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ABSTRACT

Optimizing bio-production involves strain and pro-
cess improvements performed as discrete steps.
However, environment impacts genotype and a strain
that is optimal under one set of conditions may not be
under different conditions. We present a methodol-
ogy to simultaneously vary genetic and process fac-
tors, so that both can be guided by design of exper-
iments (DOE). Advances in DNA assembly and gene
insulation facilitate this approach by accelerating
multi-gene pathway construction and the statistical
interpretation of screening data. This is applied to a
6-aminocaproic acid (6-ACA) pathway in Escherichia
coli consisting of six heterologous enzymes. A 32-
member fraction factorial library is designed that si-
multaneously perturbs expression and media com-
position. This is compared to a 64-member full facto-
rial library just varying expression (0.64 Mb of DNA
assembly). Statistical analysis of the screening data
from these libraries leads to different predictions as
to whether the expression of enzymes needs to in-
crease or decrease. Therefore, if genotype and me-
dia were varied separately this would lead to a sub-
optimal combination. This is applied to the design
of a strain and media composition that increases 6-
ACA from 9 to 48 mg/l in a single optimization step.
This work introduces a generalizable platform to co-
optimize genetic and non-genetic factors.

INTRODUCTION

Industrial bioprocess development involves many optimiza-
tion steps at different stages, from the genetic engineering
of the initial strain to the optimization of process condi-

tions and scale-up. Development is done iteratively in dis-
crete steps; in other words, new strains are screened holding
the environmental conditions constant, and then the growth
conditions are optimized for the top strain (1). It is appro-
priate to separately optimize the strain and conditions if
they are decoupled parameters. However, there is ample evi-
dence to the contrary, where different genotypes are favored
under different environmental conditions as changes in me-
dia nutrients, buffer pH, cultivation temperature and aera-
tion can all influence cell physiology and metabolism (2–5).
Here, we have combined approaches for the balancing of the
expression levels in a metabolic pathway with those used to
optimize media composition. The goal is to accelerate the
search through the early identification of interdependencies
between these parameters without requiring an underlying
mechanistic model.

There are an enormous number of production param-
eters, including media components and process variables
(feed rate, O2, agitation, etc.), and it is impractical to at-
tempt all parameter combinations. As such, there has been
a long history of applying design of experiments (DOE) al-
gorithms to guide the search (6–8). The strength of DOE
is that a minimum number of combinations are evaluated,
each of which simultaneously varies many parameters while
avoiding biases. This often takes the form of a factorial de-
sign, where each parameter is varied between two discrete
levels. The design can either be ‘full’ or ‘fraction’ depending
on whether all possible combinations of discrete levels are
tested. There are a variety of algorithms, such as Plakett-
Burman (9) and Yates (10), which guide the selection of the
fraction to be tested. From these data, commercially avail-
able software can be used to determine which parameters,
and combinations thereof, impact performance (6). Once
the important parameters are identified, an optimization
step involves experiments that move all of the parameters in
favorable directions. Media optimization can be performed
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in very high throughput, where components are varied in
96-well and larger formats (11).

Strain engineering also involves many genetic parame-
ters. For example, to optimize metabolic flux, it is impor-
tant to balance the expression levels of enzymes to increase
product production and avoid unwanted byproducts (12–
18). This requires the selection of genetic parts, for exam-
ple promoters or ribosome binding sites, to control the ex-
pression of each enzyme. This leads to a multi-dimensional
search space, whose optimum is the set of expression lev-
els that lead to the highest product productivities (17,19).
Algorithms have been developed to aid the search of this
space by guiding the generation of genetic diversity and the
interpretation of screening results. For example, regression
modeling has been applied to identify the optimal construct
within a defined space (20). This can be further extrapo-
lated outside of the inspected range via the incorporation
of mechanistic modeling (21).

Optimizing the genetics and the media currently occur
at separate stages of process development, even though it
is recognized that they involve dependent parameters. In
other words, strains are screened under one media com-
position and then the winner is evaluated under many me-
dia compositions. This has been constrained by a mismatch
in the iteration times. In the past, the construction of new
strains could take months, whereas various media formu-
lations could be tested in days. In addition, the cost of new
strain libraries was much greater. However, recently the cost
and time of building genetic constructs has decreased such
that large libraries of rationally designed multi-gene sys-
tems can be built and verified in 1–2 weeks (22–24). Au-
tomated genome engineering has also advanced, where 10
000s of strains can be built a week (25). Here, we introduce
the concept that the genetic constructs and media compo-
nents could be co-varied in a DOE design. Core to this idea
is that each strain would not be tested in every media for-
mulation. In fact, each construct is tested in a single media
composition, as determined by a fractional factorial design.

We selected a de novo pathway for 6-aminocaproic acid
(6-ACA) biosynthesis in Escherichia coli (E. coli) for proof-
of-principle experiments (unpublished results) (Figure 1A).
6-ACA is the linear form of caprolactam, which is the chem-
ical building block of nylon-6. Nylon is the most highly
produced synthetic fiber globally (about 4M tons/yr). The
fossil-based chemical process for producing caprolactam
leads to significant greenhouse gas emission, quantified by
its global warming potential (GWP). Depending on the ori-
gin of the carbon and energy sources used, the GWP for bio-
based production has the potential to be 91% lower than
that of the chemical caprolactam route, which is considered
to be a sustainable and green process (unpublished results).

