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In this study, using the botanical active components of carvacrol, thymol,

guaiacol, and sesamol as the lead structures, 19 novel botanical active

component derivatives containing carboxamide and 1,3,4-thiadiazole

thioether moieties (5a−5s) were synthesized and structurally characterized

by 1H NMR, 13C NMR, and HRMS. The antibacterial bioassay results in vitro

showed that compound 2-(2-methoxyphenoxy)-N-(5-(methylthio)-1,3,4-

thiadiazol-2-yl)acetamide (5k) revealed excellent inhibitory activities against

Xanthomonas axonopodis pv. citri (Xac) and Xanthomonas oryzae pv.

oryzicolaby (Xoc), with the median effective concentration (EC50) values of

22 and 15 μg/ml, respectively, which were even better than those of thiodiazole

copper and bismerthiazol. Meanwhile, all the target compounds revealed lower

in vitro inhibitory effects on Mucor bainieri (M. bainieri), Mucor fragilis (M.

fragilis), and Trichoderma atroviride (T. atroviride), than carbendazim.
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1 Introduction

As a serious threat to agricultural production, plant diseases can cause huge economic

losses every year (Rosegrant and Cline, 2003; Neeraja et al., 2010; Opara, 2013;

Bhattacharjee and Dey, 2014). Although the use of pesticides is an effective method

to control plant diseases, the frequent use of traditional pesticides can lead to many

negative effects such as pathogenic microorganism resistance, environmental

contamination, and human health (Guo et al., 1998). As the improving of human

living level and the demand for high-quality agricultural products, a limit on the use

of traditional pesticides is required (Chávez-Dulanto et al., 2021).
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In the 21st century and beyond, use of natural product

pesticides to control plant diseases is an innovative approach of

sustainable agricultural development (Cantrell et al., 2020;

Souto et al., 2021). It is a critical approach to find new

active components and to develop new pesticides by

modifying the structure of natural products. Botanical active

components of carvacrol, thymol, guaiacol, and sesamol

(Figure 1) had a broad spectrum of pesticide biological

properties, such as antifungal and insecticidal activity (Shen

and He, 2022; Cui et al., 2022; Jia et al., 2007; Sharifi-Rad et al.,

2018; Karina Kachur, 2020; Rathod et al., 2021). However, the

inhibitory effects on plant pathogenic bacteria diseases of

carvacrol, thymol, guaiacol, sesamol and their derivative had

not been reported yet. Meanwhile, the carboxamide and 1,3,4-

thiadiazole thioether moieties had extensive pesticide biological

activities, including antibacterial, antifungal, antiviral, and

insecticidal activity (Dalgaard, et al., 1994; Wu et al., 2016;

Yang et al., 2018; Chen, et al., 2019; Yang et al., 2019; Tang et al.,

2020; Chen et al., 2021). In our previous work, a series of novel

thiochromanone derivatives containing carboxamide and 1,3,4-

thiadiazole thioether moieties (Figure 2) were prepared and

demonstrated to have suitable antibacterial and antifungal

activity (Yu et al., 2020).

To develop new lead compounds, in this study, we aimed

to replace thiochromanone structure in the structure of our

reported structures by carvacrol, thymol, guaiacol, and

sesamol structures to build some new botanical active

component derivatives containing carboxamide and 1,3,4-

thiadiazole thioether moieties (Figure 2).

2 Materials and methods

2.1 Chemical synthesis

2.1.1 Preparation of intermediates 2 and 4
As shown in Scheme 1, using the botanical active

components of carvacrol, thymol, guaiacol, and sesamol as the

lead structures, intermediates 2 and 4 were prepared using the

methods that have been previously reported (Friedrich et al.,

2020; Yu et al., 2022).

FIGURE 1
The structures of botanical active components of carvacrol,
thymol, guaiacol, and sesamol.

Scheme 1
Synthetic route for compounds 5a−5s.
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2.1.2 Preparation of the target compounds 5a−5s
To a 25 ml round bottom flask, intermediates 2 (20 mmol)

and 4 (20 mmol) dissolved in DMF (10 ml), DMAP (2 mmol),

and EDCI (30 mmol) were added. After reacting overnight at

room temperature, the precipitates obtained by adding distilled

water (50 ml) were recrystallized from ethyl acetate to give the

target compounds 5a−5s.

