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Abstract

Although the natural haptic perception of textures includes active finger movements, it is

unclear how closely perception and movements are linked. Here we investigated this ques-

tion using oriented textures. Textures that are composed of periodically repeating grooves

have a clear orientation defined by the grooves. The direction of finger movement relative to

texture orientation determines the availability of temporal cues to the spatial period of the

texture. These cues are absent during movements directed in line with texture orientation,

whereas movements orthogonal to texture orientation maximize the temporal frequency of

stimulation. This may optimize temporal cues. In Experiment 1 we tested whether texture

perception gets more precise the more orthogonal the movement direction is to the texture.

We systematically varied the movement direction within a 2IFC spatial period discrimination

task. As expected, perception was more precise (lower discrimination thresholds) when

finger movements were directed closer towards the texture orthogonal as compared to in

parallel to the texture. In Experiment 2 we investigated whether people adjust movement

directions to the texture orthogonal in free exploration. We recorded movement directions

during free exploration of standard and comparison gratings. The standard gratings were

clearly oriented. The comparison gratings did not have a clear orientation defined by

grooves. Participants adjusted movement directions to the texture orthogonal only for clearly

oriented textures (standards). The adjustment to texture orthogonal was present in the final

movement but not in the first movement. This suggests that movement adjustment is based

on sensory signals for texture orientation that were gathered over the course of exploration.

In Experiment 3 we assessed whether the perception of texture orientation and movement

adjustments are based on shared sensory signals. We determined perceptual thresholds for

orientation discrimination and computed ‘movometric’ thresholds from the stroke-by-stroke

adjustment of movement direction. Perception and movements were influenced by a com-

mon factor, the spatial period, suggesting that the same sensory signals for texture orienta-

tion contribute to both. We conclude that people optimize texture perception by adjusting

their movements in directions that maximize temporal cue frequency. Adjustments are per-

formed on the basis of sensory signals that are also used for perception.
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Introduction

Imagine entering a room with the lights turned off. In order to perceive the world around you

with your sense of touch, you would probably move your hands and explore. The way you

would move your hands will depend on the things you encounter. In other words, hand move-

ments generate haptic sensations [1] and exploratory movements depend on the object prop-

erty of interest [2]. Recent studies described the mutual influence of movement and sensation

in haptic perception of location, softness, and roughness [3–5]. Our study investigates the

interaction between movement and sensation in natural exploration of oriented texture. In

three experiments, we test whether people optimize the perception of oriented textures by

adjusting the direction of exploratory movements based on sensory signals for texture orienta-

tion. Experiment 1 tests whether there is a systematic influence of movement direction on the

precision of perceiving the spatial period of oriented textures. Experiments 2 and 3 investigate

whether sensory signals for texture orientation influence the control of movement directions,

first by studying whether movement direction is adjusted to the orientation of the explored

texture (Experiment 2), and then by investigating whether sensory signals that underlie the

perception of texture orientation are also used in the adjustment of movement direction

(Experiment 3).

Texture perception by touch is multidimensional [6] and people can describe multiple fac-

ets of a surface texture including roughness, coarseness, jaggedness, spatial element density, or

configuration [7]. However, texture perception has often been investigated using rather simple

textures such as periodic grooved gratings, which can be defined by their spatial period (e.g.,

[8]), and most researchers have asked for roughness judgments (e.g., [9–11]). However, several

others also asked for a more direct spatial period judgment (e.g., [12–15]). Results from both

tasks suggest that haptic perception of such aspects of the structure of textures is based on spa-

tial and temporal cues [13,16]. Spatial cues are the kind of information we can get from skin

deformation after pressing a textured surface against the skin without permitting lateral move-

ment (e.g., [17]). The neural coding of spatial cues, as shown in roughness perception, is

strongly based on the spatial pattern of activation of the slowly adapting afferents (SA1) [16].

Temporal cues arise from movement over a textured surface and refer to the changes of signals

over time, i.e. vibrations (e.g., [18]). Those vibrations are mainly coded by rapidly adapting

(RA) and Pacinian (PC) afferents, as also shown in the perception of roughness [16]. Although,

in natural situations, textures are typically explored with lateral movements [2], it has been

previously discussed how much movements can actually enhance perceptual precision (at least

for certain kind of textures) [19–20]. For fine textures, movements seem to be crucial; rough-

ness discrimination was reported to be seriously impaired without the temporal cues produced

by movements [21]. In contrast, the roughness of coarse textures was reported to be highly dis-

tinguishable by static touch alone [17]. Nevertheless, there is evidence that even for coarse tex-

tures, as well as for most natural surfaces, spatial cues are combined with temporal cues [9,16].