The pathway was previously constructed by introduc-
ing six heterologous enzymes from various pathways
and organisms into E. coli (unpublished results). Begin-
ning with the central metabolite �-ketoglutarate (AKG),
the one-carbon elongation route was implemented from
methanogenic archea in the biosynthesis of coenzyme B
to generate key intermediate �-ketopimelate (AKP), a
metabolite only naturally present in methanogens (26,27).
This conversion from AKG to �-ketoadipate (AKA) and
then to AKP involves four enzymes (NifV, AksD, AksE and

AksF) that collectively result in the net addition of two car-
bon units to AKG via two iterations. NifV functions as ho-
mocitrate synthase that condenses one acetyl group to the
�-keto dicarboxylic acid precursor (28). AksD and AksE
form an enzyme complex containing an iron-sulfur (Fe-S)
cluster for catalyzing the isomerization step via dehydration
and rehydration events (29). The subsequent decarboxyla-
tion is achieved by AksF, which is homologous to NAD+-
dependent isocitrate dehydrogenase (30,31). The hypothet-
ical intermediates produced by this set of four enzymes
are shown in Figure 1A. Next, AKP is decarboxylated by
KdcA, a keto-acid decarboxylase to obtain the correspond-
ing carboxylic aldehyde, 5-formylvaleric acid (5-FVA) (32).
This is then converted to 6-ACA by Vfl, which performs an
amino-transfer step.

There are two main side products from this pathway:
�-aminopimelate (AAP) and adipic acid (AA). It is likely
that AAP is converted from AKP by an E. coli endogenous
amino-transferase whereas AA is derived from 5-FVA via
a non-enzymatic oxidation reaction. The six enzymes were
identified by database mining and grouped into three oper-
ons in two plasmids (Figure 1B). The total production of
6-ACA from the top strain (eAKP672) was 160 mg/l at
10L fermentation scale (unpublished results) and 8 mg/l un-
der shake flask conditions. However, there was 8-fold more
intermediates/side products (1.2 g/l) than 6-ACA observed
in fermentation scale, indicating a misbalance in the relative
enzyme activities.

In this study, we first modularized the 6-ACA pathway
so that the expression levels of the genes could be indepen-
dently controlled. This involves two steps. First, the genes
are re-organized as monocistronic units under the control
of independent T7 RNA polymerase (T7 RNAP) promot-
ers. Second, genetic insulators are included between the
cistrons so that the promoters can be changed without im-
pacting neighboring genes (33,34). Factorial design was im-
plemented by selecting a pair of promoters that implement
a small perturbation in the expression of each gene between
a low and high state. Three media components were also in-
cluded in the library design (Fe3+/C, vitamin B1 and Mg2+).
These were chosen because they either serve as precursors
to catalytic cofactors for pathway enzymes or potentially in-
crease cell growth. The genetic and media changes would
lead to a full factorial library of 29 = 512. A fractional
factorial library of 32 was chosen by DOE algorithms to
efficiently sample this space. This library was constructed,
screened and analyzed to determine those factors most in-
fluencing titer as well as the trends for each factor (e.g.
whether the expression of an enzyme should be increased
or decreased). This data set is statistically analyzed in order
to simultaneously predict the optimal construct and media
condition. Notably, the best construct in the optimized me-
dia is different from that in the original composition.

MATERIALS AND METHODS

Strains, plasmids and media

Escherichia coli (E. coli) DH5� was used for routine cloning
and plasmid propagation (NEB, #C2987I). E. coli BL21
strain (NEB, #C2530H) was used as production strain har-
boring the original pathway eAKP672. The eAKP672 strain
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Figure 1. The biosynthetic pathway to 6-ACA and associated genetic designs. (A) The four-step pathway involving six enzymes is shown along with the two
known byproducts (dashed arrows). (B) The organization of the initial two-plasmid system with three operons (eAKP672 includes both plasmid pAKP444
and pAKP96) is shown. The full plasmid maps are shown in Supplementary Figure S4. (C) The genome integrated T7 RNAP controller cassette is shown
as the box to the left (locus shown). The operons were maintained as in part b and only the promoters were changed. (D) The 6-ACA production titers are
shown for the starting construct (part a) and different T7 promoters substituted into the red positions (PT7-X) in part b. The promoters were substituted
simultaneously into both positions. Error bars were calculated as the standard deviation of three independent experiments performed on different days.