2.2 Bioactivity evaluation

The preliminary inhibitory effects results in vitro of

compounds 5a−5s against Xanthomonas axonopodis pv.

citri (Xac) and Xanthomonas oryzae pv. oryzicolaby (Xoc)

as well as Mucor bainieri (M. bainieri), Mucor fragilis (M.

fragilis), and Trichoderma atroviride (T. atroviride) were

determined by the turbidimeter test (for antibacterial

activity test) and mycelial growth rate method (for

antifungal activity test) (Schaad et al., 1996; Wang et al.,

2022). Meanwhile, the median effective concentration (EC50)

values of compounds 5a, 5b, 5f, 5k, 5L, and 5n against Xac and

Xoc were calculated using the SPSS 19.0 software (SPSS,

Chicago, United States).

3 Results and discussion

3.1 Chemistry

Using the botanical active components of carvacrol, thymol,

guaiacol, and sesamol as the lead structures, compounds 5a−5s

were prepared in three steps, namely, substitution,

thioetherification, and condensation reaction, with the yields

of 68%–88% and the melting point ranges within two degrees

centigrades. In the 1H NMR spectra of compounds 5a−5s, a

singlet at 12.87–12.79 and 4.93–4.81 ppm indicated H atom in

CONH and OCH2 groups, respectively. Meanwhile, a singlet at

168.07–167.79 ppm in the 13C NMR spectra indicated C atom in

CONH group. In addition, the molecular weights of compounds

5a−5s were assigned by combining the [M + Na]+ ions with the

confidence level of 100%. The physical and chemical properties

and spectra data for compounds 5a−5s are presented in the

following.

2-(5-Isopropyl-2-methylphenoxy)-N-(5-(methylthio)-1,3,4-

thiadiazol-2-yl)acetamide (5a). White solid, yield 77%, mp

152–154°C; 1H NMR (400 MHz, DMSO-d6) δ (ppm): 12.85 (s,

1H), 7.06 (d, J = 8.0 Hz, 1H), 6.75 (d, J = 8.0 Hz, 1H), 6.72 (s, 1H),

4.93 (s, 2H), 2.83–2.76 (m, 1H), 2.72 (s, 3H), 2.99 (s, 3H), 1.15 (s,

3H), 1.13 (s, 3H); 13C NMR (100 MHz, DMSO-d6) δ (ppm):

167.99, 161.19, 158.17, 156.19, 147.85, 130.90, 123.95, 119.18,

110.14, 66.82, 33.77, 24.35, 16.38, 16.14; Anal. calcd. for m/z of

C15H19N3O2S2 (HRMS [M + Na]+): 360.08109, found:

360.08046.

N-(5-(ethylthio)-1,3,4-thiadiazol-2-yl)-2-(5-isopropyl-2-

methylphenoxy) acetamide (5b). White solid, yield 74%, mp

130–131°C; 1H NMR (400 MHz, DMSO-d6) δ (ppm): 12.86 (s,

1H), 7.06 (d, J = 8.0 Hz, 1H), 6.75 (d, J = 8.0 Hz, 1H), 6.71 (s,

1H), 4.93 (s, 2H), 3.23 (q, J1 = 8.0 Hz, J2 = 16.0 Hz, 2H),

2.83–2.76 (m, 1H), 2.18 (s, 3H), 1.34 (t, J = 8.0 Hz, 3H), 1.15 (s,

3H), 1.13 (s, 3H); 13C NMR (100 MHz, DMSO-d6) δ (ppm):

168.04, 159.49, 158.53, 156.18, 147.86, 130.91, 123.94, 119.18,

110.15, 66.82, 33.76, 28.52, 24.35, 16.15, 15.17; Anal. calcd. for

m/z of C16H21N3O2S2 (HRMS [M + Na]+): 374.09674, found:

374.09643.

