
RESEARCH ARTICLE

Structure-Bioactivity Relationship for
Benzimidazole Thiophene Inhibitors of Polo-
Like Kinase 1 (PLK1), a Potential Drug Target
in Schistosoma mansoni
Thavy Long1,2¤*, R. Jeffrey Neitz1,3,4, Rachel Beasley5, Chakrapani Kalyanaraman4, Brian
M. Suzuki1,2¤, Matthew P. Jacobson4, Colette Dissous6, James H. McKerrow1,2¤, David
H. Drewry7, William J. Zuercher7, Rahul Singh1,5, Conor R. Caffrey1,2¤*

1 Center for Discovery and Innovation in Parasitic Diseases, University of California, San Francisco, San
Francisco, California, United States of America, 2 Department of Pathology, University of California, San
Francisco, San Francisco, California, United States of America, 3 Small Molecule Discovery Center,
Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California,
United States of America, 4 Department of Pharmaceutical Chemistry, University of California, San
Francisco, San Francisco, California, United States of America, 5 Department of Computer Science, San
Francisco State University, San Francisco, California, United States of America, 6 Center of Infection and
Immunity of Lille, Université Lille Nord de France, Inserm U1019, CNRS-UMR 8204, Institut Pasteur de Lille,
Lille, France, 7 Department of Chemical Biology, GlaxoSmithKline, Research Triangle Park, North Carolina,
United States of America

¤ Current address: Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy
and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, United States of
America
* tlong@ucsd.edu (TL); (ccaffrey@ucsd.edu) (CRC)

Abstract

Background

Schistosoma flatworm parasites cause schistosomiasis, a chronic and debilitating disease

of poverty in developing countries. Praziquantel is employed for treatment and disease con-

trol. However, its efficacy spectrum is incomplete (less active or inactive against immature

stages of the parasite) and there is a concern of drug resistance. Thus, there is a need to

identify new drugs and drug targets.

Methodology/Principal Findings

We show that RNA interference (RNAi) of the Schistosoma mansoni ortholog of human

polo-like kinase (huPLK)1 elicits a deleterious phenotypic alteration in post-infective larvae

(schistosomula or somules). Phenotypic screening and analysis of schistosomula and adult

S.mansoni with small molecule inhibitors of huPLK1 identified a number of potent anti-

schistosomals. Among these was a GlaxoSmithKline (GSK) benzimidazole thiophene inhib-

itor that has completed Phase I clinical trials for treatment of solid tumor malignancies. We

then obtained GSKs Published Kinase Inhibitor Sets (PKIS) 1 and 2, and phenotypically

screened an expanded series of 38 benzimidazole thiophene PLK1 inhibitors.
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Computational analysis of controls and PLK1 inhibitor-treated populations of somules dem-

onstrated a distinctive phenotype distribution. Using principal component analysis (PCA),

the phenotypes exhibited by these populations were mapped, visualized and analyzed

through projection to a low-dimensional space. The phenotype distribution was found to

have a distinct shape and topology, which could be elicited using cluster analysis. A struc-

ture-activity relationship (SAR) was identified for the benzimidazole thiophenes that held for

both somules and adult parasites. The most potent inhibitors produced marked phenotypic

alterations at 1–2 μMwithin 1 h. Among these were compounds previously characterized

as potent inhibitors of huPLK1 in cell assays.

Conclusions/Significance

The reverse genetic and chemical SAR data support a continued investigation of SmPLK1

as a possible drug target and/or the prosecution of the benzimidazole thiophene chemotype

as a source of novel anti-schistosomals.

Author Summary

Just one drug is available to treat schistosomiasis, a parasitic disease that affects hundreds
of millions of people in developing countries. In the search for new drugs and drug targets,
therefore, we have been interested in the schistosome version of human polo-like kinase
(huPLK)1, an enzyme with critical functions in cell division. We used RNA interference to
knock down messenger RNA for the SmPLK1 –the Schistosoma mansoni parasite’s version
of huPLK1. This interference caused disruptive changes in the morphology of the imma-
ture ‘somule’ stage of the parasite, indicating that SmPLK1 is an important protein for sur-
vival. We then purchased, or acquired from GlaxoSmithKline (GSK), various small
chemical inhibitors of huPLK1 and tested these against both the somules and adult para-
sites in culture. Many of these inhibitors caused severe changes in the parasite and, for
somules, the differences could be computationally mapped and distinguished from unex-
posed parasites. For the GSK inhibitors, we observed ‘somule-adult bioactivity clustering,’
that is, chemicals active against the adults were also active against somules. This suggests
that certain chemical attributes in the inhibitors are being favoured. Interestingly, many of
the GSK inhibitors most active against the parasite are also known to both potently inhibit
huPLK1 and kill cancer cells. Overall, our data suggest that SmPLK1 is a possible drug tar-
get and that the GSK chemistries could form the basis for developing a new drug to treat
schistosomiasis.

Introduction
Flatworm parasites of the Schistosoma genus are responsible for schistosomiasis, a chronic and
often painful disease of poverty that affects more than 200 million people worldwide [1–3]. For
over 35 years, treatment and control of this disease has relied on a single drug, praziquantel
(PZQ) [4–6]. Apart from the concern over the possible emergence and establishment of resis-
tance to this drug in the field [4, 7–9], PZQ has a number of other problems that encourage the
search for alternate drugs. It is rarely curative at the single dose employed [10, 11] in part due
to its rapid metabolism [12, 13], and the dose used is consequently high (40 mg/kg) relative to
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other oral anthelmintics and medications in general. Importantly, PZQ has diminished or no
efficacy against developing schistosomes [14–16]. Finally, the drug has an unpalatable taste
[17].

Efforts continue to identify and develop small synthetic compounds or natural products as
anti-schistosomal drugs, e.g., [18–21]. In the hope of decreasing both the time and cost associ-
ated with developing drugs, researchers have also looked to either reposition registered drugs
‘as is,’ or use drugs or drug candidates as starting points for further chemical exploration and
development [20, 22–25]. In this context, various anti-cancer small molecules, including those
targeting components of the kinome [26] have been the subject of recent interest as potential
anti-schistosomal drugs [24, 27–29]. Of these, a number of polo-like kinase (PLK) inhibitors,
that either target the ATP-binding site [30–34] or the unique Polo-box domain [35, 36], have
attracted our interest (see below) as a number of these are progressing pre-clinically or clini-
cally as anti-cancer agents (S1 Table).