contains the pAKP444 and pAKP96 plasmids (Supplemen-
tary Figure S4A). An E. coli BL21(DE3) strain contain-
ing a genomic copy of T7 RNAP was used as produc-
tion strain for 6-ACA pathway libraries (NEB, #C2527I).
LB medium (10 g/l tryptone, 5 g/l yeast extract, 10
g/l NaCl; VWR #90003–350) with appropriate antibi-
otic supplementation was used for strain maintenance and
plasmid construction. Terrific broth (TB) medium (1.2%
tryptone, 2.4% yeast extract, 7.2 mM dipotassium phos-
phate, 17 mM monopotassium phosphate, 0.4% glycerol;
Teknova #T3011) with appropriate antibiotics was used
for 6-ACA production. Antibiotic selection was performed
with kanamycin (50 mg/l; Gold Bio #K-120–5) and ampi-
cillin (100 mg/l; Affymetrix #11259–5). Isopropyl-�-D-1-
thiogalactopyranoside (IPTG; Gold Bio #I2481C25 259)
was supplemented to the media at 0.2 mM unless other-
wise stated. The stock solutions of ferric citrate (140 mM,

Sigma F3388), thiamine hydrochloride (10 mg/ml, Alfa Ae-
sar A19560 or L08137) and magnesium sulfate (1M, USB
Corporation 18651) were added accordingly. The stock so-
lution of L-cysteine (200 mM, Sigma C7352) was freshly
prepared every time before use.

Promoter characterization

The strengths of the T7 promoters were quantified in the
context of the six gene locations of the complete pathway.
This was done by replacing each gene (and RBS) with the
mRFP reporter (and RFP008 RBS). The background path-
way was derived from library member #14 and when one
position is being tested, the other five positions remain the
pathway enzymes. The strains were cultured in 500 �l TB
in a micro-titer plate (VWR R© 96 deep-well plates, cat. No:
82007–292) at 30◦C for 4.5 h with shaking at 900 rpm (Mul-
titron HTS, Infors USA Inc., Laurel, MD, USA). When the
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OD600 of the cultures reached 0.8, 0.2 mM IPTG was added.
After an additional growth period of 16 h, flow cytometry
was performed.

Flow cytometry

All cytometry measurements were done using a BD LSR
Fortessa flow cytometer with a 640-nm laser for RFP and
analyzed using FlowJo v10 (TreeStar Inc., Ashland, OR,
USA). Cells were diluted in PBS buffer with 2 mg/ml
kanamycin and run at a rate of 0.5 �l/s. At least 50 000
events were recorded for each sample. All events were gated
by forward and side scatter.

DNA assembly and verification

Gibson assembly was used to build the T7 RNAP expres-
sion system shown in Figure 1C (23). MoClo was used to
assemble the monocistronic pathway gene expression cas-
settes into a single backbone plasmid (22). Supplemen-
tary Table S1 and S2 list the parts and genes used in this
study. The GenBank accession No. for NifV, AksD, AksE,
AksF, KdcA and Vfl are P05342 (Azotobacter vinelandii),
ABR55899 (Methanococcus aeolicus Nankai-3), ABR56236
(M. aeolicus Nankai-3), ABR57060 (M. aeolicus Nankai-
3), AAS49166 (Lactococcus lactis), AEA39183 (Vibrio fluvi-
alis) respectively (optimized codon sequences are provided
in Supplementary Table S2). The scheme for DNA assem-
bly from level 0 to level 1 to the final level 2 constructs is
illustrated in Supplementary Figure S3. For level 0 parts-
containing plasmids, the backbone plasmid pL0 was de-
rived from pUC19. To be golden gate compatible, the BsaI
and BbsI sites were removed by introducing silent muta-
tions. Parts including T7 promoter-ribozyme, RBS-CDSs
and double terminators were ligated into pL0 by restric-
tion ligation using SmaI and T4 ligase. 10 ng of both in-
sert and backbone plasmid were added to a 10 �l reaction
containing 0.5 �l SmaI and 1 �l T4 ligase for incubation at
room temperature for 2 h. For level 0 promoter plasmids,
the inserts which contain a spacer, one T7 promoter and
six different ribozymes were constructed by DNA oligo an-
nealing. The spacer sequences were designed by the Ran-
dom DNA Generator using a random GC content of 50%
(http://www.faculty.ucr.edu/∼mmaduro/random.htm). The
different T7 promoter variants were then introduced by
primers via inverse PCR. The promoter-ribozyme parts are
flanked by two BsaI sites with GGAG and TTAA as four
nucleotides overlaps for the subsequent type IIS reaction
to build level 1 plasmids. All of the engineered ribozyme
sequences end with TTAA. The RBS-CDS constructs con-
taining the enzymes were obtained from a concurrent study
(unpublished results), which we mutated to eliminate BsaI
and BbsI sites. Note that the RBS for kdcA in the mono-
cistronic design is K005 (designed using the RBS Calcula-
tor) as compared to K007, which was used for the operon-
based designs in Figure 1B and C. The level 1 plasmids are
based on the pL1 backbone, originating from pMJS1CD
(24) with Kanamycin resistance (also free of BsaI and BbsI
sites). Then, 20 fmol of each level 0 plasmid are mixed with
5 U BsaI (New England Biolabs, #R0539S) and 5 U T4
DNA Ligase (Promega, #M1794) for a total of 10 �l 1×