Gamzu and Ahissar [13] demonstrated the advantage of temporal cues. For their frequency

(= 1/spatial period) discrimination task, poor haptic performers were able to improve by

changing movement velocity as a strategy, which accentuated temporal cues. Similarly, Lamb

[22] showed that when exploration generates temporal cues, the precision of texture percep-

tion can be increased. In his study, textures, which incorporated stripes of raised dots, were

passively moved against the participant’s finger. The spacing between stripes was either modi-

fied perpendicular to the movement track or along the movement track. After the sequential

presentation of two textures, participants reported in which of the two textures the spacing

between stripes was modified. Performance was better for manipulations along the movement

track than perpendicular to it. This can be attributed to the added temporal cues in the case of
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variations along the movement track. These two reported studies indicate that not only move-

ments (or the lack of them) but also the specific movement parameters matter. More precisely,

the study of Gamzu and Ahissar describes an influence of movement velocity on perception

and Lamb’s study describes an influence of direction of passive movement between the skin

and the surface. For oriented textures, movement direction is systematically linked to temporal

cue frequency. Therefore, if temporal cues matter in active touch, movement direction should

impact the perception of the spatial period of the texture. To our knowledge, however, there

exists no study that investigated the influence of movement direction in active touch on per-

ceptual precision and did so by systematically varying movement direction.

Assuming that there is one movement direction that leads to the best perceptual precision,

it can be referred to as the optimal movement direction. But do humans utilize this optimal

movement direction in free exploration? Freely chosen movements used in active exploration

were suggested to aim for maximization of sensory information gain (e.g., [23–24]). As a mat-

ter of fact, in visual research, the orientation of depicted textures was found to influence eye

movement direction [25–27]. For haptic softness and shape perception, it has been demon-

strated that participants enhance the precision of perception through motor control [28–29].

For roughness perception, Tanaka, Bergman Tiest, Kappers, and Sano [5] observed that partic-

ipants adjust normal force, scanning velocity, and break times in ways that seem effective for

different tasks and explored stimuli. Along these lines, Nefs, Kappers and Koenderink [14]

reported that applied contact force increased with line frequency of gratings and suggested

that this might have improved perception in the task. However, these two studies on texture

perception have not assessed whether movement adjustments actually optimize perceptual

precision, neither did they investigate movement direction.

The objective of the current study is to investigate the interdependence between sensation

and movements in the perception of texture spatial period. Our hypothesis is that humans

adjust their movement direction when exploring oriented textures in order to optimize per-

ceptual performance, and that they do so based on sensory signals for texture orientation. Our

textures are defined by periodic parallel grooves; they are orientated by the groove orientation.

For these oriented textures, movement direction and temporal cues are systematically linked.

Finger movements in the direction of the texture orientation do not produce temporal cues to

the spatial period of the texture. Finger movements directed orthogonally to the texture orien-

tation produce temporal cues with maximal frequency. The more movement directions are

shifted from the texture orthogonal (i.e., the direction along which a grating modulates), the

lower is the temporal frequency of stimulation. Therefore, the temporal frequency also differs

less between textures with different spatial frequencies, which probably yields less precise

estimates of spatial frequency. By prescribing the movement direction on oriented textures,

Experiment 1 systematically investigates the impact of movement direction on the perception

of spatial period of textures. We expect that perceptual precision is enhanced when movements

are directed orthogonally to the texture. Experiments 2 and 3 test whether participants use sen-

sory signals for texture orientation in order to optimize movement directions.

In Experiment 2, we investigate adjustments of movement direction over different strokes

of the exploration process. Any adjustment of movement direction can only be based on the

sensory signals gathered during the exploration process, when no prior knowledge is given.

Thus, movement direction will only be adjusted after sufficient sensory signals for texture ori-

entation are available. The integration of sensory signals can extend over several movements

[30], and, because sensory signals are accumulated haptic perception becomes more precise

with extended exploration [31]. Hence, we expect that only in the late strokes, at the end

of natural exploration movement, are directions adjusted to optimize temporal cues (i.e.,

towards the texture orthogonal). Note that a previous analysis of part of the data of Experiment
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2 has been pre-published in a conference paper [32]. However, here a considerably improved

analysis of movement data has been used, so that the present results have not been previously

published.

In Experiment 3, we investigate whether adjustments of movement direction and the per-

ception of texture orientation rely on a common basis, namely shared sensory signals for tex-

ture orientation. In vision, numerous studies have investigated how far underlying sensory

signals are shared by eye movement control and perception. These studies compared percep-

tual precision to eye movement precision as derived from psychophysical and ‘oculometric’

functions, respectively (e.g., [33–35]). Here, we construct ‘movometric’ functions based on the

exploratory behavior, which allow for the direct comparison between the precision of motor

adjustments and the perception of texture orientation. We expect that the precision of percep-

tion and movement vary with the same factor, namely texture period.

Experiment 1

Experiment 1 investigates the impact of movement direction on the perception of texture

period. Haptic texture stimuli were 3D printed (Stratasys Objet 30 Pro). All gratings were

cylindrical discs with a groove pattern following a sine-wave function on top of the surface.

