with no known function and only reported in
sequence databases. Lmod2 has potent actin nucleation ac-
tivity [Chereau et al., 2008]. In cardiac myocytes, Lmod2
localizes near the M-line where the actin pointed ends are
concentrated. Knockdown of Lmod2 induces disorganiza-
tion of sarcomeric structures in cultured rat cardiomyocytes
[Chereau et al., 2008]. One of major questions in myofibril
assembly is how unbranched, long actin filaments are
nucleated in muscle cells. Lmod2 nucleates unbranched
actin filaments, and it is a candidate for an actin-nucleator
in muscle cells. However, expression of Lmod2 is detected
in muscle later than expression of Tmod1 [Tsukada et al.,
2010], and involvement of Lmod2 in early stages of de
novo myofibril assembly still needs to be determined.
Rather, a more recent study has shown that Lmod2 binds

to the pointed ends of actin filaments without capping
[Tsukada et al., 2010]. Importantly, Lmod2 antagonizes
Tmod1 and supports actin elongation from the pointed
ends against capping by Tmod1 [Tsukada et al., 2010].
Thus, Lmod2 regulates thin filament length in sarcomeres
in a similar manner to Drosophila SALS.

Actin Nucleators

As mentioned above, an actin nucleator for initial assembly
of thin filaments in muscle cells has not been identified. The
Arp2/3 complex nucleates branched actin networks [Goley
and Welch, 2006], but it is involved in myoblast fusion and
is not implicated in sarcomeric actin filament formation
[Richardson et al., 2008; Rochlin et al., 2010]. Since formins
are well-characterized promoters of nucleation and elongation
of unbranched actin filaments [Paul and Pollard, 2009; Ches-
arone et al., 2010], they are attractive candidate regulators
for initial formation of sarcomeric thin filaments. To date,
no formin has been implicated in nucleation and elongation
of actin filaments in muscle. Proteins of the formin family
share formin-homology 2 (FH2) domains that are responsi-
ble for actin-binding. Based on the sequence of the FH2
domains, formins can be classified into seven subfamilies
[Higgs, 2005; Higgs and Peterson, 2005]. Among them, the
FHOD (also known as FHOS) subfamily of formins is
expressed in striated muscle. Mammalian FHOD1 is highly
expressed in skeletal muscle [Tojo et al., 2003] and localizes
to the Z-bands [S. Blystone, personal communication], but
its biochemical activity and cellular function are not known.
Mammalian FHOD3 (also known as Fhos2) is highly
expressed in the heart [Kanaya et al., 2005], and knockdown
of FHOD3 inhibits sarcomere assembly in rat cardiomyo-
cytes in culture [Taniguchi et al., 2009]. However, the mech-
anism by which FHOD3 regulates myofibril organization
remains unknown. Under the conditions tested by Taniguchi
et al. [2009], a C-terminal fragment of FHOD3 including
the FH2 domain does not nucleate actin filaments in vitro,
and FHOD3 is colocalized with sarcomeric actin and unex-
pectedly concentrated near the actin-filament pointed ends.
In C. elegans, FHOD-1 is the only formin of the FHOD
subfamily, and it is predominantly expressed in several types
of muscle cells. FHOD-1-null mutant worms exhibit some
thinner striated muscle cells than wild-type worms but show
no major abnormalities in sarcomeric actin organization
[Pruyne et al., 2009]. Thus, these observations suggest that
the FHOD subfamily of formins have an important function
in muscle, although its specific function remains elusive. Per-
haps, additional information on the biochemical activity of
FHOD regulation of actin dynamics, interactions with regu-
lators and/or cofactors, and post-translational modifications
may provide clues to understanding the role of FHOD in
striated muscle.

Myosin

Myosin II is the force-generating enzyme in sarcomeres. It is
also an important regulator of myofibril assembly.
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Pharmacological perturbation of myosin motor activity dis-
rupts organized assembly of sarcomeric actin filaments
[Soeno et al., 1999; De Deyne, 2000; Ramachandran et al.,
2003; Kagawa et al., 2006]. In chicken cardiac myocytes,
nonmuscle myosin II is incorporated into nascent myofibrils,
but is replaced with muscle-specific myosin II during myofi-
bril maturation [Rhee et al., 1994] (Fig. 1). In mammals, a
number of muscle-specific myosin isoforms exist, and embry-
onic and neonatal isoforms are replaced by adult isoforms
during development [Whalen et al., 1981]. In Drosophila
embryonic muscle, nonmuscle myosin II (zipper) is required
for formation of striated sarcomeres [Bloor and Kiehart,
2001], suggesting that nonmuscle myosin has a specific func-
tion in myofibril assembly. However, the mechanism by
which myosin regulates myofibril assembly is not completely
understood. The myosin head detects polarity of actin fila-
ments. Therefore, one likely mechanism is that myosin inter-
acts with actin filaments and aligns them with uniform
polarity within sarcomeres. Myosin also competes with ADF/
cofilin for actin binding [Nishida et al., 1984] and enhances
actin polymerization from ADF/cofilin-bound actin mono-
mers in vitro [Abe and Obinata, 1989], suggesting that myo-
sin can initiate actin assembly during myofibrillogenesis. On
the other hand, myosin activity enhances actin turnover in
mature myofibrils in rat cardiomyocytes [Skwarek-Maruszew-
ska et al., 2009]. In nonmuscle cells, myosin-dependent dis-
assembly or turnover of actin bundles or network has been
observed in cytokinesis [Guha et al., 2005; Murthy and
Wadsworth, 2005] and cell migration [Medeiros et al., 2006;
Wilson et al., 2010]. Moreover, skeletal muscle myosin II
can enhance disassembly of actin bundles in vitro by unbun-
dling and subsequent filament depolymerization [Haviv
et al., 2008]. However, myosin-dependent actin turnover
appears to be limited to a subset of sarcomeric actin fila-
ments [Skwarek-Maruszewska et al., 2009], suggesting that
the majority of thin filaments are protected from myosin-de-
pendent disassembly by unknown mechanisms. Further
investigations are required to understand the function and
regulation of myosin in actin turnover during myofibril as-
sembly and maintenance.

Perspectives

Studies in live muscle cells have demonstrated that actin in
sarcomeres is dynamic during assembly and even in mature
myofibrils. A number of regulators of sarcomeric actin dy-
namics have been identified, and functional studies have
revealed their important roles in myofibril assembly, sarco-
mere organization, and maintenance of myofibrils (Fig. 2).
Regulators of sarcomeric actin dynamics can be classified
into two types: enhancers of actin dynamics and stabilizers of
actin filaments (Fig. 2). Actin-dynamics enhancers (e.g.,
ADF/cofilin) and actin-filament stabilizers (e.g., tropomyo-
sin) often antagonistically regulate actin turnover. Therefore,
a simple model would be that these two types of actin regu-
lators maintain a balance for proper assembly and mainte-
nance of sarcomeric actin organizations. However, the actual
process in muscle cells is expected to be much more com-
plex, involving multiple mechanisms at different parts of sar-
comeres under different cellular conditions. Importantly, we
still do not understand why actin filaments even in mature
sarcomeres must be dynamic. Further investigations on the
functions of actin-dynamics regulators and physiological sig-
nificance of actin dynamics in muscle should provide insights
into the pathogenesis of muscle diseases as well as the normal
mechanism of myofibril assembly and maintenance.
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