Promega T4 DNA Ligase Buffer and incubated. Two level
1 plasmids carrying expression cassettes with high (+1) and
low (−1) expression levels for each of the six pathway genes
were built. In total, there are 12 level 1 plasmids for six path-
way genes and 12 containing mRFP in the pathway con-
text for part characterization. Inverse PCR (iPCR) was used
to generate the level 1 plasmids for the kdcA and aksF li-
braries using pL1-kdcA-TU2 and pL1-aksF-TU2 as tem-
plates. To build the level 2 plasmids, the six pathway cistrons
are assembled in the order shown in Figure 2A. The cistrons
are PCR amplified from the level 1 plasmids to give each
construct specific cohesive ends upon BsaI digestion corre-
sponding to the assigned position. The final expression plas-
mid backbone pL2 is derived from pAKP444 (unpublished
results), where the BsaI sites in �-lactamase gene were elim-
inated. The seven assembly junction regions were sequence
verified by Sanger sequencing. To build the kdcA and aksF
libraries shown in Figure 3B and C, only the expression cas-
sette for either kdcA or aksF was changed, while the other
gene expression cistrons are the same as the #4 construct.
To achieve higher expression, an extra copy of kdcA or aksF
was introduced in a separate p15a Kanr plasmid (Supple-
mentary Figure S4C). The T7 promoter M4 is used for both
kdcA and askF expression. The same plasmid for overex-
pressing aksF or kdcA was introduced into the strain con-
taining construct [−1, −1, −1, +1, +1, +1] individually for
Figure 3A.

Culture screening and LC-MS/MS quantification

A shake flask assay was used that has been previously
demonstrated to correlate positively with results at the 10L
fermentation scale (unpublished results). Overnight seed
cultures were prepared by inoculating the strains from glyc-
erol stock into 3 ml of LB media in 15 ml culture tubes.
These were grown for 20 h at 37◦C and shaken at 250 rpm.
The overnight seed culture was then used to inoculate 20
ml of TB media in a 125 ml Erlenmeyer flask. In order to
achieve the same initial cell densities (≈0.006) across a batch
culture, the OD600 of each overnight seed culture was mea-
sured and the inoculant volume was calculated accordingly.
The cells in flasks were grown for 5 h at 30◦C and 250 rpm,
leading to cell densities of ≈0.8. Then, IPTG was added to
the culture to a final concentration of 0.2 mM. After in-
duction, the cells were grown for another 41 h at 30◦C and
120 rpm. Cells are removed from the culture by centrifu-
gation at 4000 g for 12 min. The supernatant was further
cleaned using a 0.2 �m filter (13 mm, 0.20 �m MicroLiter
nylon syringe filter, Wheaton). The resulting cell broth is di-
luted four times and LCMS/MS analysis is used for product
quantification. A XSELECTTM HSS T3 column 3.5 �m,
2.1 mm × 75 mm (Waters, part No. 186006464) and XS-
elect HSS T3 Sentry Guard column (Waters, 100Å, 5 �m,
2.1 mm X 10 mm, part No. 186006486) with gradient elu-
tion are used for the separation of alpha-keto acids, 6-ACA,
AAP and Adipate. Solvent A consists of LCMS grade wa-
ter, containing 0.1% formic acid, and solvent B consists of
acetonitrile, containing 0.1% formic acid. For the HSS T3
column the flow-rate was 0.25 ml/min and the column tem-
perature was kept constant at 30◦C. The gradient started
at 100% solvent A and was increased linearly to 15% sol-

http://www.faculty.ucr.edu/~mmaduro/random.htm


10564 Nucleic Acids Research, 2015, Vol. 43, No. 21

vent B over 6.5 min and then immediately increased to 80%
solvent B for 3.5 min, and finally to 100% Solvent A and
stabilized for 5 min. The injection volume was 10 �l for all
the analyses. For metabolite quantification, the LC-MS ex-
periments were performed on a triple-quadrupole AB Sciex
4000 QTRAP R© MS/MS system (AB Sciex, Framingham,
MA, USA), equipped with an Agilent 1200 LC system (Agi-
lent Technologies Inc., Santa Clara, CA, USA), using either
ESI positive or negative ionization mode using multiple re-
action monitoring (MRM). m/z 116, dwell time 100 ms with
the following conditions: 70 V fragmentor, 350◦C drying
gas temperature, 12 L N2/min drying gas, 50 psig nebuliser
pressure and 3 kV capillary voltage. The ion source temper-
ature was kept at 130◦C, whereas the desolvation tempera-
ture is 350◦C, at a flow-rate of 500 l/h. For 6-ACA the proto-
nated molecule was fragmented with 13 eV, resulting in spe-
cific fragments from losses of H2O, NH3 and CO. For AKG,
AKA, AKP and adipate, the deprotonated molecule was
fragmented with 10–14 eV, resulting in specific fragments
from losses of, e.g. H2O, CO and CO2. To determine con-
centrations, calibration curves of the external standards of
synthetically prepared compounds spiked in blank fermen-
tation broth was analyzed to calculate a response factor for
the respective ions, and was used to calculate the concentra-
tions in fermentation samples. The retention time for each
compounds and their transition mass are listed in Supple-
mentary Table S6.