S.mansoni has just two PLK genes, Smplk1 and Smsak (Smplk4) (GenBank IDs AAV49163
and GU084154, respectively), which is in contrast to the five found in humans [37–39]. PLKs
are a family of conserved serine/threonine kinases, which, in humans, are involved in cell divi-
sion, including G2/M transition, centrosome maturation, formation of bipolar spindles, cytoki-
nesis and regulation of the spindle assembly checkpoint [40–43]. Plk1 is the best characterized
member of the family and is vital to normal mitotic progression [40, 41, 44–46]. Its over-
expression in human tumors [47–49] has identified this kinase as a selective target for anti-can-
cer drugs.

In S.mansoni, SmPLK1 is expressed in sporocysts (asexually dividing stages parasitizing the
snail vector) and in adult worms, particularly in their reproductive organs, suggesting a contri-
bution by this kinase to cell division [39]. The huPlk1 inhibitors, GW843682X and BI2536, are
nanomolar inhibitors of SmPLK1 when the enzyme was expressed in Xenopus oocytes [39].
BI2536 also decreased the number of immature oocytes relative to mature oocytes in the female
reproductive organs; in males, the size of testicular lobes and the number of spermatocytes
were reduced [39]. Interestingly, SmSAK, which shares 37% and 13% identity in the kinase and
polo-box domains, respectively, is not inhibited by BI2536 suggesting that the inhibitor is selec-
tive for SmPLK1 [39].

Using RNA interference (RNAi), we show that SmPLK1 and less so, SmSAK, are important
to the normal development and survival of S.mansoni schistosomula (post-infective larvae, a.
k.a. somules) in culture. Based on this finding, we then tested 11 clinically tracked inhibitors of
huPLK1 for bioactivity on somules and adult parasites in vitro. One of these, a phase I clinical
candidate benzimidazole thiophene inhibitor from GlaxoSmithKline (GSK), was bioactive at
low micromolar concentrations. This inhibitor served as a starting point for a phenotypic
screen of 38 benzimidazole thiophene analogs contained within GSKs Published Kinase Inhibi-
tor Sets (PKIS) 1 and 2 [50–53]. We identify a structure-activity relationship (SAR) for this
inhibitor set that is shared between somules and adult parasites, and we discuss our findings
with a view to the possible future development of this compound class as a source of novel
anti-schistosomals.

Materials and Methods

Ethics statement
Maintenance and handling of vertebrate animals were carried out in accordance with a proto-
col (AN107779) approved by the Institutional Animal Care and Use Committee (IACUC) at
the University of California San Francisco. UCSF-IACUC derives its authority for these
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activities from the United States Public Health Service (PHS) Policy on Humane Care and Use
of Laboratory Animals, and the Animal Welfare Act and Regulations (AWAR).

Parasite material
A Puerto Rican isolate of Schistosoma mansoni was maintained by passage through albino
Biomphalaria glabrata snails and infection of 3–5 week-old, femaleMesocricetus auratus
Golden Syrian hamsters [54, 55]. Cercariae (infectious larvae) were obtained from infected
snails and mechanically transformed into somules as previously described [20, 56, 57]. To
obtain adult schistosomes, hamsters were euthanized 42–45 days post-infection using an intra-
peritoneal injection of 50 mg/kg sodium pentobarbital containing 50 U/ml heparin (as an anti-
coagulant) in a total of 100 μL PBS. Worms were harvested by reverse perfusion of the hepatic
portal system [54, 55, 58] in RPMI 1640 medium supplemented with 100 U/ml penicillin and
100 mg/ml streptomycin [54, 55]. Adults were transferred into Basch medium 169 [59] supple-
mented with 100 U/ml penicillin and 100 mg/ml streptomycin. In this medium, parasites were
washed three times, allowed to stand for 30–60 min in the presence of 2X amphotericin B (fun-
gizone) and then washed another three times in medium minus fungizone prior to phenotypic
screening.

Double-stranded (ds)RNA synthesis
Two dsRNA fragments, SmPLK1RNAi (358 bp) and SmPLK2RNAi (498 bp), that target the
regulatory domain of the Smplk1 gene transcript were generated by PCR using gene-specific
primers containing a T7 promoter sequence (S2 Table) and the plasmid, SmPLK1-pcDNA3.1,
as a template [39]. A similar strategy was employed for SmSAK-dsRNA, whereby two frag-
ments of 722 bp and 473 bp were amplified from a SmSAK-pcDNA3.1 plasmid construct [37].
DsRNA synthesis employed the MEGAscript RNA Kit (Ambion) according to the manufactur-
er’s instructions. DsRNA was purified by precipitation with 3 M sodium acetate (pH 5.2) and
ethanol, resuspended in dH2O, and quantified using a Nanodrop ND-1000 spectrophotometer
(Nanodrop Technologies). The integrity of the dsRNA was confirmed by 1% agarose gel elec-
trophoresis. DsRNA to the fluorescent Discosoma sp. mCherry protein was generated as a
schistosome-unspecific control [20, 57].

RNAi experiments
Co-incubation of somules with dsRNA was as described previously [20, 57]. Briefly, 300
somules were maintained at 37°C and 5% CO2 in 24-well plates (Corning Inc., 3544) contain-
ing 1 ml ‘complete’ Basch medium 169 supplemented with 100 U/ml penicillin, 100 mg/ml
streptomycin and 5% FBS. DsRNA (30 μg/ml in 10–20 μl water) targeting SmPLK1, SmSAK or
mCherry was added to the parasite cultures twice weekly out to 22 days. Cultures were
observed daily for the appearance of phenotypes and experiments were performed twice each
in duplicate.

To measure changes in gene expression as a consequence of RNAi, somules were co-incu-
bated with the above dsRNA preparations for seven days. Experiments were performed twice
each in duplicate. Parasites were then processed for reverse transcription-quantitative real time
PCR (RT-qPCR) as described [20, 57].