N-(5-(benzylthio)-1,3,4-thiadiazol-2-yl)-2-(5-isopropyl-2-

methylphenoxy) acetamide (5c). White solid, yield 81%, mp

137–138°C; 1H NMR (400 MHz, DMSO-d6) δ (ppm): 12.86 (s,

1H), 7.40 (d, J = 8.0 Hz, 2H), 7.34–7.25 (m, 3H), 7.06 (d, J =

8.0 Hz, 1H), 6.75 (d, J = 8.0 Hz, 1H), 6.69 (s, 1H), 4.92 (s, 2H),

4.49 (s, 2H), 2.83–2.76 (m, 1H), 2.17 (s, 3H), 1.14 (s, 3H), 1.13

(s, 3H); 13C NMR (100 MHz, DMSO-d6) δ (ppm): 168.06,

158.90, 156.16, 147.85, 137.14, 130.91, 129.46, 129.01, 128.06,

123.91, 119.17, 110.11, 66.78, 38.02, 33.76, 24.35, 16.15; Anal.

calcd. for m/z of C21H23N3O2S2 (HRMS [M + Na]+): 436.11239,

found: 436.11185.

N-(5-((4-fluorobenzyl)thio)-1,3,4-thiadiazol-2-yl)-2-(5-

isopropyl-2-methylphenoxy)acetamide (5d). Yellow solid,

yield 86%, mp 140–141°C; 1H NMR (400 MHz, DMSO-d6)

FIGURE 2
Design route of the target compounds 5a−5s.
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δ (ppm): 12.86 (s, 1H), 7.47–7.43 (m, 2H), 7.16 (d, J = 8.0 Hz,

2H), 7.05 (s, 1H), 6.75 (d, J = 8.0 Hz, 1H), 6.70 (s, 1H), 4.93 (s,

2H), 4.49 (s, 2H), 2.83–2.76 (m, 1H), 2.18 (s, 3H), 1.14 (s,

3H), 1.13 (s, 3H); 13C NMR (100 MHz, DMSO-d6) δ (ppm):

168.07, 161.98 (d, J = 243.0 Hz), 158.69, 158.16, 147.85,

133.50 (d, J = 3.0 Hz), 131.51 (d, J = 9.0 Hz), 130.91,

123.92, 119.18, 115.90, 115.69, 110.12, 66.80, 37.14, 33.76,

24.34, 16.14; Anal. calcd. for m/z of C21H22FN3O2S2 (HRMS

[M + Na]+): 454.10297, found: 454.10241.

N-(5-((4-chlorobenzyl)thio)-1,3,4-thiadiazol-2-yl)-2-(5-

isopropyl-2-methylphenoxy)acetamide (5e). Yellow solid,

yield 74%, mp 132–134°C; 1H NMR (400 MHz, DMSO-d6)

δ (ppm): 12.86 (s, 1H), 7.44–7.37 (m, 1H), 7.06 (d, J = 8.0 Hz,

1H), 6.75 (d, J = 8.0 Hz, 1H), 6.70 (s, 1H), 4.93 (s, 2H), 4.49 (s,

2H), 2.83–2.76 (m, 1H), 2.18 (s, 3H), 1.14 (s, 3H), 1.13 (s,

3H); 13C NMR (100 MHz, DMSO-d6) δ (ppm): 168.06,

158.97, 158.56, 156.16, 147.85, 136.45, 132.64, 131.30,

130.91, 128.94, 123.92, 119.18, 110.13, 66.80, 37.14, 33.76,

24.34, 16.14; Anal. calcd. for m/z of C21H22ClN3O2S2 (HRMS

[M + Na]+): 470.07342, found: 470.07318.

2-(2-Isopropyl-5-methylphenoxy)-N-(5-(methylthio)-1,3,4-

thiadiazol-2-yl)acetamide (5f). White solid, yield 79%, mp

158–160 °C; 1H NMR (400 MHz, DMSO-d6) δ (ppm): 12.84

(s, 1H), 7.09 (d, J = 8.0 Hz, 1H), 6.75 (d, J = 8.0 Hz, 1H), 6.66 (s,

1H), 4.91 (s, 2H), 2.72 (s, 3H), 2.23 (s, 3H), 1.17 (s, 3H), 1.16 (s,

3H); 13C NMR (100 MHz, DMSO-d6) δ (ppm): 167.83, 161.15,

158.21, 155.19, 136.33, 126.31, 122.32, 112.82, 66.73, 26.42, 23.15,

21.40, 16.43; Anal. calcd. for m/z of C15H19N3O2S2 (HRMS [M +

Na]+): 360.08109, found: 360.08075.

