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Simple Summary: Recent evidence establishes that gastric and esophageal (GE) adenocarcinomas
are similar cancers at cellular, genomic, and epigenomic levels. Human GE adenocarcinomas develop
TP53 mutations at early stages of malignant progression. This contrasts with other gastrointestinal
adenocarcinomas, including sporadic colorectal and pancreatic adenocarcinomas, where TP53 alter-
ations occur late. Exposure of the esophagus and stomach to environmental risk factors contributes
to the selection of early TP53 mutations and subsequent chromosomal instability, which then lead to
activation of mitogen and cell cycle pathways in GE adenocarcinomas by way of focal amplifications
rather than mutations. While early TP53 mutations enable GE adenocarcinoma development, they
also expose therapeutic vulnerabilities that should be prime for targeted therapy directed against the
DNA damage response.

Abstract: Gastric and esophageal (GE) adenocarcinomas are the third and sixth most common
causes of cancer-related mortality worldwide, accounting for greater than 1.25 million annual deaths.
Despite the advancements in the multi-disciplinary treatment approaches, the prognosis for pa-
tients with GE adenocarcinomas remains poor, with a 5-year survival of 32% and 19%, respectively,
mainly due to the late-stage diagnosis and aggressive nature of these cancers. Premalignant lesions
characterized by atypical glandular proliferation, with neoplastic cells confined to the basement
membrane, often precede malignant disease. We now appreciate that premalignant lesions also carry
cancer-associated mutations, enabling disease progression in the right environmental context. A
better understanding of the premalignant-to-malignant transition can help us diagnose, prevent,
and treat GE adenocarcinoma. Here, we discuss the evidence suggesting that alterations in TP53
occur early in GE adenocarcinoma evolution, are selected for under environmental stressors, are
responsible for shaping the genomic mechanisms for pathway dysregulation in cancer progression,
and lead to potential vulnerabilities that can be exploited by a specific class of targeted therapy.
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1. Gastric and Esophageal Adenocarcinomas Are Similar Cancers

Cellular, molecular, genetic, and epigenomic analyses of adenocarcinomas of the
stomach and esophagus demonstrate that these cancers are highly related. Gastric and
esophageal adenocarcinomas appear to arise from a shared tissue of origin. A mouse
model of Barrett’s esophagus (BE), widely considered the precursor lesion to esophageal
adenocarcinoma, showed that Lgr5+ gastric cardia stem cells are potentially the cells of
origin [1]. Furthermore, esophageal adenocarcinomas display chromatin profiles that
mirror those found in gastric tissue (H3K9me3, H3K4me1, H3K4me3, H3K9ac, H3K36me3)
rather than in normal esophageal tissue [2]. Beyond the common ancestry of these cancers,
deeper evaluation of human gastric and esophageal adenocarcinomas demonstrates shared
molecular features. DNA methylation, mRNA and miRNA expression, and somatic copy-
number alterations (SCNA) of esophageal adenocarcinomas are almost identical to gastric
adenocarcinoma, and quite distinct from esophageal squamous cell carcinoma [3–6]. While
a comprehensive molecular analysis of gastrointestinal adenocarcinomas revealed five
molecular subtypes that largely transcended anatomic boundaries [7], the similarity in
molecular composition of GE adenocarcinomas is largely due to the high proportion of
the chromosomal instability (CIN) subtype, which accounts for more than half of gastric
adenocarcinomas and almost 90% of esophageal adenocarcinomas. By appreciating the
cellular and molecular resemblance between gastric and esophageal adenocarcinomas, not
only can we generate better models for the premalignant and malignant states, but we can
also think about treating patients with these cancers in similar ways.