Participants stroked once over each of two gratings in a pair and judged which one had a

higher spatial frequency (= 1/spatial period). We used a PHANToM force-feedback device to

restrict finger movements to specific directions by defining exploration tunnels (orientation:

0˚, 30˚, or 60˚). The movement direction relative to the texture orthogonal was manipulated

(0˚ vs. 45˚ vs. 90˚ shifted from the texture orthogonal). The orientation of the textures relative

to the body was varied systematically depending on the exploration tunnel orientation and

the movement direction relative to the texture orthogonal. For each of the relative movement

directions we measured the just noticeable difference (JND) of the textures’ spatial period.

Based on the decreasing availability of temporal cues, we predict a systematic increase in JNDs

(i.e., discrimination thresholds assessing perceptual precision) with higher shifts from orthog-

onal movement direction.

Methods and materials

Participants. The sample was composed of sixteen right-handed participants aged 19–29

years (11 females). All participants were naïve to the purpose of the experiment and were

paid for participating. Nobody reported recent injuries of the right index finger or sensory or

motor impairments. All had a two-point discrimination threshold of 3 mm or lower at the fin-

ger pad of the right index finger. In all three experiments, the reported methods and proce-

dures were approved by the local ethics committee (LEK) of FB 06 at Giessen University

(approval number: 2013–0021). Participants gave written informed consent. The study was

conducted in accordance with the ethical standards laid down in the 2008 Declaration of

Helsinki.

Apparatus and stimuli. Participants sat in front of a visuo-haptic setup (see Fig 1). The

setup contained a PHANToM 1.5A haptic force feedback device, force sensor (682 Hz, resolu-

tion: 0.05 N) and a 22"-computer screen (120 Hz, 1024 x 1280 pixel). Circular grating stimuli

were presented next to each other placed on the force sensor, which measured the finger force

applied to the stimuli. Participants looked on the computer screen through stereo glasses and a

mirror (40 cm viewing distance in total). Due to this mirror, participants were not able to see

the real stimuli or their hand. Additionally, the setup allowed for a spatial alignment of the 3D-

visual representation with the haptic display. In the virtual 3D-scene stimuli were displayed as

three dimensional cylindrical discs with a border. This visual representation did not present
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the texture pattern or its orientation. The participant’s finger position was visible as a small

sphere (8 mm diameter) when moving outside the stimulus area. We connected the right

index finger to the PHANToM via an adapter, which was attached by double-faced adhesive

tape to the nail. This setup allowed for free finger movements having all six degrees of freedom

in a 38 x 27 x 20 cm workspace. However, here we used the PHANToM device to restrict

finger movements to follow a predefined direction within the exploration tunnel and to mea-

sure finger position. Exploration tunnels were defined by a 16 mm wide path across the tex-

ture’s surface, where the PHANToM device displayed no force. Outside this exploration

tunnel, forces F (in N) were presented that drove the finger back to the exploration tunnel, and

increased by a square function with the finger’s distance D (in mm) to the tunnel’s border

(F ¼
ffiffiffi
2
p

D2=441mm2=N). The exploration tunnel was displayed by a cuboid on top of the

stimulus in the 3D-visual representation. In order to provide stable 3D vision, the participants

head was stabilized by a chinrest. Custom-made software controlled the experiment, collected

responses, and recorded the data from the force sensor and the PHANToM with recording

intervals of 3 ms. We used headphones and ear plugs to mask sounds from haptic exploration.

Haptic gratings were created with the OpenSCAD software and 3D printing. The 3D

printer (Objet 30 Pro, Stratasys Ltd., United States) builds drop-wise arbitrary 3D objects from

3D digital data (photopolymer material: VeroClear; build resolution: 600 x 600 x 1600 dpi (x-,

y-, z-axis)). The grating discs were 4 mm high (z-axis) with a texture diameter of 90.7 mm

(total diameter with border: 100.7 mm). A grip (10 x 5 mm) indicated the texture orientation

for the experimenter (Fig 1). The height of the texture z followed a sine-wave function with the

peak amplitude (A) of 0.3 mm (see Eq 1). The advantage of sine-wave stimuli is that they con-

sist of only one spatial frequency component [36]. The standard stimulus had a period (P) of

1.78 mm. We created 25 comparison gratings with periods between 1.14 and 2.79 mm, with an

approximate step size of 0.016�log (P). The spatial period of grooves was chosen so that they

Fig 1. Sketch of setup and stimulus. Stimulus location, shape and the exploration tunnel contour were visually represented on a monitor and

were seen through a mirror and stereo glasses. The participant’s right index finger was connected to the PHANToM via an adapter. The

PHANToM measured the finger position and restricted the movement to a predefined exploration tunnel. Both real grating stimuli were placed

in the same orientation next to each other on a force sensor.

https://doi.org/10.1371/journal.pone.0208988.g001
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would be big enough to fall in the range of macrostructures (� 1mm) and small enough to lie

in the range where manipulations of spatial period are in a monotonic relationship to per-

ceived roughness (� 3 mm) [37,11].