N-(5-(ethylthio)-1,3,4-thiadiazol-2-yl)-2-(2-isopropyl-5-

methylphenoxy)acetamide (5g). White solid, yield 78%, mp

168–170°C; 1H NMR (400 MHz, DMSO-d6) δ (ppm): 12.87 (s,

1H), 7.09 (d, J = 8.0 Hz, 1H), 6.75 (d, J = 8.0 Hz, 1H), 6.67 (s,

1H), 4.91 (s, 2H), 3.34–3.29 (m, 1H), 3.23 (q, J1 = 8.0 Hz, J2 =

16.0 Hz, 2H), 2.23 (s, 3H), 1.35 (t, J = 8.0 Hz, 3H), 1.17 (s, 3H),

1.16 (s, 3H); 13C NMR (100 MHz, DMSO-d6) δ (ppm): 167.88,

159.45, 158.57, 155.18, 136.34, 133.91, 126.31, 122.33, 112.80,

66.72, 28.54, 26.42, 23.15, 21.40, 15.20; Anal. calcd. for m/z of

C16H21N3O2S2 (HRMS [M + Na]+): 374.09674, found:

374.09632.

N-(5-(benzylthio)-1,3,4-thiadiazol-2-yl)-2-(2-isopropyl-5-

methylphenoxy)acetamide (5h). White solid, yield 88%, mp

133–135°C; 1H NMR (400 MHz, DMSO-d6) δ (ppm): 12.86 (s,

1H), 7.41 (d, J = 8.0 Hz, 2H), 7.35–7.25 (m, 3H), 7.09 (d, J =

8.0 Hz, 1H), 6.75 (d, J = 8.0 Hz, 1H), 6.66 (s, 1H), 4.91 (s, 2H),

4.50 (s, 2H), 3.34–3.27 (m, 1H), 2.23 (s, 3H), 1.17 (s, 3H), 1.15

(s, 3H); 13C NMR (100 MHz, DMSO-d6) δ (ppm): 167.89,

158.88, 155.17, 137.13, 136.33, 133.91, 129.45, 129.02,

128.06, 126.30, 122.34, 112.82, 66.74, 38.01, 26.40, 23.16,

21.40; Anal. calcd. for m/z of C21H23N3O2S2 (HRMS [M +

Na]+): 436.11239, found: 436.11185.

N-(5-((4-fluorobenzyl)thio)-1,3,4-thiadiazol-2-yl)-2-(2-

isopropyl-5-methylphenoxy)acetamide (5i). White solid,

yield 78%, mp 129–130°C; 1H NMR (400 MHz, DMSO-d6)

δ (ppm): 12.86 (s, 1H), 7.46 (q, J1 = 4.0 Hz, J2 = 8.0 Hz, 2H),

7.16 (t, J = 8.0 Hz, 2H), 7.09 (d, J = 8.0 Hz, 1H), 6.75 (d, J =

8.0 Hz, 1H), 6.66 (s, 1H), 4.91 (s, 2H), 4.49 (s, 2H), 3.34–3.27

(m, 1H), 2.23 (s, 3H), 1.17 (s, 3H), 1.15 (s, 3H); 13C NMR

(100 MHz, DMSO-d6) δ (ppm): 167.91, 161.98 (d, J =

242.0 Hz), 158.98, 158.65, 155.17, 136.33, 133.91, 133.52

(d, J = 3.0 Hz), 131.51 (d, J = 8.0 Hz), 126.31, 122.34,

115.82 (d, J = 21.0 Hz), 112.82, 66.74, 37.13, 26.39, 23.15,

21.39; Anal. calcd. for m/z of C21H22FN3O2S2 (HRMS [M +

Na]+): 454.10297, found: 454.10236.