RNA isolation and gene expression analyses
These analyses were performed as described [20, 57, 60]. For RT-qPCR, total RNA was
extracted using TRIzol reagent (Invitrogen) and the High Pure RNA Isolation Kit (Roche)
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following the manufacturer’s instructions. Complementary (c) first-strand DNA was synthe-
sized using the SuperScript III First-Strand Synthesis kit (Invitrogen). cDNA was then used as
a template for PCR amplification using the Light Cycler 480 SYBR green I Master mix (Roche)
and a Mx3005P qPCR detection system (Stratagene). Specific primers for each of the regulatory
and kinase domains of SmPLK1 and SmSAK, and for mCherry were designed using the Primer
Express Program (Applied Biosystems; see S2 Table). Primers were experimentally validated
and S.mansoni cytochrome C oxidase I (GenBank AF216698) was used as the reference tran-
script. Reactions were carried out in a final volume of 20 μl in 96-well plates (QPCR 96-Well
Plates, Non-Skirted, Agilent Technologies). Experiments were performed twice each in dupli-
cate. The 2-ΔΔCt method [61] was employed to measure transcript levels post-RNAi and these
were expressed as a percentage of those following exposure to mCherry dsRNA. Statistical
analysis employed the two-tailed Student’s t-test. Quantification of mRNA from cathepsin
B1.1 (AJ506157) was used as bystander control to monitor for off-target RNAi effects. Controls
for genomic DNA contamination (no reverse transcriptase) and reagent purity (water control)
were included for each sample.

Phenotypic screening of somules and adults in vitro with small molecule
inhibitors of huPLK1
Eleven inhibitors of huPLK1 were purchased. Of these, BI2536, BI6727, HMN-214 and
MLN0905 were sourced fromMedChemExpress; GSK461364, GW843682X, ON01910 and
TAK960 were from AdooQBioScience LLC; thymoquinone was from Sigma, and poloxin and
SBE13 were fromMillipore. Inhibitors were dissolved in dimethyl sulfoxide (DMSO) at 10 or
20 mM stock concentrations which were stored at -20°C. A set of 38 benzimidazole thiophenes
were also sourced as part of GSK’s Published Kinase Inhibitors Set (PKIS) 1 and 2 as 10 mM
(10 μl) stocks in DMSO.

Phenotypic screens involving S.mansoni somules and adults were carried out as described
[20, 21, 55, 62]. For somules, approximately 300 newly transformed parasites were dispensed
into flat-bottomed 96-well plates in 100 μL complete Basch medium (Corning Inc., cat. #
3599). Compound was then added in a volume of 1 μl DMSO and the final volume brought up
to 200 μL with complete Basch medium. Parasites were then incubated for up to two days at
37°C under 5% CO2. First pass, single concentration screens at 10 μMwere performed and
those compounds eliciting phenotypes were then re-screened over a concentration range of
0.5–10 μM (0.5% DMSO final).

For adult schistosomes, single concentration (10 μM) screens were performed in 24-well
plates (Corning Inc., cat. # 3544) using five male worms per well in a final volume of 2 ml com-
plete Basch medium. Compound was added in a volume of DMSO ranging from 0.5 to 2 μL.
Those compounds eliciting phenotypes within 48 h were then re-screened over a concentration
range of 1–10 μM.

Automatic differentiation of the phenotypic response of somules
In the recent past, important advances have been made in algorithmic (automatic) phenotype
analysis of somules; analogous methods do not yet exist for the adult stage of the parasite. In
particular, methods have been developed for parasite segmentation [63–65], parasite tracking
from video recordings [66] and quantitative identification of helminth phenotypes [63, 67],
including for hit detection in high-throughput screens [68] and dose-response characterization
[69]. As yet, however, no automated method exists for identification of phenotypes and simul-
taneous determination/scoring of their severity. Therefore, we combined automated pheno-
typic analysis with manual phenotype assessment in an integrated analysis process and applied
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it to analyze the phenotypes arising from exposure of the parasites to the commercially avail-
able inhibitors and the PKIS 1 and 2 inhibitors.

We began by automatically clustering the unaffected and affected juvenile parasites based
on their differential phenotypic response. The existence of such a clustering and the fact that it
could be identified without manual intervention, not only provided a rigorous and objective
basis for the subsequent expert analysis, but also allowed us to quantify and visualize the phe-
notypic response space of the parasite.

For the above automated analysis, photographic images were taken at each time point and
compound concentration using a Zeiss Axiovert 40 C inverted microscope and a Zeiss Axio-
CamMRc digital camera controlled by AxioVision 40 (version 4.8.1.0) software, as previously
described [20, 55, 69]. The images were segmented (i.e., individual parasites were differentiated
from background) using the Asarnow-Singh segmentation algorithm [64], to yield a total of
4,125 parasites (1,047 control and 3,078 drug treated) across the entire study. Subsequently, 11
descriptors were calculated for each segmented parasite. These descriptors included parasite
area, length of the perimeter of the parasite, ratio of the major to the minor axis of the parasite
body, ratio of the area of the parasite body to the area of its bounding box and a set of descrip-
tors capturing the visual appearance of the parasite in terms of its intensity and texture. The
parasite intensity was described using the mean and variance of the intensity distribution (we
used the standard deviation as the specific numeric measure). Texture was described using
Grey-Level Co-occurrence Matrices (GLCM), which capture how often two intensities occur
side by side, and the following five descriptors (described further in Table 1): entropy, contrast,
correlation, energy and homogeneity, which are computed on a normalized co-occurrence
intensity matrix I(i, j). Further details on these descriptors as applied to parasitic screening can
be found in [67].

Defining and determining the severity of the phenotypic response by
microscopical observation
The ‘traditional’ approach to adjudicating the many phenotypic responses possible for this par-
asite involves microscopical observation. We use simple ‘descriptors’ to record changes in
movement, shape, translucence, surface integrity and, for adults specifically, the ability of the
parasite to adhere to the culture dish surface (see S1 File and [20, 55, 70]). To convert these
observations into an ordinal numeric output and thus facilitate relative comparisons of com-
pound effects, each descriptor was awarded a ‘severity score’ of one up to a maximum score of
four. When damage to the adult parasite’s tegument (surface) was evident, the maximum score
of four was awarded on the assumption that such damage is lethal to the parasite, including in
the mammalian host [14]. In the case of somules, phenotypes were recorded at 24 and 48 h; for
adults, phenotypes were recorded at 1, 5, 24 and 48 h.