z ¼
1

2
Asin

2px
P
þ

1

2
A ð1Þ

Design and procedure. Participants explored a stimulus pair consisting of one standard

and one comparison stimulus in each trial. They judged which of the two had a higher spatial

frequency, as this is more intuitive to judge than the spatial period. We explained spatial fre-

quency as the number of experienced (i.e., felt) grooves over a certain distance. Note that tex-

tures included 40–80 ridges that were typically explored within less than a second (movement

speed ~ 10 cm/s); therefore, counting of individual ridges is likely impossible. Stimuli with a

longer period have lower spatial frequencies. We randomized which of the two stimuli was

presented on the left side. During each trial, both stimuli of the stimulus pair were placed in

the same orientation (example for one stimulus in Fig 1). The orientation of the stimulus pair

was determined by a) the variable orientation of the exploration tunnel which was randomly

chosen to be 0˚, 30˚, or 60˚, and b) the presented level of the within-participant variable shift

of movement direction from the texture orthogonal (0˚ vs. 45˚ vs. 90˚). We measured just

noticeable differences (JNDs) in terms of the discrimination of spatial period as a function of

movement direction shift from the texture orthogonal. The lower the JNDs the better discrimi-

nation performance, that is to say the higher the perceptual precision. JNDs were assessed by

the 75% discrimination threshold using the Best PEST adaptive staircase procedure [38] com-

bined with the two-interval forced-choice task. In this method, the next comparison stimulus

is chosen by an algorithm, which takes in to account previous responses for this condition.

More precisely, the algorithm chooses the comparison with the maximum likelihood of being

the threshold. In this way, the information gain in each step is maximized, which makes this

method optimal in order to fasten threshold determination. The procedure came to an end

after 45 trials per staircase. The final maximum-likelihood estimate in each staircase estimated

the JND. For each condition, one upper and one lower staircase were implemented starting

with the 2.79 and 1.14 mm, respectively. The trials from all 6 staircases were randomly inter-

leaved. In order to practice the task and the movement restrictions through the exploration

tunnel, participants performed 4 trials of each staircase prior to the experiment.

At the beginning of each trial a blank three dimensional cylindrical disc with a border indi-

cated the location of the first stimulus (randomly assigned to the left and the right stimulus of

the stimulus pair). Additionally, a cuboid on top of the stimulus displayed the exploration tun-

nel (orientation: 0˚, 30˚, or 60˚). A dot, which was randomly assigned to be either on the left

end (0˚, 30˚, or 60˚) or the right end (180˚, 210˚, or 240˚) of the exploration tunnel, indicated

on which point the exploration should start. The visualization served to guide the participant

through the trial without giving any information about textural structure or texture orienta-

tion. Participants were instructed to move from one point on the stimulus border to another

through this ‘tunnel’ and they couldn’t see their hands moving during this time. After the par-

ticipant stroke once over the texture within the exploration tunnel, the visualization of the sec-

ond stimulus appeared. Exploration tunnel, shift from orthogonal, and starting point were

identical for both stimuli of a pair. After one stroke over each stimulus, participants decided

which of the two textures had a higher spatial frequency by pressing virtual buttons rendered

by the PHANToM.

Data analyses. The data for each participant consisted of upper and lower JNDs for each

of the three movement direction shifts from the texture orthogonal. In order to calculate JNDs

Interdependences between movement direction and texture perception

PLOS ONE | https://doi.org/10.1371/journal.pone.0208988 December 14, 2018 6 / 25

https://doi.org/10.1371/journal.pone.0208988


for each movement direction shift, we averaged the corresponding upper and lower JND

estimates. These values were entered into an ANOVA with the within-participant variable,

Direction Shift of movement from the texture orthogonal (0˚ vs. 45˚ vs. 90˚). We tested our

hypothesis of a systematic monotonic increase in JNDs with higher Direction Shift by per-

forming a linear contrast analysis on the direction-specific JNDs. Further, we calculated

planned paired one-sided t-tests to analyze whether the contrasts between individual condi-

tions reflect the increase in JNDs with higher Directional Shift.

Additionally, in order to check for the manipulation of the exploration tunnel, we analyzed

the exploratory movement data. We extracted the direction of one stroke over each stimulus

within each trial and averaged over the two strokes of a trial. Strokes were analyzed from

exploratory parts of the movement, when the finger was touching the stimulus area with at

least 0.1N of force for at least 200 msec. We detected strokes as continuous movements either

from one texture border to another or between two movement turns, which we extracted by

zero crossings in the 1st order derivatives of the x- or y-position over time. Stroke detection

algorithms were considerably improved in comparison to a previous conference article on

Exp. 2 [32], as follows: First, in order to exclude that curved movements will be detected as

movement turns, we only included those zero crossings for which the 1st order derivative

changed by more than 0.01 rad. Second, we increased the precision of measuring movement

endpoints: In case the z-position of a movement turn was an outlier based on the exploratory

part of the movements for this trial, stroke endpoints were defined as the closest positions

within the 95%-confidence interval of z-positions. In case several strokes over one stimulus

were detected by the algorithm (which might occur due to movement pause or slip) we ana-

lyzed only the stroke with the longest duration. We included only trials in this analysis for

which we were able to extract strokes from the movement data for both stimuli of a trial

(94%).