N-(5-((4-chlorobenzyl)thio)-1,3,4-thiadiazol-2-yl)-2-(2-

isopropyl-5-methylphenoxy)acetamide (5j). White solid,

yield 82%, mp 138–140°C; 1H NMR (400 MHz, DMSO-d6)

δ (ppm): 12.85 (s, 1H), 7.41 (q, J1 = 8.0 Hz, J2 = 16.0 Hz, 4H),

7.09 (d, J = 8.0 Hz, 1H), 6.75 (d, J = 8.0 Hz, 1H), 6.65 (s, 1H),

4.90 (s, 2H), 4.49 (s, 2H), 3.31–3.26 (m, 1H), 2.23 (s, 3H), 1.17

(s, 3H), 1.15 (s, 3H); 13C NMR (100 MHz, DMSO-d6) δ

(ppm): 167.83, 158.53, 155.16, 136.49, 136.34, 133.91,

132.63, 131.31, 128.97, 126.32, 122.34, 112.82, 66.72, 37.11,

26.39, 23.16, 21.40; Anal. calcd. for m/z of C21H22ClN3O2S2
(HRMS [M + Na]+): 470.07342, found: 470.07319.

2-(2-Methoxyphenoxy)-N-(5-(methylthio)-1,3,4-thiadiazol-

2-yl)acetamide (5k). Yellow solid, yield 72%, mp 135–136 °C; 1H

NMR (400 MHz, DMSO-d6) δ (ppm): 12.79 (s, 1H), 7.02 (d, J =

4.0 Hz, 1H), 6.95 (q, J1 = 8.0 Hz, J2 = 16.0 Hz, 2H), 6.86 (t, J =

8.0 Hz, 1H), 4.88 (s, 2H), 3.79 (s, 3H), 2.72 (s, 3H); 13C NMR

(100 MHz, DMSO-d6) δ (ppm): 167.82, 161.17, 158.14, 149.66,

147.64, 122.64, 121.12, 114.87, 113.03, 67.61, 56.03, 16.42; Anal.

calcd. for m/z of C12H13N3O3S2 (HRMS [M + Na]+): 334.02905,

found: 334.02896.

N-(5-(ethylthio)-1,3,4-thiadiazol-2-yl)-2-(2-methoxyphenoxy)

acetamide (5l). White solid, yield 68%, mp 138–140°C; 1H NMR

(400MHz, DMSO-d6) δ (ppm): 12.81 (s, 1H), 7.02 (dd, J1 = 4.0 Hz,

J2 = 8.0 Hz, 1H), 6.95 (qd, J1 = 4.0 Hz, J2 = 8.0 Hz, 2H), 6.89–6.84

(m, 1H), 4.89 (s, 2H), 3.79 (s, 3H), 3.23 (q, J1 = 8.0 Hz, J2 = 16.0 Hz,

2H), 1.34 (t, J = 8.0 Hz, 3H); 13C NMR (100MHz, DMSO-d6) δ

(ppm): 167.88, 159.45, 158.51, 149.65, 147.64, 122.63, 121.12,

114.84, 113.02, 67.59, 56.03, 28.54, 15.19; Anal. calcd. for m/z of

C13H15N3O3S2 (HRMS [M + Na]+): 348.04470, found: 348.04468.

N-(5-(benzylthio)-1,3,4-thiadiazol-2-yl)-2-(2-

methoxyphenoxy)acetamide (5m). White solid, yield 85%, mp

135–136°C; 1H NMR (400 MHz, DMSO-d6) δ (ppm): 12.80 (s,

1H), 7.41 (d, J = 8.0 Hz, 2H), 7.35–7.25 (m, 3H), 7.02–6.84 (m,

4H), 4.87 (s, 2H), 4.49 (s, 2H), 3.78 (s, 3H); 13C NMR (100 MHz,

DMSO-d6) δ (ppm): 167.87, 158.89, 158.71, 149.63, 147.61,

137.14, 129.47, 129.03, 128.07, 122.63, 121.11, 114.80, 113.00,

67.55, 56.01, 37.99; Anal. calcd. for m/z of C18H17N3O3S2 (HRMS

[M + Na]+): 410.06035, found: 410.06027.