Measurement of cell density

The cell densities were recorded in 96 well plate format
(Nunc R© 96-Well Optical Bottom Plates, Thermo scientific)
using Synergy H1 Hybrid Microplate Reader (BioTek in-
struments, Inc., Winooski, USA). The culture volume was
fixed at 200 �l. The final OD600 reading was obtained by
subtracting the blank OD600 reading of TB media. The
OD600 values reported in the screen (Figure 2B) were de-
termined by taking a 10 �l of stationary phase cultures in
flasks and diluting them into 190 �l of TB media and mul-
tiplying the resulting OD600 measurement by 20.

Statistics software and analysis

The regression and graphical analyses of the library data
and the statistical analysis of variance (ANOVA) of the
model were performed using JMP pro 11.0.0 software (SAS
Institute Inc., Cary, NC, USA). The F-test was used as part
of the ANOVA analysis to determine the statistical signifi-
cance for the effect of each factor on the final output titer.
This is presented in the Supplementary Information (Tables
S4 and S5). In this two-level DOE library design, a larger
F ratio for a factor means the variation of the two mean
production titers at either the high or low level for that fac-
tor is significant, indicating that the change of this factor
has a large effect on the final production titer. If there is
no titer difference between the two levels, then the F ra-
tio is close to 1. Here, the F ratio is calculated as the ra-
tio of between-group mean square value (MSB) and within-
group mean square value (MSw). For each individual fac-
tor, a group means the sub-set of the design at either high or
low level. Therefore, there are two groups for each factor in

the 29-4 DOE design. Each group contains 16 different de-
signs, which also represents 16 observation counts for that
factor in either the high or low level. MSB is then related to
the between group sum of squared difference (SSB) divided
by the between group degree of freedom (DFB). DFB is one
less than the number of groups (equal to 1 for a 2-level de-
sign). MSw is accordingly related to the within group sum
of squares (SSw) divided by the within group degree of free-
dom (DFw). DFw is the product of the levels for each factor
(2) and the observation count for the factor (16) at one level
minus one (DFw = 2 × (16–1) = 30). The p-value is cal-
culated using the JMP software (with a significance of � =
0.05).

RESULTS

Design of a 6-ACA pathway with modular genetics

The first step of DOE involves a ‘screening phase,’ where
the factors are identified that most contribute to perfor-
mance. This guides how the factors are tuned in a subse-
quent ‘optimization phase.’ In essence, the idea is to map the
local search landscape surrounding the starting construct
and then use this information to guide the direction of the
search. Ideally, the mapping would be done via small per-
turbations in the factors as small changes are more likely
to be additive. Larger changes can result in complicating ef-
fects; for example, the overexpression of an enzyme can have
a dominating impact on performance that obscures the ef-
fects caused by changing the expression of the other path-
way enzymes. An obstacle in implementing this approach is
that the precision of genetic parts is limited and impacted
by the local genetic context, making it difficult to reliably
obtain small changes. Another problem is that the organi-
zation of the genetic system can contribute to more cou-
pling between factors. For example, operons and transcrip-
tional readthrough can make it impossible to vary one fac-
tor without also impacting others simply because of the way
in which parts are organized. All of these challenges limit
the ability to perturb each enzyme between two expression
states as part of a factorial DOE library without impacting
the expression of other enzymes in the pathway.

To address these challenges, we sought to redesign the ge-
netic architecture of the 6-ACA pathway, so that the expres-
sion levels of the six enzymes could be independently con-
trolled. The original design (eAKP672) divided the six genes
into three two-gene operons across two plasmids (unpub-
lished results) (Figure 1B). One plasmid contains two oper-
ons that are not separated by a terminator, leading to tran-
scriptional readthrough. Three changes were made to mod-
ularize the architecture. First, genes were organized into
monocistronic expression units on a single plasmid. This
allows each gene to be controlled independently. Second,
strong double terminators were placed after each gene to
turn off transcriptional readthrough (35,36). Third, genetic
insulators were added to allow promoters to be changed
without invoking context effects. Specifically, we used a set
of ribozyme insulators (RiboJ variants) that allow the pro-
moters to be varied without impacting RBS strength or
mRNA stability (33). Upstream spacers (25 bp) were also
included to further insulate the promoters and these con-
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tained the sequences required for Golden Gate assembly
(Materials and Methods). To avoid recombination, the sets
of double terminators, spacers and ribozyme insulators all
had to be chosen to have sufficiently diverse sequences. Sup-
plementary Table S1 and S2 provide the part and gene se-
quences used in the designs.

All of the operons in the initial construct (eAKP672) were
controlled with the IPTG-inducible Ptac promoter. These
were replaced by T7 promoters, which are small (12 bp) and
easy to swap to change expression levels. A separate ‘con-
troller’ was integrated into the genome from which wild-
type T7 RNAP is expressed under IPTG control (Figure
1C) (Materials and Methods). We decided to first substi-
tute the T7 promoters into the Ptac locations in eAKP672
before fully breaking up the system into individual insulated
cistrons. To do this, the same strong promoter (PT7-WT) was
substituted for the three Ptac promoters. The promoters con-
trolling nifVaksF and aksDE were then varied and an opti-
mum expression level was observed (Figure 1D). These sub-
stitutions yielded a construct that produced 6-ACA titers
comparable to eAKP672, as quantified by LC-MS (Figure
1D) (Materials and Methods).