Table 1. Phenotype descriptors to quantify parasite texture.

Entropy �Pn�1

i¼0

Pn�1

j¼0

Iði; jÞlogðIði; jÞ Statistical measure of randomness related to the texture of an
image.

Contrast Pn�1

i¼0

Pn�1

j¼0

ði � jÞði � jÞIði; jÞ The intensity contrast between a pixel and its neighbors in a region
of the image.

Correlation Pn�1

i¼0

Pn�1

j¼0

ði�mi Þðj�mj ÞIði;jÞ
sisj

Measure of the linear dependency between the intensity values of
pixels at particular positions relative to each other.

Energy Pn�1

i¼0

Pn�1

j¼0

Iði; jÞIði; jÞ The sum of the squared elements in the GLCM (gray-level co-
occurrence matrix).

Homogeneity Pn�1

i¼0

Pn�1

j¼0

Iði;jÞ
1þji�jj

Measure of the closeness of the distribution of the elements in the
GLCM to the GLCM diagonal.

doi:10.1371/journal.pntd.0004356.t001
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Molecular modeling of the ATP-binding site of SmPLK1
To understand whether residues in the SmPLK1 ATP-binding site will accommodate the
human benzimidazole thiophene PLK1 inhibitors, we built a homology model of SmPLK1
from the human ortholog’s structure (PDB ID: 2YAC). The homology model was constructed
using the software PRIME (v.3.9; Schrödinger Inc). GSK benzimidazole thiophene inhibitors,
GSK461364, GSK1030058, GSK326090 and GSK483724 were built using Maestro’s Edit/Build
panel (v.10.1; Schrödinger Inc). LigPrep (v.3.3; Schrödinger Inc.) was used to minimize the
ligand structures. We docked the ligands using Glide (v.6.6; Schrödinger Inc.) with the stan-
dard-precision docking scoring function. To compare the docking mode of the ligand
GSK461364, we also docked it against the human PLK1 structure. Similarity between the dock-
ing poses was determined by evaluating the root-mean-square-distance (RMSD) of heavy
atoms.

Results

RNAi of SmPlk1 and SmSAK induces abnormal phenotypes in S.
mansoni somules
To evaluate whether SmPLK1 and SmSAK are important to the growth and/or survival of S.
mansoni somules, we co-incubated the parasite with dsRNA targeting the respective gene tran-
scripts. Parasites were exposed to 30 μg/ml dsRNA targeting the regulatory polo-box domain
and the cultures observed every day for 22 days (Fig 1). In the presence of SmPLK1-dsRNA,
rounding and darkening of the parasite were evident (Fig 1A, panel 2). Similar, but less pro-
nounced, changes were also observed after co-incubation with SmSAK-dsRNA (Fig 1A, panel
3). After 22 days in culture, 32% and 16% of the somules exposed to SmPLK1- and SmSAK-
specific RNAi, respectively, had been affected (Fig 1B). Quantification of RNAi was performed
by RT-qPCR analysis of transcripts in parasites after seven days of incubation with the respec-
tive dsRNA preparations. These experiments indicated that expression of Smplk1 and Smsak
was decreased by 92.5 and 64.5%, respectively (Fig 1C). Expression of Smcb1, which we use as a
‘bystander’ gene to assess off-targeting by the dsRNA preparations of interest [20, 57] was not
altered in the experiment. For adult parasites, we previously attempted RNAi of SmPLK1 via
electroporation of 25 μg dsRNA but observed no phenotype after 5 days in culture [37].

Differential phenotypic distribution of the control and treated parasite
populations
We investigated the distribution of the phenotypes exhibited by the somules upon exposure to
the 11 commercially available huPLK1 inhibitors and the 38 benzimidazole thiophene inhibi-
tors available in PKIS 1 and 2. It may be noted that in phenotypic assays, it is common to
observe differentiated responses of somules (and adult parasites) when exposed to drugs, even
within a single well. This phenomenon can be due to natural variation of individuals, low drug
concentration, or insufficient duration of exposure to the compound. The fact that schistosome
clones do not exist, typically exacerbates phenotypic variability. The algorithmic analysis car-
ried out in this paper highlights this issue through automated quantitative analysis.

We employed cluster analysis to determine whether the unaffected and affected parasites
could be automatically differentiated. For this purpose, based on the 11 computational descrip-
tors of shape and appearance described earlier, each of the 4,125 parasites, identified after auto-
matic segmentation, was represented as a point in an 11-dimensional phenotype (feature)
space. To reduce dimensionality, we then projected the data to a lower dimensional feature
space while retaining its variance, using principle component analysis (PCA). We mapped the
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data to a 6-dimensional PCA space, in which 95% of the variance in the data was accounted
for. Next, we performed automatic clustering of the data using the k-means algorithm [71]
(with the parameter k = 2, corresponding to the intuitive notion of separating the affected and
unaffected parasites) to establish whether the phenotypes exhibited by the drug-treated para-
sites could be separated from those exhibited by controls. The clustering results produced two
clear data groups (Fig 2). The first group formed a near compact core and corresponded to par-
asites from the control images (blue points) and also included parasites exposed to compounds
that did not exhibit significant phenotypic changes, i.e., were similar to controls (green points).
The second group was distributed around this core cluster and consisted of parasites that

Fig 1. RNAi of SmPLK1 induces phenotypic changes in cultured S.mansoni somules. A. Somules were co-incubated for 22 days with dsRNA targeting
(1) the non-schistosomemCherry protein as a control, (2) Smplk1 or (3) Smsak. One representative image for each of the conditions is shown. Arrows point
to degenerate parasites. Scale bar = 100 μm. B.Graph showing the percentage of degenerate worms. After 22 days of treatment, somules were counted by
eye and those that were degenerate determined as a percentage of the total number of worms. Results are displayed as the mean +/- SD of two independent
experiments each performed in duplicate (*p<0.05; **p� 0.0005).C.Quantification of transcripts by RT-qPCR. Somules were co-incubated for seven days
with dsRNA targeting transcripts of smplk1 or smsak and using dsRNA to mCherry protein as a non-schistosome control. For qPCR, S.mansoni cytochrome
C oxidase I was used as a reference gene. S.mansoni cathepsin B1 Smcb1was used as a “bystander” gene to assess off-targeting by the dsRNA
preparations of interest. Data are expressed using the 2-ΔΔCt method as described in the Material and Methods: values represent the mean +/- SD of two
independent experiments each performed in duplicate (*p<0.005; **p<0.001).

doi:10.1371/journal.pntd.0004356.g001
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exhibited various phenotypic changes in their shape or appearance as a result of drug exposure
(red points). Some of the parasites from the control images were also placed in this cluster due
to naturally occurring degeneracies. Examples of individual parasites belonging to the different
groups are presented in S1 Fig.