N-(5-((4-fluorobenzyl)thio)-1,3,4-thiadiazol-2-yl)-2-(2-

methoxyphenoxy)acetamide (5n). Yellow solid, yield 77%,

mp 137–139°C; 1H NMR (400 MHz, DMSO-d6) δ (ppm):

12.81 (s, 1H), 7.47–7.43 (m, 2H), 7.19–7.14 (m, 2H),
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7.03–6.84 (m, 4H), 4.88 (s, 2H), 4.49 (s, 2H), 3.79 (s, 3H); 13C

NMR (100 MHz, DMSO-d6) δ (ppm): 167.90, 161.99 (d, J =

243.0 Hz), 158.93, 158.66, 149.65, 147.62, 133.53 (d, J =

3.0 Hz), 131.54 (d, J = 8.0 Hz), 122.64, 121.11, 115.82 (d,

J = 22.0 Hz), 114.84, 113.01, 67.59, 56.02, 37.13; Anal. calcd.

for m/z of C18H16FN3O3S2 (HRMS [M + Na]+): 428.05093,

found: 428.05066.

N-(5-((4-chlorobenzyl)thio)-1,3,4-thiadiazol-2-yl)-2-(2-

methoxyphenoxy)acetamide (5o). Yellow solid, yield 79%,

mp 136–138 °C; 1H NMR (400 MHz, DMSO-d6) δ (ppm):

12.81 (s, 1H), 7.44–7.38 (m, 4H), 7.03–6.84 (m, 4H), 4.88 (s,

2H), 4.49 (s, 2H), 3.79 (s, 3H); 13C NMR (100 MHz, DMSO-

d6) δ (ppm): 167.91, 158.97, 158.54, 149.65, 147.62, 136.49,

132.64, 131.32, 128.97, 122.64, 121.12, 114.85, 113.01; 67.59,

56.02, 37.13; Anal. calcd. for m/z of C18H16ClN3O3S2 (HRMS

[M + Na]+): 444.02138, found: 444.02089.

2-(Benzo[d][1,3]dioxol-5-yloxy)-N-(5-(methylthio)-1,3,4-

thiadiazol-2-yl)acetamide (5p). Pink solid, yield 78%, mp

171–172°C; 1H NMR (400 MHz, DMSO-d6) δ (ppm): 12.85

(s, 1H), 6.82 (d, J = 8.0 Hz, 1H), 6.70 (s, 1H), 6.40 (d, J = 8.0 Hz,

1H), 5.97 (s, 2H), 4.82 (s, 2H), 2.72 (s, 3H); 13C NMR

(100 MHz, DMSO-d6) δ (ppm): 167.79, 161.19, 158.16,

153.47, 148.37, 142.21, 108.43, 106.36, 101.63, 98.61, 67.38,

16.41; Anal. calcd. for m/z of C12H11N3O4S2 (HRMS [M +

Na]+): 348.00832, found: 348.00793.

TABLE 1 In vitro antibacterial activity test of compounds 5a−5s against Xac and Xoc.

Compounds Inhibition rate (%)a

Xac Xoc

100 μg/ml 50 μg/ml 100 μg/ml 50 μg/ml

5a 76 ± 2.21 60 ± 1.14 82 ± 1.29 67 ± 1.85

5b 67 ± 1.14 51 ± 1.74 74 ± 2.01 61 ± 2.04

5c 35 ± 2.00 28 ± 1.11 42 ± 0.94 30 ± 1.24

5d 54 ± 2.11 42 ± 1.01 62 ± 1.59 40 ± 2.14

5e 46 ± 2.95 33 ± 1.01 54 ± 1.94 31 ± 1.54

5f 62 ± 1.19 50 ± 1.10 73 ± 2.49 55 ± 1.29

5g 51 ± 1.09 40 ± 0.59 64 ± 1.95 40 ± 0.74

5h 32 ± 1.50 21 ± 1.51 36 ± 2.49 28 ± 1.64

5i 47 ± 1.14 33 ± 2.04 55 ± 2.17 36 ± 1.74

5j 37 ± 0.49 25 ± 2.06 48 ± 2.10 32 ± 1.75

5k 84 ± 1.06 70 ± 1.96 92 ± 1.49 80 ± 1.91

5L 75 ± 1.11 61 ± 1.33 84 ± 1.86 70 ± 1.65

5m 30 ± 1.22 18 ± 2.01 52 ± 1.57 41 ± 2.56

5n 52 ± 1.74 40 ± 2.08 71 ± 1.74 53 ± 2.49

5o 35 ± 1.27 22 ± 1.84 60 ± 1.04 45 ± 1.99

5p 10 ± 2.04 4 ± 1.19 16 ± 2.22 8 ± 1.64

5q 0 0 0 0

5r 0 0 8 ± 2.14 2 ± 0.54

5s 0 0 0 0

Bismerthiazolb 38 ± 2.02 30 ± 2.04 67 ± 1.54 42 ± 2.01

Thiodiazole copperb 30 ± 2.01 20 ± 1.62 52 ± 1.94 37 ± 1.86

aAverage of three times for each treatment.
bThe positive control.