Results

Movement data. We plotted the movement directions from all participants and all trials

in a circular histogram (see Fig 2). The different colors represent trials with different explora-

tion tunnels. As can be seen from the graph, movements followed the aimed direction with lit-

tle spread.

JNDs. Individual JNDs were entered into the ANOVA with the within participant variable

Direction Shift from the texture orthogonal (0˚, 45˚, and 90˚; depicted in Fig 3). The main

effect of Direction Shift was significant, F(2,30) = 5.513, p = .009. The linear contrast analysis

revealed a significant linear increase in the JNDs with larger Direction Shift, F(1,15) = 8.758,

p = .005. As expected, JNDs were higher with larger Direction Shifts from the texture orthogo-

nal. In addition, our directional a-priori hypothesis allowed for a secondary analysis through

one-sided t-tests between individual conditions (Bonferroni-corrected alpha levels at 0.017).

The JNDs were significantly higher for the 90˚ condition than for the 0˚ condition, t(15) =

2.959, p = .005. The JNDs in the 45˚ condition were not significantly higher than the JNDs in

the 0˚ condition, t(15) = -.690, p = .256. They were also not significantly lower than the 90˚

condition, t(15) = 2.219, p = .021, but showed a trend. We conducted a sensitivity analyses

with G�Power 3 [39]. The power of finding an effect of 0.15 mm (8.5% Weber fraction differ-

ence) or more was at least 96% for the Bonferroni-corrected one-sided t-tests (standard devia-

tion assessed as 0.143 mm by the average standard deviation of the differences between all

conditions). However, 0.15 mm is a rather large effect, comparable to difference for moving

and stationary roughness discrimination in fine textures [17]. It is reasonable to expect such

large effect sizes for the comparison between the extreme conditions of directional shift 0˚
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(maximal temporal cues) and 90˚ (no temporal cues). The middle condition should vary by

less, which is why the associated t-tests might not have had sufficient power to detect an effect.

Discussion Experiment 1

In overall analysis participants were better in discriminating the spatial period of the texture as

they moved more orthogonal to the texture. Although not all individual comparisons were

able to confirm the effect, moving orthogonally or obliquely to the texture was or tended to be

better than moving in line with the texture. The results are consistent with the prediction of a

systematic monotonic increase in perceptual precision with movement directions closer to tex-

ture orthogonal, which we had made from the systematic increase of the temporal frequency

of signals. A higher temporal frequency of signals likely allows for a better differentiation of

textures based on temporal cues. Thus, our results support the idea that movement direction

can influence perceptual precision, and that different movement directions come along with

differently useful sensory signals for texture period.

In Experiment 1, we were interested in the effect of movement direction relatively to the

texture orientation. However, one might wonder whether the absolute direction of the move-

ment might also have affected texture perception. Such effects of the absolute movement

Fig 2. Movement directions. Circular histogram (bin size 3˚) of all trials and participants for different exploration

tunnels. Movement direction for trials with the exploration tunnel of 0˚ are plotted in dark gray, light grey stands for

the 30˚, and black for the 60˚ exploration tunnel. The numbers indicate the proportion of strokes in a certain direction.

https://doi.org/10.1371/journal.pone.0208988.g002
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direction were previously described for other tasks, such as shape perception [29]. In order to

test whether the absolute movement direction might have additionally influenced the spatial

period judgments, we reanalyzed the staircase data by fitting psychometric functions for all tri-

als with the same absolute movement direction (i.e. the same exploration tunnel). Neither the

points of subjective equality (PSEs), F(2,30) = 1.447, p = .251, nor the just noticeable differ-

ences (JNDs), F(2,30) = .891, p = .421, were significantly affected by the absolute direction of

the movement. That is, in contrast to the results for relative movement direction we did not

find evidence that also absolute movement direction considerably influenced perceptual preci-

sion nor did the different motion angles introduce a noteworthy bias in the perceived spatial

period.

In optimal exploration, the systematic relationship between the movement direction rela-

tive to texture orientation and precision of perception should be exploited [23–24,28]. Some

studies demonstrated that exploration movements are adjusted based on previously accumu-

lated sensory signals—for different movement parameters during a haptic localization task [3],

and for finger force during softness perception of differently compliant objects [4]. In order to

test for similar mechanisms in texture perception we designed Experiment 2, in which we mea-

sure the freely chosen movement direction for texture exploration. We expect to find results

complementary to Experiment 1, that is, that sensory signals for texture orientation influence

movement direction.