2. TP53 Alteration Is an Early Event in GE Premalignancy

TP53 is the most frequently mutated gene across all cancers, especially advanced
metastatic disease [8]. Among GE adenocarcinomas, the frequency of TP53 mutations is
particularly high and enriched in the CIN subtype, which is characterized by increased
aneuploidy within the tumor cells [7,9]. While the high rate of recurrent TP53 mutations is
a common finding amongst all gastrointestinal adenocarcinomas, the timing of its occur-
rence in the malignant progression has significant, and biologically important, variation.
Unlike other gastrointestinal adenocarcinomas, including sporadic colorectal and pan-
creatic adenocarcinomas, human GE adenocarcinomas develop TP53 mutations early in
neoplasia, often found in premalignant lesions [10,11]. If not directly altered, other factors
that regulate TP53 are also dysregulated, such as MDM2 and WWOX, the latter of which
is a tumor suppressor found in a common chromosomal fragile site, and a regulator of
the DNA damage response, whose protein expression is absent in up to 65% of gastric
adenocarcinomas [12–15].

Clinically, a major challenge in the management of BE and gastric intestinal metaplasia,
the respective premalignant lesions of GE cancers, is predicting when a precursor lesion
will develop into adenocarcinoma. The frequency of progression from BE to esophageal
adenocarcinoma is quite low [16]; the rates of gastric intestinal metaplasia progression
to cancer are challenging to measure [17] but are thought to be infrequent. While TP53
mutations are known to be early events, genomic analysis of clinical samples of BE and
gastric intestinal metaplasia have demonstrated that the frequency of TP53 mutations is
actually low (~2%) [18]. Despite the low prevalence of TP53 mutations in premalignant
lesions, their presence seems to preferentially influence progression to a malignant state.
Using a paired-sampling approach, in which BE lesions and esophageal adenocarcinoma
from the same patient were subjected to whole exome sequencing, it was shown that
premalignant and malignant lesions from an individual patient shared a specific TP53
mutation more often than other tumor suppressors [19]. Another study that utilized whole
genome sequencing of 23 paired human BE and esophageal adenocarcinoma samples
showed that the degree of aneuploidy increases in the progression to cancer, suggesting
that early inactivation of TP53 might be a critical step in allowing the development of
aneuploidy [20]. Furthermore, a separate study demonstrated that 46% of BE lesions that
progress to high grade dysplasia or esophageal adenocarcinoma harbor TP53 mutations,
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whereas BE lesions that did not progress, only had TP53 mutations 5% of the time [21].
These data suggest that the presence of TP53 mutations in premalignant GE lesions, even
nondysplastic tissue, is a biomarker that predicts a high risk for malignant progression.

While colorectal and GE adenocarcinomas exhibit CIN, the characteristic pattern of
aneuploidy observed in these cancers is notably different. GE adenocarcinomas display
high intensity amplifications involving narrower genomic regions, whereas CRC tumors
manifest broader, lower intensity amplifications [7]. For example, high-level focal amplifi-
cations of genes like MET, FGFR2, and HER2 are commonly seen in GE adenocarcinomas,
whereas colorectal adenocarcinomas more typically exhibit low-level amplification of multi-
ple genes neighboring each other on a chromosome. It can, therefore, be inferred that TP53
alterations may have occurred earlier in the evolution of GE cancers, enabling the devel-
opment of high-level focal amplification in oncogenes that are critical to the development
of the cancer. GE precursor lesions that develop high-level focal amplification of essential
oncogenes have more proficient growth and are positively selected over precursor lesions
that lack amplification of these oncogenes (Figure 1, Table 1). In other words, neoplastic
cells with CIN that undergo stochastic disruption of critical genes within an amplicon
die, whereas those that preserve oncogenes survive and thrive, propagating selection of
malignant cells with narrower amplicons, broadcasting desired genes that support cancer
progression. Later, we will discuss how known oncogenes in cancer-promoting molecular
pathways are likely to be amplified in GE cancer rather than mutated in a gain-of-function
fashion, which is typically the predominant mechanism of alteration for oncogenes in
CRC (e.g., KRAS). Together, these data suggest that the more fragmented aneuploidy ob-
served in GE cancers may be another indication that TP53 alteration is an early event in
disease evolution.
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Figure 1. Early TP53 mutations and high-level focal amplifications in gastroesophageal (GE) adenocarcinoma and colitis-
associated colorectal cancer (CAC) premalignant lesion, as opposed to late TP53 mutations and low-level broad am-
plifications and mutations in colorectal cancer (CRC) premalignant lesion. ERBB2: Erb-B2 receptor tyrosine kinase 2;
VEGFA: vascular endothelial growth factor A; KRAS: Kirsten rat sarcoma; CDK6: cyclin dependent kinase 6; EGFR: epider-
mal growth factor receptor; FGFR1/2: fibroblast growth factor receptor 1/2; MET: mesenchymal epithelial transition factor.
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Table 1. Potential therapeutic vulnerabilities associated with chromosomal instability and high-level focal amplifications in
gastroesophageal (GE) adenocarcinoma. Food and Drug Administration-approved drugs for gastroesophageal cancer are
indicated by *. Aside from trastuzumab deruxtecan and bemarituzumab, most agents listed in this table have, thus far, not
shown single-agent efficacy clinically, suggesting that combinatorial approaches may be needed [3,9].