Phenotypic screening of 11 commercially available Plk1 inhibitors
All of the inhibitors eliciting phenotypic changes in the parasite as determined visually did so
in a concentration- and time-dependent manner (Fig 3 for severity scores and S1 File,

Fig 2. Differential distribution of parasites in terms of their shape- and appearance-based phenotypes as demonstrated by clustering. To enable
visualization, the clustering results from the six-dimensional principal component analysis (PCA) space are mapped to a two-dimensional PCA space where
the X-axis corresponds to the first PCA component and the Y-axis corresponds to the second PCA component. Control parasites are shown in blue.
Parasites that were co-clustered with the controls but had been exposed to compounds are shown in green. These parasites did not exhibit significant
phenotypic changes as a result of compound exposure and were consequently very similar to the control parasites. Parasites that had been exposed to
compound and exhibited significant changes in their phenotypes are shown in red. A small number of control parasites (blue coloured “+” symbols) exhibited
naturally occurring degeneracies and were placed outside the control cluster by the algorithm. Both the differential distribution and separability of the
phenotypes exhibited by the control parasites from those exhibited by the treated parasites are obvious.

doi:10.1371/journal.pntd.0004356.g002
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worksheets 1–3 for both the descriptors and severity scores). The ATP-competitive dihydrop-
teridinone inhibitor, BI2536, and its successor BI6727, which displays improved pharmacoki-
netic, efficacy and safety profiles [72–74], were similarly active against adults and somules
whereby phenotypic alterations were first noted at 5 μM after 24 h. The ATP-competitive benz-
imidazole thiophenes, GSK461364 and GW843682X, diverged in their relative potencies. The
former was much more active against both developmental stages, particularly the somules, for
which the inhibitor was the most potent of 11 inhibitors tested (multiple phenotypic changes
noted at 1 μM after 24 h). This is perhaps not surprising, as GW843682X was an early tool mol-
ecule with modest cellular activity, whereas GSK461364 was a clinical candidate [51–53, 75,
76]. The natural product, thymoquinone, and its synthetically derived analog, poloxin, both of
which target the unique polo-box domain of huPLK1 [77], were also potent anti-schistosomals:
thymoquinone exerted preferential activity against adults (a severity score of 2 at 5 μM after 5
h). The other five inhibitors (ON01910, MLN0905, HMN-214, TAK960 and SBE13) displayed
little to no activity (severity scores of 1–2 only after 48 h).

Fig 3. Phenotypic alterations in S.mansoni upon exposure to 11 commercially available human PLK1 inhibitors. Phenotypic alterations, expressed
as severity scores (see Materials and Methods), were observed as a function of dose (1–10 μM) and time (up to 48 h). Severity scores ranged from 0 (no
effect) to a maximum of 4. S1 File (worksheets 1 and 2) lists the descriptors that determine the severity scores calculated (worksheet 3).

doi:10.1371/journal.pntd.0004356.g003
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Phenotypic screening of 38 benzimidazole thiophene inhibitors
For both somules and adults, Fig 4 depicts a snapshot of the severity scores as a function of
time and concentration for the 38 benzimidazole thiophenes found within GSKs PKIS 1 and 2.
The complete data set (descriptors and severity scores) is provided in S1 File (worksheets 4–6).
For the bioactive compounds, the most common phenotypic response noted for adult parasites
involved overactive uncoordinated movements whereby the parasites displayed rhythmic
movements being unable to adhere to the bottom of the culture well. For some compounds, e.
g., GSK1030058A and GSK579289A, this response appeared rapidly (within 1 h) at 1 or 2 μM.
The uncoordinated response generally progressed during the two day incubation period to
include a loss of translucency (darkening) sometimes accompanied by worm shrinkage, each of
which increased the overall severity score. For the 21 benzimidazole thiophenes present only in
the PKIS 1 and screened previously against adults [29] under assay conditions described earlier
[78], 14 bioactive compounds were shared (see S1 File worksheets 4 and 6).

For somules, concentration- and time-dependent changes in the parasites were also evident
of which over-activity and a general darkening and rounding of the parasite were the most
common. For the most potent compounds, multiple phenotypic changes were noted at 1 μM

Fig 4. Phenotypic alterations in S.mansoni upon exposure to GSK’s benzimidazole thiophene PLK1 inhibitors. Phenotypic alterations, expressed as
severity scores (see Materials and Methods), were observed as a function of dose (1–10 μM) and time (up to 48 h). Severity scores ranged from 0 (no effect)
to a maximum of 4. A selection of data for those most potent inhibitors is presented. The full dataset, including descriptors for the 38 compounds tested, is
presented in S1 File, worksheets 4–6).

doi:10.1371/journal.pntd.0004356.g004
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by the first time-point of 24 h. For some compounds at 48 h, internal disruption was evident by
the appearance of multiple ‘vacuoles’ (e.g., GSK483724A; and GSK641502A; S2 Fig).

Also evident from Fig 4 and S1 File is a clustering of active and inactive benzimidazole thio-
phenes for both adults and somules (SAR detailed below) with some exceptions. This clustering
may indicate a shared target(s) and/or mechanism(s) of action between both developmental
stages which would be encouraging from the point of view of developing a compound that pos-
sesses bioactivity across the entire developmental cycle of the parasite in the mammalian host.