Experiment 2

In Experiment 2, we investigate movement direction in different strokes of the exploration

process. We expect that movement directions are adjusted over time when doing so can

improve perceptual performance, but not when there is hardly an effect of movement direction

Fig 3. Average JNDs for the 3 conditions of movement direction shift from the texture orthogonal. Error bars are

indicating within-participant standard errors [40].

https://doi.org/10.1371/journal.pone.0208988.g003
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on perception. In order to test this assumption, we created two kinds of stimuli, again using

3D printing. The first type of stimuli, standard gratings, was composed of a groove pattern

following the sine-wave function along one dimension, like the stimuli of Experiment 1 (peri-

ods 1.27 and 1.44 mm; Fig 4). The texture pattern of the second type of stimuli, comparison

gratings, was composed of the intersections of two orthogonal sine-wave function patterns

(periods: 1.02 to 1.69 mm). Thus, standards have one clear orientation, and a systematic rela-

tionship between movement direction and temporal frequency of stimulation exists: We state

that for the standards, finger movements in the direction of the texture orientation generate

no temporal cues to the texture period. In contrast, orthogonal movements generate optimal

temporal cues by maximizing the temporal frequency of cues and, therefore, also maximizing

the differences in temporal cues from different textures. For comparisons, in contrast to stan-

dards, there is not a single direction which maximizes the temporal frequency of stimulation.

Movements in two orthogonal directions (0˚ and 90˚) over comparisons provide similar tem-

poral cues to spatial period. Participants explored one standard and one comparison stimulus

grating in a trial and reported which of the two had a higher spatial-frequency. We manipu-

lated the orientation of the stimuli in each trial, and measured movement direction for individ-

ual strokes. Participants were free to use as many strokes as they wanted. We predicted that,

movements over the standard will be preferentially directed orthogonally to the texture orien-

tation after sufficient sensory signals for orientation have been gathered. In contrast, we did

not expect corresponding adjustments for the comparisons. The basic methods and a work-in-

progress analysis of the raw data from the current Experiment 2 were presented in a confer-

ence paper [32]. For the sake of readability, we repeat the experimental methods in the present

Fig 4. Sketch of a stimulus pair. The standard stimulus on the left is an oriented grating defined by the sine-wave

function on one of the axis. The comparison stimulus on the right is a grating with no clear orientation defined by the

union of two sine-wave functions on two axes. The two stimuli are depicted in the texture orientation of 75˚.

https://doi.org/10.1371/journal.pone.0208988.g004
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study. Importantly, however, the presented results are novel because raw movement data were

entirely reanalyzed using improved algorithms (as described for Experiment 1).

Methods and materials

Participants. Thirteen right-handed healthy participants (age range: 19–32 years; 7

females; two-point discrimination threshold 3 mm or lower) were paid for participating.

Participants were naïve to the purpose of the experiment and had not participated in Experi-

ment 1.

Apparatus and stimuli. The setup was identical to that used in Experiment 1, and stimuli

had the same size and grip. Standard gratings were constructed exactly as for Experiment 1

(Fig 4), using two standard stimuli with the periods (P) of 1.27 mm and 1.44 mm (1 D sine-

wave). In this experiment, however, we defined comparison stimuli in a way that they would

not have a single clear orientation while still having spatial periods comparable to the stan-

dards. This was achieved by computing the texture height of the comparison stimuli from two

overlaid sine-wave functions that were oriented perpendicular to each other. The intersection

of both textures defined the comparison. A cut through two orthogonal axes of comparison sti-

muli would result in identical images (Fig 4), and the texture height z was at each point the

minimum of the two sine-wave functions (2 D sine-wave; peak amplitude A = 0.3 mm):

z ¼ minð
1

2
Asin

2px
P
þ

1

2
A;

1

2
Asin

2py
P
þ

1

2
AÞ ð2Þ

We created 5 comparison gratings with periods P of 1.02, 1.19, 1.35, 1.52, and 1.69 mm. For

each of the two standards, we used three comparisons. Two comparisons were defined by +/-

20% of the standard’s period, because 20% corresponds to the Weber fraction in active touch

([41]; Experiment 1). The third comparison was the same stimulus for both standards (1.35

mm); it has 6% lower period than the standard of 1.44 mm and 6% higher period than the stan-

dard of 1.27 mm. Based on the stimulus construction, we defined texture orientation in stan-

dard gratings as the orientation of the parallel grooves. By definition, comparison gratings had

two equal groove orientations. In the following, we will refer to one of them as the texture ori-

entation (75˚ in Fig 4). It is important to note that the comparison grating had the same tem-

poral frequency of stimulation for two movement directions, along (0˚) or against (90˚) its

orientation. All other movement directions lowered the frequency of stimulation only moder-

ately (< 30%). The highest deviation in temporal frequency of stimulation is produced by a

movement direction of 45˚ to the texture orientation, which corresponds to a multiplication

with sin(45˚) (� 0.7 = -30%). Therefore, there is only a limited effect of texture orientation on

the physical spatial period of comparisons, in contrast to standards.

Design and procedure. In each trial, a standard and a comparison stimulus were explored

and participants had to judge which of the two had a higher spatial-frequency−regardless of

other differences between the textures. We manipulated the orientation of the stimulus pair on

the force sensor (15˚, 45˚, 75˚, 105˚, 135˚, and 165˚; Fig 4). We measured the movement direc-

tions over the standard and comparison gratings. Hereby, we focused on the first, middle and

last stroke per stimulus, as they represent movement adjustments at different segments within

the exploration process.