The complete monocistronic pathway design is shown
in Figure 2A. For each gene, two promoters were selected
based on the results in Figure 1D to reflect high (+1) and
low (−1) expression levels. To map the local space, these
were chosen to minimize the change in expression while still
maintaining statistically significant differences between the
levels. T7 promoter variants M4/M6 were selected for the
expression of nifV, aksF, aksD and aksE genes and M4/M1
were used for the expression of kdcA and vfl. The strength of
these promoters was measured in the context of the pathway
by replacing each gene individually with red fluorescent pro-
tein (mRFP) under the control of each promoter, leading to
a set of 12 constructs (Materials and Methods and Supple-
mentary Figure S4B). These were assayed to measure fluo-
rescence using flow cytometry (Materials and Methods) and
their strengths are shown in Figure 2A. The ratio between
the high (+1) and low (−1) promoters is approximately 2-
fold, with absolute levels determined by the identity of the
RiboJ insulator. Notably, there is no left-to-right increase in
expression, which demonstrates the efficient insulation pro-
vided by the double terminators. Because all of the genes
are oriented in the same direction, readthrough from up-
stream genes would lead to a systematic increase in expres-
sion across the construct.

To ensure that the fully monocistronic design maintained
activity, two constructs were constructed and tested that
varied the identity of the promoter for each gene (Figure
2B). One construct (#25) consisted of a pattern of high
and low promoters as [+1 +1 +1 +1 −1 −1] and the other
(#14) has the opposite pattern [−1 −1 −1 −1 +1 +1].
These variants yielded 6-ACA titers of 11.2 mg/l and 18.3
mg/l, respectively, both of which are higher than the initial
(eAKP672) and operon-based constructs. This indicated
that the insulated monocistronic designs did not disrupt ac-
tivity and that the promoter substitutions would explore the
local space without leading to non-functional variants.

Integration of genetic and media permutation in a 29-4 fac-
torial library

For DOE factorial library design, each factor is varied be-
tween two discrete states. In terms of the six genes in the
pathway, this involves the selection of low (−1) and high
(+1) promoters (Figure 2A). Note, however, that factors
do not have to relate to expression levels or even genetic
changes. To demonstrate this, we also included factors that
capture the media composition. The baseline media is ter-
rific broth (TB) (1.2% tryptone, 2.4% yeast extract, 7.2
mM dipotassium phosphate, 17 mM monopotassium phos-
phate, 0.4% glycerol) to which we evaluated three additional
components. The first is ferric citrate and cysteine (Fe3+/C),
which is reported to be beneficial for the expression and ac-
tivity of iron-sulfur cluster containing enzymes (AksD and
AksE) (27,37,38). The second is vitamin B1 (Vit B1), which
provides the cofactor precursor for thiamine pyrophosphate
(TPP) dependent decarboxylase (KdcA) (32,39). Finally,
the magnesium ion (Mg2+) concentration often affects high-
density bacterial growth (40). These three components were
included as factors, where −1 indicates the absence of the
supplement and +1 indicates its presence (1 mM Fe3+/C,
0.17 mg/ml Vit B1 or 2 mM Mg2+). Together, the genetic
and media factors lead to 29 = 512 possible permutations
of −1/+1 states. When generating the fractional factorial
library, the algorithm does not distinguish the genetic and
media factors. This makes it trivial to include other aspects
of process development into the search as additional fac-
tors, such as agitation, feed rate or temperature.

The fractional factorial library was generated using the
Yates algorithm (41,42), which allows orthogonal and bal-
anced fractional sets chosen from the full combination for
effective estimation of all the main factor effect and some
two-factor interactions. A resolution IV library was gener-
ated, which is sufficient to estimate the main effects of fac-
tors (10). This leads to a 29-4 = 32-member library, where
each factor is evenly distributed between the −1 and +1
states. In this design, 21 two-factor interactions were clear
of confounding. Thus their parameters can be evaluated in-
dividually. While the rest of 15 two-factor interactions were
aliased with others that their parameters were convoluted.
Each library member is a unique genetic construct and each
construct is tested in one media formulation that varies
across the library. The library was screened twice in a 20
ml shake flask culture assay and the average titer computed
(Materials and Methods). The titers in the library spanned
≈10-fold from 5.7 mg/l to 46.8 mg/l (Figure 2B). The titer
by eAKP672 in this screen is 9.3 ± 0.3 mg/l. The OD600 of
the strains is shown in Figure 2B. There is no correlation
between titer and growth rate and there is little variation
across the library, including due to media changes. For sta-
tistical analysis, the titer was normalized by the OD600 to
reduce day-to-day variation.