TABLE 2 The EC50 values of compounds 5a, 5b, 5f, 5k, 5L, and 5n
against Xac and Xoc.

Compounds Inhibition rate (%)a

Xac Xoc

5a 30 ± 1.25 23 ± 2.21

5b 40 ± 2.65 32 ± 1.65

5f 45 ± 1.94 35 ± 1.26

5k 22 ± 1.54 15 ± 1.62

5L 28 ± 1.24 20 ± 0.98

5n 50 ± 2.28 41 ± 1.97

Bismerthiazolb 142 ± 2.26 65 ± 3.24

Thiodiazole copperb 181 ± 4.65 102 ± 2.18

aAverage of three times for each treatment.
bThe positive control.
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2-(Benzo[d][1,3]dioxol-5-yloxy)-N-(5-(benzylthio)-1,3,4-

thiadiazol-2-yl)acetamide (5q). Pink solid, yield 84%, mp

176–178°C; 1H NMR (400 MHz, DMSO-d6) δ (ppm): 12.82

(s, 1H), 7.41 (d, J = 8.0 Hz, 2H), 7.35–7.26 (m, 3H), 6.81 (d, J =

8.0 Hz, 1H), 6.70 (d, J = 4.0 Hz, 1H), 6.40 (s, 1H), 5.97 (s, 2H),

4.81 (s, 2H), 4.49 (s, 2H); 13C NMR (100 MHz, DMSO-d6) δ

(ppm): 167.86, 158.93, 153.46, 148.38, 142.22, 137.13, 129.46,

129.03, 128.07, 108.43, 106.34, 101.64, 98.60, 67.36, 38.01;

Anal. calcd. for m/z of C18H15N3O4S2 (HRMS [M + Na]+):

424.03962, found: 424.03902.

2-(Benzo[d][1,3]dioxol-5-yloxy)-N-(5-((4-fluorobenzyl)

thio)-1,3,4-thiadiazol-2-yl)acetamide (5r). Yellow solid,

yield 79%, mp 165–167°C; 1H NMR (400 MHz, DMSO-d6)

δ (ppm): 12.83 (s, 1H), 7.47–7.44 (m, 2H), 7.17 (d, J = 8.0 Hz,

2H), 6.82 (d, J = 8.0 Hz, 1H), 6.40 (q, J1 = 4.0 Hz, J2 = 8.0 Hz,

1H), 5.97 (s, 2H), 4.82 (s, 2H), 4.49 (s, 2H); 13C NMR

(100 MHz, DMSO-d6) δ (ppm): 167.87, 161.99 (d, J =

243.0 Hz), 158.94, 158.71, 153.45, 148.38, 142.22, 133.51

(d, J = 3.0 Hz), 131.52 (d, J = 9.0 Hz), 115.82 (d, J =

21.0 Hz), 108.42, 106.34, 101.63, 101.63, 98.60, 67.36,

37.36; Anal. calcd. for m/z of C18H14FN3O4S2 (HRMS [M

+ Na]+): 442.03020, found: 442.02960.

2-(Benzo[d][1,3]dioxol-5-yloxy)-N-(5-((4-chlorobenzyl)thio)-

1,3,4-thiadiazol-2-yl)acetamide (5s). Yellow solid, yield 70%, mp

166–168°C; 1HNMR (400MHz, DMSO-d6) δ (ppm): 12.84 (s, 1H),

7.45–7.38 (m, 4H), 6.82 (d, J = 8.0 Hz, 1H), 6.71 (d, J = 4.0 Hz, 1H),

6.40 (q, J1 = 4.0 Hz, J2 = 8.0 Hz, 1H), 5.97 (s, 2H), 4.82 (s, 2H), 4.49

(s, 2H); 13C NMR (100MHz, DMSO-d6) δ (ppm): 167.88, 158.99,

158.58, 153.45, 148.38, 142.22, 136.46; Anal. calcd. for m/z of

C18H14ClN3O4S2 (HRMS [M + Na]+): 458.00065, found:

458.00023.