High Level Focal
Amplification

Prevalence in GE
Adenocarcinoma Potential Therapeutic Agent Trial References

ERBB2 24–32% trastuzumab 3,*, lapatinib 3, neratinib 1, tucatinib
0, trastuzumab deruxtecan 2,*

[22–25]

VEGFA 28% VEGF inhibitors (ramucirumab 3,*, Lenvatinib 2) [26–34]

KRAS 13–17% MEK inhibitors (binimetinib 0, cobimetinib 0),
ERK inhibitors 0, RAF inhibitors 0 -

CDK6 14% palbociclib 2, abemaciclib 0, ribociclib 0 [35]

EGFR 10% cetuximab 2, panitumumab 3, ABT-806 2 [36–39]

FGFR1/2 8–10% bemarituzumab 2 [40,41]

MET 8% crizotinib 1, capmatinib 1, tepotinib 1 [42–44]
1,2,3: Phase of clinical trials in gastroesophageal cancer; 0: no published data or clinical trials in patients with gastroesophageal cancer.
ERBB2: Erb-B2 receptor tyrosine kinase 2; VEGFA: vascular endothelial growth factor A; KRAS: Kirsten rat sarcoma; CDK6: cyclin
dependent kinase 6; EGFR: epidermal growth factor receptor; FGFR1/2: fibroblast growth factor receptor 1/2; MET: mesenchymal epithelial
transition factor.

3. Context Matters: Environmental Conditions Contribute to Selection of Early
TP53 Alterations

Why are early TP53 mutations selected for in upper, relative to lower, GI adenocarci-
nomas? Is it because gastric and esophageal cells are more susceptible to TP53 mutations
than colorectal cells, implicating the cell of origin as the culprit? Or rather, is it the en-
vironmental context of the upper, compared to the lower, GI tract that selects for TP53
mutations? An examination of sporadic versus colitis-associated cancer (CAC) argues
that there is a substantial contribution from environmental context. CAC arises in the
setting of inflammatory bowel disease (IBD): the colon and other parts of the GI tract are
subject to relapsing bouts of inflammation. As opposed to sporadic colorectal cancer (CRC),
which is typically initiated by somatic alterations in WNT pathway tumor suppressor APC,
followed by alterations in KRAS and SMAD4, CAC demonstrates a distinct pattern of
genomic alterations notable for early TP53 mutations [45–47], and a significantly lower
frequency of APC mutations [48,49]. In fact, nondysplastic tissue from patients with IBD,
arising from chronic inflammation of the gastrointestinal tract, often demonstrates TP53
alterations [50]. A recent study analyzed molecular alterations in low-grade dysplastic
lesions arising within and outside segments of colon affected by ulcerative colitis, as well
as sporadic adenomas from non-IBD patients, and showed that, while all three cohorts
harbored mutations in APC and CTNNB1, TP53 mutations were only seen in lesions within
areas of known colitis, albeit at low frequencies [51]. These data indicate that environmental
context plays a critical role in the selection of genome alterations that lead to premalignant
and eventually malignant disease.