We used two standard stimuli paired with one of three comparisons (standard 1.27 mm

with comparisons 1.02, 1.35, and 1.52 mm; standard 1.44 mm with 1.19, 1.35, and 1.69

mm). The standard was either presented at the left or the right side in order to control for

potential effects of the hemispace. Both gratings of one stimulus pair were placed in the

same orientation.
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The focus of this experiment was on the adjustments of movements based on sensory sig-

nals gathered over the exploration process. Hence, it was essential to design this experiment in

a way that encourages participants to perform a higher number of strokes over each texture.

We chose a difficult perceptual task (small differences in the periods of standards and compar-

isons) in order to ensure that several strokes would be required to gather sufficient informa-

tion for a correct response. Further, in free exploration, it is possible that participants avoid

additional movement due to the associated additional movement costs. Movement costs, how-

ever, can be balanced by rewarding the performed movement [42]. Therefore, we introduced

the experiment as a game and included rewards for correct responses. By giving a correct

response participants could earn 10 or 100 points, which was equally distributed among all tri-

als. Overall, the experiment consisted of 2 [standards] x 3 [comparisons] x 6 [orientations] x 2

[standard left or right] x 2 [10 or 100 points] = 144 trials. The order of the trials was random-

ized. Trials were presented in 3 successive blocks of 48 trials. Between two blocks, participants

were instructed to take a break of at least two minutes. In total, the experiment lasted 2–3

hours. Prior to the experiment participants performed a flexible training with up to 8 trials to

ensure that they understood the task.

Before each trial, the number of points corresponding to a correct response (10 or 100) was

displayed on screen. When the first stimulus was displayed, a dot indicated the start position.

Exploration started randomly either with the left or the right stimulus on a random position

at the stimulus border (20˚-350˚, in steps of 30˚). Participants were free to perform as many

strokes and to switch as often between stimuli as they wanted. Participants received 16€ plus

an additional euro for every accumulation of 500 points. Winning of this additional euro was

indicated by a visual and auditory signal, which was displayed randomly 1–3 trials after the

points had been accumulated. The total payment was not lower than 23€ (guessing) and not

higher than 31€ (perfect performance).

Data analyses. Exploration movements on each stimulus were segmented into individual

strokes. For the exploration of each stimulus we analyzed 3 strokes (first, middle, last). If the

total number of strokes was even, the middle stroke was defined as the later one of the two pos-

sible. Strokes were segregated from the movement data as in Experiment 1 (and thus raw data

was reanalyzed by improved algorithms as compared to [32]). The analysis was based only on

those trials in which participants performed at least two strokes on each stimulus. When par-

ticipants performed exactly two strokes, the second stroke was coded as the middle and last

stroke. We aligned all stimulus orientations with an orientation of 0˚ in order to collapse data

over trials. To do so, we rotated stroke directions by their corresponding texture orientation in

opposite direction. We weighted individual strokes with their duration, as strokes had consid-

erable differences in their duration. Based on the weighted data we calculated individual histo-

grams of movement directions (bin size: 15˚) separately for each combination of grating type

and stroke (first, middle, or last). Each histogram displays which proportion of exploration

time one participant moved in a specific direction. For an overall analysis, we computed an

average histogram for each combination of grating type and stroke based on the individual

participant analyses. For each combination of stroke (first, middle, last) and grating type (stan-

dard, comparison) circular statistics on the averaged binned data were conducted using the

Matlab Circular Statistics Toolbox [43]. We performed a V-test, a variant of the Rayleigh test,

which tests the hypothesis that the population is not distributed uniformly around the circle

but has a specified mean direction (see [44]), which was 90˚ in our case. We applied Bonfer-

roni-corrected alpha levels at 0.0083 (α = .05/6). This statistical analysis outputs V-values,

which are higher the bigger the deviation of the empirical distribution from a uniform distri-

bution is and the more consistent the empirical mean direction is with the predicted one.

Therefore, non-significant results could either be due to a uniform distribution, or a
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distribution with a mean that deviates from the predicted direction of 90˚. We predict that

movement directions will get increasingly distributed non-uniformly over the course of the

exploration of the standard stimulus. That is to say, we expect significant results for the last

stroke over the standard.

Results

Exploration and task performance. On average, participants spent 7.55 seconds

(SD = 2.75) on the standard and performed 4.29 strokes (SD = 1.93), and they spent 7.45

seconds (SD = 2.52) on the comparison with 4.02 strokes (SD = 1.84). They switched twice

between the stimuli (M = 2.05, SD = .82): once from first to the second stimulus and then once

back to the first stimulus. The time spent on the stimulus did not significantly differ for the

two gratings, t(12) = .688, p = .505, but participants used more strokes for the standard grat-

ings, t(12) = 2.585, p = .024. Participants gave 59.2% correct responses on average (SD = 8%),

which is significantly higher than guessing (50%), t(12) = 3.956, p = .002 (t-test against 50%

after rationalized arcsine transformation). There was no significant difference in the arcsine-

transformed percentages of correct responses between the trials with different spatial periods

of the standard stimulus, t(12) = .024, p = .814. Similarly, the texture orientation did not pro-

duce a significantly non-uniform distribution of the number of correct answer, when being

tested in a Rayleigh test, R = 0.12, p = .889 (means of percentage correct answers ranged

between 55.1% and 64.7%).