Detailed SAR
S1 File should be used to adjudicate the SAR. The predominant substituents at R1, R2 and R3 for
the 38 available benzimidazole thiophenes were a 2-trifluoromethylbenzyl or 2-chlorobenzyl (21/
38 compounds), a primary amide (33/38), and a 5,6-dimethoxybenzimidazole (18/38), respec-
tively. Of 58 thiophene benzimidazoles synthesized and reported in [51], these particular R1-R3
substitutions yielded the lowest IC50 values against both the target huPLK1 enzyme (2 nM) and
the HCT116 human colon carcinoma cell line (699 nM) used to assess cellular activity.

Focusing first on the adult responses, the cut-off we assigned to indicate compound activity
was the annotation of one or more phenotypic changes at 10 μM by 24 h. With the above stated
R1 and R3 sub-structures fixed, R2 as a methyl ester (compound ID ending in 0058A), methyl
amide (0061A), dimethylamide (0062A) or primary amide (3682X and 2849X) maintained
activity against the parasite whereas the methyl ketone (0059A) was inactive. Of the R2 substi-
tutions tested, the methyl ester was the most potent with activity recorded at 2 μM after 1 h
compared to 5 or 10 μM after 24 h for the others. This is interesting in that GSK reported the
methyl ester to be essentially inactive against the huPLK1 (IC50 > 1 mM) [51]. The potent
activity against the parasite could be explained if, under these assay conditions, the ester is
hydrolyzed to the carboxylic acid which does inhibit PLK1, or if the ester is an inhibitor of an
important, but as yet unknown, target. Apart from 0058A, SAR in this area proved to be insen-
sitive to the presence or absence of hydrogen bond donors, however the loss of the polar termi-
nus, in the case of 0059A, showed that the presence of a hydrogen bond acceptor alone is not
sufficient to retain activity.

Continuing with R2 fixed as the primary amide, the presence of a methyl group at the ben-
zylic position of the terminal R1 ring system 7701A(R) and 7700A(S) improved bioactivity
compared to 2849X which does not have a methyl group in the benzylic position. The original
GSK report highlights this change as one that can enhance cellular activity [52]. Compounds
such as 7314A and 7315A with mono-methoxy benzimidazoles retained activity against the
parasite. In the context of the mono-methoxy benzimidazoles, both an ortho CF3 group
(7315A) and an ortho Cl group at R1 were active.

Focusing on R1, replacing the 2-trifluoromethylbenzyl or 2-chlorobenzyl with a 3-choro-
(thiophen-2-ylmethoxy) (8459A) retains activity at least transiently, but in the absence of the
halogen, the 2-thiophen-2-ylmethoxy alone (2948A) is inactive. Also inactive at R1 are a 2-fur-
ylmethoxy (4607A), cyclohexylmethoxy (4559A) and a 4-pyridinylmethoxy (6313A) even
when the latter has an additional bromine at position 2 (4278X). Compounds with an addi-
tional one (4925A) or two methylene linkages (5189A) extending to the terminal R1 phenyl
group are not active. Likewise, the R1 phenyl containing a 4-methyl sulfone (9979X) or the
same group at position 2 in the presence of an R2 cyano group (9347A) is inactive. Overall, the
data thus far indicate the importance of an electronegative group at R1. Perhaps there is a
columbic attraction at play in a binding pocket making this advantageous for binding.

Continuing on with a 2-trifluoromethylbenzyl or 2-chlorobenzyl and the primary amide
fixed at R1 and R2, respectively, the effects of altering (extending) R3 were pronounced and
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indeed yielded the most active compounds tested. For huPLK1, these substituents likely extend
towards solvent, and can be used to modulate solubility and other chemical properties, in addi-
tion to potency for the enzyme. Thus, with a 4-(1-methylpiperidin-4-yl)methyl at R3, the 2-tri-
fluoromethylbenzyl at R1 (6090A) was as potent as the 2-chlorobenzyl (1989A), i.e., bioactivity
was discernible at 10 μM after just 1 h. Shortening the R3 to a 4-(1-methylpiperidin-4-yl) moi-
ety (9289A) produced the most potent compound tested whereby activity was recorded at
1 μM after 1 h. Strong potency was retained by substituting the 4-pyridin-4-yl group but only
when it originated from the 6 position (3724A). Placing the same 4-pyridin-4-yl group in the 5
position (9719A) resulted in the complete loss of activity against the parasite. Compounds
0432A, 1502A, and 7232A also have substituents appended in the 5-position and they too
show little or no activity against the parasite. The current clinical candidate GSK461364 con-
taining a terminal 4-methyl piperazine was active with bioactivity detectable at 5 μM after 24 h.
Not all polar substituents in the 6 position retained activity, however. The diol 8744A, for
example, was inactive against the parasite. Finally, compound 6294A with a lipophilic t-butyl
urea substituent in the 6 position was active.

The last groups of compounds include relatively simple versions of this chemotype, with no
groups in the 5 and 6 positions of the benzimidazole. They are generally inactive against the
parasite. For example, when R1 is a 2-fluorobenzyl, 2-bromobenzyl or 4-methoxyphenyl group
(4306A, 3156A and 4304A) and there is no substitution of R3, the compounds are inactive. In
contrast, a 3-methoxyphenyl variant (4482X) at R1 was active, albeit only at 10 μM.With a
2-bromophenyl (3609X) or 2-methoxyphenyl group (3349X) at R1, R3 substitution at the 5
position with trifluoromethyl or chloro substituents, respectively, resulted in no activity,
whereas the 6-trifluoromethyl variant (3606X) possessed some activity.

With some exceptions, e.g., 2948A and 4925A, the compounds active against the adults
were also active against the somules (using the same cut-off for activity, i.e., 10 μM by 24 h).
Notable was the fact that the addition of the methyl group proximal to the terminal R1 group
enhanced activity against somules but did not greatly influence activity against adults (compare
2849X with both 7701A(R) and 7700A(S)). Lastly, neither the antinematodal benzimidazole
drug, albendazole, nor its sulfoxide metabolite, was active over the concentrations tested.