Premalignant lesions that develop in the setting of IBD also display more CIN than
sporadic adenomas [52]. Phylogenetic analysis of genomic changes in dysplasia and
cancer from patients with colitis suggests that copy-number alterations begin to accrue in
non-dysplastic bowel; the transition to low-grade/high grade dysplasia, however, often
involves a punctuated increase in copy-number alterations [53]. Whole-genome sequencing
of colonic crypts from patients with IBD and healthy controls revealed that the number
of copy-number variants and retrotranspositions were associated with IBD duration, and
that accumulation of structural variants in patients with IBD often exhibited an episodic
nature, consistent with rapid accrual in the transition from mucosa to high-grade dysplastic
lesions [54]. Furthermore, similar to GE adenocarcinomas in which a greater degree of
focal CIN and gene amplifications drive cancer pathogenesis, CAC also displays more
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fragmented genomes, relative to sporadic CRC [55]. Chronic inflammation is a hallmark in
the development of both GE adenocarcinoma and CAC, and strikingly, both cancers display
early TP53 mutations, followed by high-level focal amplification of essential oncogenes.

The esophagus and the stomach are exposed to dietary contents that either directly
imbue carcinogenic properties or indirectly lead to byproducts with carcinogenic attributes,
such as nitrosamines, as well as bile reflux, which collectively contribute to the development
of premalignant lesions [56–58]. Apart from dietary carcinogens, Helicobacter pylori infection
is also a well-established risk factor for gastric cancer development [59]. Many human
studies have demonstrated a relationship between Helicobacter-associated gastric neoplasia
and the development of TP53 mutations [59–65]. We suspected that these exogenous
exposures provide selective pressures for the emergence of mutant TP53 clones. To test
this hypothesis, we recently developed an integrative mouse model that combines disease-
relevant exposures, such as dietary carcinogens, with tissue-specific TP53 alterations to
study the development of GE premalignancy [66]. In this mouse model, we found that
inducible p53 inactivation in the stomach alone did not lead to premalignant lesions;
by contrast, p53 inactivation combined with dietary carcinogens led to the expansion
of p53 mutant clones and a greater burden of premalignant lesions. The mechanism
underlying the cooperation of environmental risk factors and early genomic alterations in
GE premalignancy deserves further investigation.

Multiple signaling pathways were upregulated in premalignant p53-deleted gastric
lesions of the integrated mouse model that developed in the setting of dietary carcinogen
exposure [66]. Among the dysregulated pathways, WNT signaling was notably activated,
as indicated by gene expression profiling of derivative organoids, and immunohistochemi-
cal staining of downstream mediators in gastric premalignant lesions. These results may
explain the relatively lower frequency of activating WNT pathway alterations in GE cancers,
compared to sporadic CRC. Supporting this notion, a study involving human gastric cancer
organoids demonstrated that co-alteration of TP53 and CDH1 promoted WNT signaling,
independent of WNT agonist R-spondin [67]. The mechanism underlying WNT activation
without frequent genomic alterations in GE adenocarcinomas requires further investigation.
By contrast, WNT signaling appears to be downregulated in CAC; for example, a study
looking at β-catenin staining demonstrated a greater proportion of tumors with low levels
of nuclear beta-catenin in CAC compared to CRC [53]. Investigative human and mouse
models that incorporate TP53 mutations and disease-relevant inflammation in the lower
gastrointestinal tract may provide insight into the WNT-independent drivers of CAC.

4. Early TP53 Mutations Shape the Method of Genomic Alterations in
Cancer-Promoting Pathways

As discussed above, early TP53 mutations enable the development of a type of chro-
mosomal instability that yields a more fragmented, aneuploid cancer genome with charac-
teristic focal amplifications in GE and CAC, compared to sporadic CRC. GE tumors with
focal CIN are associated with genome doubling and poor prognosis [7,68]. Of note, these
tumors also select for a distinct genomic pattern of pathway dysregulation, manifesting
with high-level focal amplifications of unmutated genes involved in MAPK signaling
(ERBB2, KRAS, VEGFA) and cell cycle regulation (CCNE1, CDK6) [4,69]. Similarly, CAC
often displays amplifications in ERBB2, FGFR1/2, and MYC [48]. In contrast, sporadic
tumors arising from the colon and rectum more typically alter these same pathways by
oncogenic mutations. For example, when altered, KRAS is almost exclusively mutated in
sporadic CRC, whereas an unmutated version is more commonly amplified, rather than
mutated, in GE adenocarcinomas [4,20].