3.2 Biological evaluations

Table 1 showed that, at 100 and 50 μg/ml, compounds 5a,

5b, 5d, 5e, 5f, 5g, 5k, 5L, and 5n showed significant in vitro

inhibitory effect against Xac, with the inhibition rate ranges

of 46%–84% and 33%–70%, respectively, which were higher

than thiodiazole copper and bismerthiazol. Meanwhile,

compounds 5a, 5b, 5f, 5k, 5L, and 5n exhibited excellent

in vitro antibacterial activity against Xoc, with the inhibition

rate ranges of 71%–92% and 53%–80% at 100 and 50 μg/ml,

respectively, which were superior to thiodiazole copper and

bismerthiazol. In particular, Table 2 showed that the EC50

values for compound 2-(2-methoxyphenoxy)-N-(5-

(methylthio)-1,3,4-thiadiazol-2-yl)acetamide (5k) against

Xac and Xoc were 22 and 15 μg/ml, respectively, which

were higher than thiodiazole copper and bismerthiazol.

Table 3 showed that compounds 5a−5s revealed lower

in vitro inhibitory effects against M. bainieri, M. fragilis, and

T. atroviride, with the inhibition rate ranges of 0%–51%, 0%–

47%, and 0%–21% at 50 μg/ml, respectively, than

carbendazim.

3.3 Structure-activity relationship analysis

The SAR analysis was analyzed based on the inhibitory

activity listed in Tables 1 and 2. First, the presence of the 2-

OCH3 group at R1 substituent group showed better inhibitory

activity in the order of 5k > 5f, 5k > 5a, and 5k > 5p. Second, the

CH3 group at the R2 substituent group could increase the

inhibitory activity followed the order of 5a > 5b, 5f > 5g, and

5k > 5L.

4 Conclusion

In conclusion, using the botanical active components of

carvacrol, thymol, guaiacol, and sesamol as the lead structures,

19 structurally characterized botanical active component

derivatives containing carboxamide and 1,3,4-thiadiazole

thioether moieties were prepared. Bioassay results demonstrated

that compound 2-(2-methoxyphenoxy)-N-(5-(methylthio)-1,3,4-

TABLE 3 In vitro antifungal activity test of compounds 5a−5s against
M. bainieri, M. fragilis, and T. atroviride.

Compounds Inhibition rate (%)a

M. bainieri M. fragilis T. atroviride

5a 42 ± 1.54 36 ± 1.26 11 ± 0.25

5b 21 ± 1.25 14 ± 2.49 0

5c 0 0 0

5d 10 ± 1.02 0 0

5e 0 0 0

5f 20 ± 1.42 15 ± 1.26 9 ± 2.24

5g 12 ± 2.01 10 ± 2.28 0

5h 0 0 0

5i 2 ± 1.01 0 0

5j 0 0 0

5k 51 ± 1.04 47 ± 1.65 21 ± 1.36

5L 30 ± 1.11 25 ± 2.21 9 ± 2.46

5m 8 ± 1.64 0 0

5n 20 ± 0.84 12 ± 0.54 0

5o 13 ± 2.17 0 0

5p 16 ± 1.28 12 ± 1.05 2 ± 1.10

5q 0 0 0

5r 0 0 0

5s 0 0 0

Carbendazimb 100 100 100

aAverage of three times for each treatment.
bThe positive control.

Frontiers in Chemistry frontiersin.org06

Li et al. 10.3389/fchem.2022.1036909

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2022.1036909


thiadiazol-2-yl)acetamide (5k) had the higher inhibitory activity

against Xac and Xoc than thiodiazole copper and bismerthiazol.

Meanwhile, the analysis of SAR results showed that the presence of

the 2-OCH3 and CH3 groups at R1 and R2 substituent groups,

respectively, could increase the inhibitory effects of the target

compounds.
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