Based on the above analysis of 38 benzimidazole thiophenes in the PKIS 1 and 2 libraries,
an optimized structure emerges for further SAR: a 2-trifluoromethylbenzyl or 2-chlorobenzyl
at R1, a primary carboxamide or methyl ester at R2 and bi-aryl rings at R3 decorated with solu-
bilizing aliphatic amines. Continued exploration of the influence of halogen substitutions on
different positions of the R1 ring would be warranted to understand whether efficacy can be
improved. Also, for R2, methyl esters present pharmacokinetic (PK) liabilities and are prone to
hydrolysis in aqueous media, and, thus, would need to be avoided in favor of the primary
amide common to most of the compounds tested here. If, indeed, the methyl ester serves as a
pro-drug for an active carboxylic acid, this could be explored in more detail to optimize the
release of the acid. For R3, the bi-aryl R3 substitutions yielded a cluster of potent compounds,
including two (9289A and 3724A) that were active at 2 μM or less after 1 h, and that induced
progressively more severe phenotypic disturbances.

Similar binding pose of a benzimidazole thiophene in the ATP-binding
sites of human and schistosome PLK1
In order to assess the binding mode of the benzimidazole thiophenes, we docked a representa-
tive inhibitor, the clinical Phase I drug candidate, GSK461364, in the ATP-binding site of the
huPLK1 structure (pdb id: 2yac) and in an homology model of SmPLK1. The predicted binding
poses, shown in Fig 5A, are very similar (0.7Å heavy atom RMSD), as are the Glide-SP docking
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scores, which were -9.3 and -9.6 for the human and S.mansoni enzymes, respectively. Thus,
the data from the molecular modeling calculations suggest that the current benzimidazole thio-
phenes bind to the SmPLK1 without undue energy penalties, as observed by their similar dock-
ing scores and predict that the binding orientation will be very similar between huPLK1 and
SmPLK1. A close-up view of the GSK461364 binding to SmPLK1 (Fig 5B) shows that the
inhibitor makes hydrogen bonding interactions with Lys54 and Glu112 residues. Similar inter-
actions were also observed for GSK461364 docked to huPLK1 (not shown). Further, the dock-
ing poses of GSK461364 and three other GSK benzimidazole thiophene inhibitors
(GSK483724, GSK1030058 and GSK326090) against SmPLK1 show that the benzimidazole
thiophenes bind in the same orientation for all the inhibitors (Fig 5C).

Discussion
Reliance on a single drug to treat ‘continents’ of people afflicted with schistosomiasis encour-
ages the search for new drugs and drug targets [6, 11, 79]. RNAi has proven to be a key research
tool in this endeavor by identifying gene products that are essential to parasite survival (e.g.,
[20, 29, 57, 80, 81]). In this report, we demonstrate that RNAi of the single gene schistosome
ortholog of huPLK1 leads to degenerative changes in the morphology of S.mansoni somules.
Our findings are consistent with those very recently reported by Bickle and colleagues [29] as
are our previous unsuccessful attempts to discern phenotypes consequent on RNAi of SmPLK1
in adult schistosomes [39]. Because somules undergo major transformative changes as they
adapt to the mammalian host, it’s possible that they are more sensitive to perturbations in gene
expression than adults. With the knowledge that SmPLK1 contributes to survival and that
huPLK1 is a well-validated drug target for treatment of various cancers [30, 32, 48], we
obtained pre-clinically and clinically advanced small molecule inhibitors of huPLK1 that might
form starting points for the development of novel anti-schistosomals.

The algorithmic analysis of somule phenotypes upon exposure to the commercially available
and PKIS benzimidazole thiophenes produced two significant results. First, it demonstrated an
objective distinction between phenotypes of affected and unaffected somules, and that drug
exposure leads to distinct phenotypic effects, which were identified and quantified without
recourse to (subjective) human intervention and perceptual analysis. Second, we were able to
quantify and visualize the phenotype space of the parasite through low-dimensional projec-
tions. In the low-dimensional space, the distribution of the phenotypes was not random, but
was found to have a distinct shape and topology. Our analysis focused on somules owing to the
lack of automated techniques for segmenting and phenotyping adult parasites. Part of our

Fig 5. Bindingmodes of GSK461364 in human and S.mansoni PLK1. A. Docking pose of GSK461364 in the huPLK1 crystal structure (red color) and
SmPLK1model (yellow color). GSK461364 is shown in ball-and-stick representation.B. Docking pose of GSK461364 in the SmPLK1 binding pocket.
GSK461364 makes hydrogen bonding interactions with Lys54 and Glu112 residues (blue colour lines). Carbon, nitrogen, oxygen and hydrogen atoms of
SmPLK1 are shown in yellow, blue, red and white colours, respectively. GSK461364 is shown in ball-and-stick representation. C. Docking poses of GSK
inhibitors GSK461364, GSK1030058, GSK326090, and GSK483724 in the SmPLK1 model. GSK inhibitors are shown in ball-and-stick representation.
Carbon, nitrogen, oxygen, sulphur and hydrogen atoms of GSK inhibitors are shown in gray, blue, red, yellow and white colours, respectively.

doi:10.1371/journal.pntd.0004356.g005
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ongoing research involves the development of algorithms to enable a similar analysis of the
phenotypic response space of adults.

We first tested 11 commercially available PLK1 inhibitors, including a number that are in
clinical trials, for their activity against both somules and adults. A range of phenotypic
responses, from pronounced deleterious changes at low micromolar concentrations to com-
plete inactivity, were recorded. The benzimidazole thiophene, GSK461364, was the most potent
of the inhibitors tested against somules and generated early (within 5 h) and sustained alter-
ations in the adult parasite. GSK461364 is a single digit nanomolar inhibitor of huPLK1 and
other PLK isoforms, and is at least 100-fold less potent against non-PLK kinases [52, 75, 76,
82]. The drug candidate is also a low micromolar inhibitor of cancer cell line proliferation from
multiple origins with minimal toxicity to non-dividing human cells [82]. GSK461364 has suc-
cessfully completed Phase I clinical trials for treatment of specific advanced solid tumors and
Non-Hodgkin’s Lymphoma [83]. The clinical progress of GSK461364 along with the recent
availability of 38 structurally related benzimidazole thiophenes within GSK’s PKIS 1 and 2
libraries [50–53] prompted us to explore: (i) whether more effective inhibitors than
GSK461364 against the parasite exist, (ii) whether an SAR for anti-parasitic activity could be
identified, and (iii) whether any SAR was similar to that demonstrated for huPLK1 by previous
GSK research [51–53]. Satisfying the first two conditions would be of interest in having intro-
duced and characterized a new anti-schistosomal chemotype yet, in the absence of particular
knowledge of the molecular target or mechanism of action, would create a more challenging,
but not insurmountable (e.g., [84–87]), situation for chemical optimization. Meeting all three
conditions, however, would support a decision to initiate a target-based SAR program centered
on SmPLK1 which would include recombinant expression, purification and crystallography of
SmPLK1 in order to drive the iterative chemical optimization process. Such a program would
be aided by the considerable metabolism and toxicity data that are available for many of the
benzimidazole thiophenes [52, 53].