A regression analysis was performed on the data to de-
termine the factors that most influence the titer. The JMP
software package was used to perform the analysis, which
is commonly applied to bioprocess optimization (7,43). The
model used for the 29-4 fractional factorial to estimate the
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Figure 2. Co-variance of genetic and media factors in a DOE library. (A) The monocistronic architecture is shown, where each gene has its own promoter
(arrow), ribozyme (dashed line with circle), RBS (semicircle) and strong double terminator (TT). Two promoters are chosen for each gene that generate
a low (−1) and high (+1) expression level. From left to right, these promoters are: (M4/M6), (M4/M6), (M4/M6), (M4/M6), (M1/M4), (M1/M4).
The strengths are in arbitrary units of fluorescence and were evaluated by creating a new construct with the promoter at each position fused to mRFP
(Materials and Methods). The part sequences are provided in Supplementary Tables S1 and S2. The errors were calculated as the standard deviation of
three independent experiments performed on different days. (B) The 29-4 DOE library is shown, rank ordered by the titer. From left to right, the nine
factors are shown according to their high/low expression state or presence/absence in the media (+1/−1). The associated construct is shown in the center,
following the genetic part coloring and format as in part a. The titer and OD600 of each construct is shown to the right. The error bars were calculated as
the standard deviation of two experiments performed on different days. (C) The normalized titers (Materials and Methods) are shown for the 29-4 DOE
library (red lines) and the 26 full factorial library that only varies the expression levels (black lines). The full factorial library and screening data are shown
in Supplementary Figure S1. The ‘optimal coding’ represents the predicted optimal state of each factor, used to build the optimal construct from the full
factorial library (evaluated in Figure 3A).
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Figure 3. Improvement in 6-ACA production and exploration of the local fitness landscape. (A) Quantification of 6-ACA production for the starting
construct (eAKP672, Figure 1B), the optimal coding one determined from the 29-4 library (Figure 2C) and the optimal coding one co-expressed with
an extra copy of askF or kdcA. The eAKP672 strain was measured in TB and the optimal coding ones were in TB with the additional nutrients Vit B1
and MgSO4. In addition to the final product, the amount of an intermediate metabolite (AKP) and an undesired byproduct (AA) were quantified. The
error bars are representative of three measurements performed on different days and are calculated for the 6-ACA titers only. (B) The expression level
was varied for AksF by changing the promoter. Data were generated for cells grown in the optimized media (circles) and TB (triangles). The lines were
drawn to guide the eye. The x-axis is the activity of the promoter, as measured using a fluorescent reporter (Supplementary Figure S4D). The red points
show high expression levels that could only be achieved by including an additional plasmid carrying a second copy of the gene (see text and Materials
and Methods). Error bars in both the y- and x-directions were calculated as the standard deviation of three experiments performed on different days. The
promoter activities used for the x-axis were determined using a fluorescent reporter. The promoters were characterized in both media (Supplementary
Figure S2). (C) The data and format are as described in part b, except the gene being controlled is kdcA.

response curve is the quadratic polynomial

Y = β0 +
∑9

i=1
βi xi +

∑9

i=1

∑8

j=i+1
βi j xi xj (1)

where Y is the predicted titer and xi is the state [1, −1] of
factor i. The β are fit parameters that are obtained via a
least squares regression method and are listed in Supple-
mentary Table S3. An ANOVA analysis was performed on
the quadratic model, which determined it to be statistically
significant (� = 0.05, P < 0.0001, F value = 35) (Materials
and Methods and Supplementary Table S4).

From this analysis, the presence of Vit B1 (X8) has the
strongest positive effect on titer (β = 1.06). This media
component relates to KdcA activity by serving as precursor
to its catalytic cofactor TPP. This points to KdcA activity
as the bottleneck of the pathway. Using the parameterized
Equation (1), the predicted titer can be calculated for each
factor to estimate its impact across the library as that factor
is changed (red lines in Figure 2C). This calculation is per-
formed for each factor by changing it between the high and
low states while holding the values of the remaining factors
to their states predicted to achieve the maximal titer. This is
normalized by dividing by the maximum predicted titer. In
essence, this is looking at the shape of the search landscape
around the predicted optimum within the library. This anal-
ysis shows that the strongest negative correlations with titer
are nifV, askF and Fe3+/C.

The regression model predicts a genetic system and media
composition that is optimal for 6-ACA production amongst
the 512 binary possibilities. The predicted pattern of pro-
moter activities is [−1, −1, −1, +1, +1, +1] and the me-
dia is supplemented with Vit B1 and Mg2+. We built the
associated construct and evaluated it in this media compo-

sition. This strain and media combination yielded 48.0 mg/l
of 6-ACA, which is ≈5-fold higher than that of eAKP672
and is close to that predicted by Equation (1) (46.6 mg/l)
(Figure 3A). Further, we measured the presence of a pre-
cursor that accumulates in the eAKP672 strain (AKP) and
this decreased from 31 to 6 mg/l, which is consistent with
increased KdcA activity. Note that this construct is not in-
tended to be the final optimized system; this would need
to be obtained by fine-tuning expression using the analysis
as a guide. Rather, this validates the approach and predic-
tive power of the model built with incomplete information.
Starting with the optimal construct and media formulation,
we then sought to determine how changes in the expres-
sion of KdcA and AksF further impact the accumulation
of intermediates. To do this, we overexpressed these genes
and measured the accumulation of AKP and AA (Figure
3A). The overexpression of KdcA reduces AKP (1.8 versus
6 mg/l). This further supports the conclusion that KdcA is
the bottleneck of the pathway.