Tumors overexpressing wild-type KRAS appear to be more resistant to MAPK inhibi-
tion, based on preclinical evidence. One mechanism indicates that KRAS-amplified tumors
augment signaling from upstream receptors [70] and, therefore, are prone to feedback
reactivation in the setting of downstream MAPK pathway blockade, effectively attenuating
the activity of MAPK inhibitors that target MEK and ERK. Another explanation for the
observation that KRAS-amplified GE adenocarcinomas are resistant to conventional MAPK
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pathway blockade is due to a potent adaptive response involving MEK signaling [71]. This
adaptive response to MAPK inhibitors is diminished by combining pharmacological target-
ing of both SHP2 and MEK. While the mechanism for the increased efficacy of the SHP2 and
MEK inhibitor combination is not clear, it is possible that SHP2 blocks RTK feedback loops,
which lead to resistance in MEK inhibitor monotherapy [71]. These preclinical data provide
rationale for utilization of MEK inhibitor/SHP2 inhibitor combinations in KRAS-amplified
GE adenocarcinomas, which are currently being tested in multiple clinical trials. Overall,
these data indicate that the early onset of CIN in GE adenocarcinoma and CAC leads to a
distinct genomic pattern of cancer pathway alterations by selectively amplifying MAPK
and cell cycle genes, as opposed to mutating them, which may carry implications for an
alternative treatment approach.

5. Therapeutic Vulnerabilities Imparted by Early TP53 Mutations

Among the molecular subtypes of GE adenocarcinomas, CIN is the largest and most
heterogeneous, accounting for more than 50% of gastric cancers and almost all esophageal
adenocarcinomas [3,9]. The shared genomic background of gastric and esophageal ade-
nocarcinomas has led to the clinical recognition that these cancers should be considered
similar, and hence, patients are often referred to as having “gastroesophageal adenocarci-
noma”. Furthermore, the shared biology of gastric and esophageal adenocarcinoma has led
to clinical trials being designed so that both populations are included, since the response
rates to targeted and immunotherapies are often similar. CIN tumors harbor recurrent
TP53 mutations, display marked aneuploidy, and often select for amplification in receptor
tyrosine kinase pathways (e.g., EGFR and ERBB2). While these methods of pathway ac-
tivation promote cancer progression, CIN may also yield therapeutic vulnerabilities [72].
Genomic instability from CIN leads to the accumulation of genomic aberrations, which
promotes rapid cell division and hampers regulatory mechanisms designed to control the
cell cycle. These events can generate significant pressure on the DNA replication process,
with resultant stalled or collapsed DNA replication forks, which is termed replicative stress.
In response to replicative stress, compensatory proteins in the DNA damage response
(DDR) pathway, such as ATR and CHK1, become activated to try to stabilize the DNA repli-
cation forks. Activation of these checkpoints in response to DNA damage and replication
stress may, therefore, generate new sensitivities in specific genomic contexts. p53-deficient
cancer cells have exhibited a selective sensitivity to inhibition of CHK1 when treated with
cytotoxic agents or gamma-radiation [73]. Upstream of CHK1, ATR inhibition imparted
selective toxicity in ATM- and p53-deficient cancer cells [74].

In addition to p53 deficiency, genomic alterations of other genes involved in cell cycle
regulation may further increase sensitivity to inhibitors of cell cycle checkpoints. For exam-
ple, amplification of CCNE1 and MYC, as well as FBXW7 mutations, are known to increase
replicative stress. Hence, these alterations may be biomarkers of increased sensitivity to
therapeutic strategies utilizing ATR, CHK1, and WEE1 inhibitors. Ongoing preclinical
research is aimed at developing additional biomarkers that could predict sensitivity to ATR,
CHK1, and WEE1 inhibitors [9,66,75]. Although ovarian cancer harbors TP53 mutations
in over 95% of cases, the CHK1/2 inhibitor prexasertib demonstrated a modest clinical
response in a phase II clinical trial of BRCA wild-type ovarian cancers [76–78]. DDR in-
hibitors have yielded modest tumor responses in early phase clinical trials, except for a
handful of cases that exhibit exquisite sensitivity, suggesting that predictive biomarkers
will help identify patient populations that will benefit the most [79,80]. Other than the
PARP inhibitor trials, there is a paucity of data available in GE adenocarcinoma regarding
sensitivity to DDR inhibitors, despite their therapeutic potential; therefore, we need a
deeper understanding of DDR pathway inhibitors in p53 mutant models of GE cancer.