A number of the 38 benzimidazole thiophenes tested induced phenotypic changes in the
parasite that increased in severity as a function of time and concentration. Compound clusters
with bioactivity against both adults and somules were identified. For adults, the main initial
response recorded for this chemotype was uncoordinated over-activity with an inability of the
parasite to adhere to the dish, perhaps suggesting a disruption in neuromuscular homeostasis.
A cluster of four R3 bi-aryl compounds (GSK571989A, GSK326090A, GSK579289A and
GSK483724A) was especially potent, inducing uncoordinated over-activity at just 1 or 2 μM
within 5 h for adults. For somules, these same compounds induced multiple and progressively
more severe responses in the parasite (e.g., over-activity and internal degeneracy). The data are
encouraging given the need to identify anti-schistosomal compounds that target across the
spectrum of developmental stages of the parasite in the human host, which is a key failing of
the current drug, PZQ [14]. These bioactive compounds are not significantly dissimilar in
structure from the clinical candidate GSK461364 and are part of a sub-series of compounds
designed to explore solubility and/or limit CYP-mediated metabolism [53]. For example,
GSK483724A (compound 14 in [53]) displays IC50 inhibition values of 0.1 μM or less for the
major drug-metabolizing CYP450 isoforms, CYP2C9 and CYP3A4. Thus, further exploration
of an expanded R3 bi-aryl substituent series, including those presented in [53] would be
worthwhile.

Whether or not these early uncoordinated responses in the adult parasite prove relevant for
in vivo efficacy remains to be seen, however, it is pertinent to note that, for helminths, interfer-
ence with neuromuscular activity (if indeed that is occurring here) is a well-proven anthelmin-
tic strategy [88]. Overall, it is noteworthy that the progressive phenotypic disturbances
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recorded for both adults and somules occur at low micromolar, and potentially sustainable,
plasma concentrations of compounds.

Some correlation exists between our data for bioactivity of the PKIS 1 and 2 benzimidazole
thiophenes against the parasite and those published for inhibition of the huPLK1 enzyme and
growth of a human HCT116 colon carcinoma cell line [51–53] (summarized in S1 File, work-
sheet 6). In spite of the gaps in the published data, we note that those PLK1 inhibitors generat-
ing the lowest nanomolar IC50 values against both huPLK1 and the HCT116 cells were also
those most active against the parasite irrespective of the developmental stage tested (e.g., com-
pare 6090A and 9289A vs. 6313A and 3606X). Although not proof that SmPLK1 is the relevant
target of these inhibitors, the data are suggestive. Also, from a molecular perspective, the
DOCKing results with representative benzimidazole thiophenes suggest that SmPLK1 should
be potently inhibited.

The above observations support an attempt to heterologously express SmPLK1 in order to
understand whether the relationship noted at the whole organism level can be substantiated at
the level of the respective PLK enzymes. HuPLK1 has been successfully expressed in baculo-
virus-infected Trichoplusia ni cells [82]. We do not discount the possibility that the activities
noted against the parasite are due to off-targeting, i.e., compound interactions in addition to or
apart from inhibition of SmPLK1. Indeed, it is difficult at this juncture to reconcile the rapid
onset of uncoordinated motility upon exposure to some of the benzimidazole thiophenes with
the intended molecular target that has a highly constrained activity during mitosis. Again,
recombinant expression of the target schistosome enzyme would be important to address
whether the whole organismal effects noted here correlate with kinase inhibition.

To conclude, SmPLK1 is an essential gene for the somule stage of S.mansoni. Based on the
druggability of the human ortholog in anti-cancer chemotherapy, we phenotypically screened
commercially available PLK1 inhibitors and a series of 38 benzimidazole thiophenes present in
GSK’s PKIS 1 and 2. An SAR across somules and adults was observed for the benzimidazole
thiophenes, particularly for substitutions off the bi-aryl system at R3 which yielded fast-acting
and potent compounds that merit further exploration. The apparent correlation between the
present anti-parasite data and those noted previously for inhibition of PLK1 in human cancer
cells suggests that SAR studies with the respective human and schistosome PLK orthologs
should be considered.

Supporting Information
S1 Table. Small molecule inhibitors of human PLK1 in development.
(DOCX)

S2 Table. Primers for dsRNA and qPCR.
(DOCX)

S1 File. Screening and structure bioactivity relationship for 38 PKIS benzimidazole thio-
phenes.
(XLSX)

S1 Fig. Differential phenotypic distribution of control and treated parasite populations.
Examples of control parasites are shown in panels 1A through C. These parasites were also
algorithmically grouped in a cluster that showed little or no phenotypic changes (blue in Fig 2).
Panels 2A-C: examples of parasites deemed by the clustering algorithm to be unaffected by
compound action (depicted in green in Fig 2). Of these, the parasites shown in Panels 2A, B
and C were exposed to GSK448459A, GSK1030059A and GSK580432A, respectively. Note that
even though these compounds were weakly active in terms of their effects on the parasite
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population, not every parasite was equally or significantly affected by the compound. Such phe-
notypic heterogeneity is commonly encountered as demonstrated here. Panels 3A-C: examples
of parasites affected by compounds as determined both by algorithm clustering and manual
scoring (represented by red points in Fig 2). The parasites shown in Panels 3A, B and C were
exposed to GSK483724A, GSK641502A and GSK346294A, respectively. These compounds
were also found to be active by manual scoring.
(TIF)

S2 Fig. Example phenotypic effects of PKIS 1 and 2 benzimidazole thiophenes on somules.
Parasites were incubated for 48 h in the presence of the appropriate DMSO control (A) or
1 μMGSK483724A (B) or GSK641502A (C). Note the internal vacuolization in parasites
exposed to GSK compounds. Bar = 200 μM.
(TIF)
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