Comparison with full factorial analysis under one media con-
dition

We compared the above predictions with those that are ob-
tained by only varying the genetic factors and screening in a
single media composition. Considering only the six genetic
factors, the full factorial library consists of 26 = 64 con-
structs. The complete library was built (Supplementary Fig-
ure S1) and tested in TB media. The resulting titers ranged
from 9.7 to 19.4 mg/l. The library was analyzed identically
as before and fit to a version of Equation (1) containing pa-
rameters for the six factors (Supplementary Tables S3 and
S5). The normalized titers were calculated for each of the
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factors and compared to those determined from the 29-4 li-
brary (black lines in Figure 2C). For some factors, oppo-
site slopes are predicted by the analysis of the two data sets.
This leads to different predictions in the directions that the
expression levels should change to further optimize the sys-
tem. For example, when media changes are not considered,
AksF should be decreased, but if media can change then it
should increase. Thus, co-varying both media and genetic
changes is critical to accurately guide the next constructs to
build.

The opposite signs for some model parameters also infer
different curvatures in the expression search space (Supple-
mentary Table S3). For example, when considering AksF, �3
= –0.08 when media is varied and �3 = 0.08 when it is not.
To explore this effect, we expanded the expression space in
one dimension for AksF and the enzyme participating in the
rate-limiting step (KdcA). Starting with cluster #4, which
ranked high in both of the libraries, two new libraries were
made where promoters that span a large range of expression
were used to control these two genes (Supplementary Table
S1 and Figure S2). Because the starting construct is close
to the strongest promoter in the library, higher expression
levels were obtained by introducing another plasmid copy
of either aksF or kdcA (Supplementary Figure S4C). The li-
brary was characterized both in TB and the +Vit B1/+Mg2+

media. For AksF, an optimum level of expression appears
in the +Vit B1/+Mg2+ media (Figure 3B). In contrast, there
is no optimum when measured in TB and higher expression
outside of the range studied is predicted to lead to higher
titers. Similarly, the titer is flat for a wide range of KdcA
expression in the +Vit B1/+Mg2+ media, but in TB the titer
decreases at high levels of expression (Figure 3C). The flat-
ness of this expression profile could have implied endoge-
nous background activity in E. coli. However, when kdcA is
not included at all in the construct, no activity is observed.
The decrease in titer when KdcA is overexpressed without
Vit B1 could be due to substrate sequestration by the pres-
ence of inactive apo-enzymes.

DISCUSSION

Until recently, strain engineering––including genome mod-
ifications and DNA construction/integration––has been a
slow process. Thus, the development time for strains was
much larger than the time required to implement a screen
(20,24). This mismatch has led to the paradigm in industry
of separating these steps such that a library of strains is built
and screened under a single set of conditions and the top
variants progress to media and process development (1,4).
Because of investment in strain engineering technologies, it
is increasingly common for genetic engineers to have access
to pipelines that can build 104+ per week. Further, these
modification have become more rationally guided with im-
provements in computer aided design (44), DNA assem-
bly (45,46) and a decline in DNA sequencing cost. Previ-
ously, libraries of similar size relied on random methods
and many of the genetics of variants that did not survive the
screen were unknown. These changes bring the time scale of
strain construction closer to the time scale for screening and
this challenges the current development paradigm (25,47).
Some process variables can be tested in high-throughput as-

says, such as media composition, temperature, pH, aeration
and feed (e.g., glucose/O2) rates. Others are lower through-
put, especially with regards to scale-up, and will continue to
be performed as a separate step.

High-throughput strain construction also enables more
exploratory experiments, rather than every construct being
an attempt to improve titer. Such exploration is an essential
principle of DOE and is a common approach in bioprocess
development (7,48), but this has not been applied to genetic
engineering. The co-variation of genetic and process factors
allow for interdependencies to be discerned early. For the 6-
ACA pathway, our initial screening data would have led to
the construction of a strain that would have turned out to be
suboptimal after optimizing the media. There is essentially
no correlation in the titers produced by the strains in the
two data sets. This would have misguided the engineer as to
the direction that the expression levels should be balanced
in designing the next generation of constructs.

Advances in DNA construction have made it possible to
build far more constructs than can be effectively screened
and as the price declines, screening becomes increasingly
infeasible. Here, we present an approach to aid the search
of this space by guiding the construction of a subset of de-
signs that maximize the information that can be gleaned
from a screen. Part of the approach is in the organization
of the genetic system itself. This involves building as mod-
ular of a system as possible, where insulating parts are se-
lected to decouple the expression levels between enzymes.
The co-development of search algorithms and genetic sys-
tems designed to be searched will be a powerful tool in strain
development.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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