The success of PARP inhibitors in targeting homologous recombination deficiency in
other malignancies has generated interest in exploring whether PARP inhibitors could be
effective in GE adenocarcinomas. While inactivating BRCA1/2 and PALB2 mutations are
relatively rare, ATM loss occurs in up to 15–20% of gastric adenocarcinomas [81], although
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this may be an overestimation. In the GOLD randomized phase III clinical trial, treatment
of advanced gastric cancer patients with the PARP inhibitor olaparib and paclitaxel did
not meet its primary endpoint of improving survival in the overall study population nor
in patients with ATM-deficient tumors in the second-line setting [82]. In this trial, ATM
deficiency was defined immunohistochemically as observing ATM staining in less than
25% of tumor cell nuclei. While targeting ATM deficiency with PARP inhibition has, thus
far, been unsuccessful, recently, a phase I trial of BAY-1895344 ATR inhibitor monotherapy
showed encouraging efficacy in ATM-deficient tumors [83]. In this trial, an objective
radiological response was observed in three solid tumor patients with ATM loss (defined
as observing ATM staining in less than 1% of tumor cell nuclei) (Figure 2). Based on these
results, better predictive and functional biomarkers of p53 mutant GE cancers that are
sensitive to DDR pathway inhibitors are required for effective translation.
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Figure 2. DNA damage response (DDR) and putative inhibitors of potential clinical importance. Single lightning bolt
indicates damage to one strand of DNA. Double lightning bolt indicates damage to both strands of DNA. Upon DNA damage,
the pathway is activated, leading to either G1/S phase checkpoint blockade or S phase prolongation and prevention of
growth/mitosis. Repair of the DNA strand breaks lead to p53 activation, but in those cells with TP53 alterations, checkpoints
are bypassed. Targeting the DDR pathway upstream of p53 will theoretically lead to cell death due to mitotic catastrophe.
dsDNA: double stranded DNA; ssDNA: single-stranded DNA; G1/S: restriction checkpoint before DNA synthesis phase
in cell cycle; S phase: synthesis phase; G2/M: growth phase checkpoint leading to mitotic phase. * Given the molecular
similarities of CHK1 and CHK2, CHK1 inhibitors also have varying degrees of activity against CHK2. dsDNA: double
stranded DNA; ssDNA: single-stranded DNA; G1/S: restriction checkpoint before DNA synthesis phase in cell cycle;
S phase: synthesis phase; G2/M: growth phase checkpoint leading to mitotic phase.

6. Conclusions

In this perspective article, we provided multiple lines of evidence that GE neoplasia
harbor early TP53 mutations, and that these lesions have a distinct pattern of genomic
evolution en route to malignancy. Further work is needed to identify additional high-
risk early genomic events that lead to the development of GE adenocarcinomas, as this
may enhance our ability to risk stratify patients with cancer precursor lesions, such as
BE. Models of GE adenocarcinomas and CAC will benefit from the incorporation of early
TP53 mutations and relevant environmental exposures to better capture complex features
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of cancer initiation and progression. The early onset and evolution of CIN in GE cancer
enabled by initiating TP53 mutations promote amplification of unaltered genomic loci
associated with MAPK and cell cycle pathways, providing an adaptive fitness advantage.
Focal CIN also imparts potential therapeutic vulnerabilities, especially to DDR pathway
inhibitors that are currently being tested in preclinical and clinical settings. We hope
that through a better understanding of disease mechanisms, we will be able to define the
population of patients with gastric and esophageal adenocarcinomas that will benefit from
DDR pathway inhibitors.
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