Movement directions. For the first, middle, and last stroke over the standard or the

comparison grating we plotted the angular distributions of movement directions in Fig 5.

We performed V-tests on each distribution testing whether it is not uniform but rather has

a specified mean direction of 90˚ (Bonferroni-corrected alpha levels at 0.0083). In the first

stroke, the V-tests were not significant for both gratings (standard: V = -8.622, p = .892; com-

parison: V = .167, p = .491). Similarly, in the middle stroke both tests did not reveal signifi-

cant results, although there is a trend for the standard stimulus (standard: V = 10.492, p =

.069; comparison: V = -2.922, p = .659). As predicted, participants showed a significant non-

uniformity in their movement directions and moved orthogonally (90˚) to the grating orien-

tation in the last stroke over the standard, V = 19.425, p = .003. In the last stroke over the

comparison, non-uniformity did not reach significance, V = 7.275, p = .152. The overall

results of the V-tests are well reflected in the individual participant analyses when applying

(Bonferroni-corrected) V-tests to the individual data. As expected, no participant showed

more significant adjustments to the comparison than to the standard. The data of three par-

ticipants had the same pattern as the average data, with an adjustment in the last stroke over

the standard only. One participant adjusted in the last and middle stroke over the standard

while showing no adjustment for the comparison. Four participants adjusted their middle

and last stroke significantly to the standard, and the last stroke to the comparison. Five par-

ticipants showed no significant adjustments to standard or comparison. For non-uniform

individual distributions, the precision of the mean estimation ranged between ± 5.94˚

and ± 24.23˚ (95% confidence interval).

Additionally, in order to examine the changes in movement directions which occurred over

the exploration process, we calculated the proportion of movements directed orthogonally to

the texture (directions of 90˚ ± 15˚) for the first and the last stroke. As it can be seen in Fig 5,

25% of the last strokes over standard gratings were adjusted to move approximately orthogo-

nally to the texture orientation (directions of 90˚ ± 15˚). In contrast, only 17% of the first

movements approximated this direction. When calculated for all individual participants, the

difference in percentage of movements following the 90˚ (± 15˚) direction between the first
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Fig 5. Movement direction histograms for each stroke and texture type separately including all participant data. Textures were aligned to a

0˚ orientation. Note, possible movement directions varied only between 0–180˚ and were mirrored on the lower part of each figure.

https://doi.org/10.1371/journal.pone.0208988.g005
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and the last stroke over the standard is significant, t(12) = 4.123 p = .001. This is to say partici-

pants changed their movement direction significantly, from the first to the last stroke.

Discussion Experiment 2

Experiment 2 demonstrated that participants adjust their movement direction over the course

of exploration. In the first stroke, movement directions were not dependent on texture type or

orientation, but rather were uniformly distributed. However, in the last stroke participants

moved along the texture orthogonal for uniquely oriented textures. Movements in the last

stroke were not only directed in 90˚ to the texture orientation, but they also were significantly

adjusted from the first stroke. These results suggest that motor adjustments are based on avail-

able sensory signals for texture orientation.

One might wonder why participants’ task performance was only at about 59%. It is impor-

tant to note in this regard that we purposely chose a difficult task in order to ensure that partic-

ipants would perform multiple exploration movements. The difference in spatial period

between the two stimuli of stimulus pair ranged from 20% (~1 Weber fraction) to 6%. Thus,

performances below 70% are reasonable. Additionally, structural differences between textures

(1D sine-wave vs. 2D sine-wave), can explain further performance problems. Note though, as

participants were significantly better than chance, they were actually performing the task, and

not guessing. We also tested whether fatigue might have decreased participants’ performance.

However, a comparison of performance in the first vs. in the second half of trials, did not indi-

cate any systematic fatigue effect (paired t-test after rationalized arcsine transformation for

percent correct responses, t(12) = .636, p = .573).

In Experiment 3, we further test the hypothesis that motor adjustments are based on sen-

sory signals by investigating whether sensory signals that underlie the perception of texture

orientation are also used in the adjustment of movement direction. We compare the precision

of the direct perception of texture orientation with that of movement adjustments to texture

orientation. We use a method similar to the ‘oculometric’ functions that have been invented to

compare eye movement precision to perceptual precision in vision (e.g. [33–35]). Oculometric

functions mimic the construction of (perceptual) psychophysical functions by recoding eye

movements into binary “motor decisions” (e.g., movement to left vs. right half of visual field).

Here, we define corresponding ‘movometric’ functions for exploratory movement direction.

We manipulate the spatial period of the gratings, because perceptual discrimination of gratings

is known to be better for gratings with larger grooves [45], and expect that spatial period will

affect perceptual and movement precision in a similar way.

Experiment 3

Experiment 3 consisted of two parts: In each trial of the perceptual part, participants explored

one oriented texture with two strokes within a limited exploration tunnel and judged the tex-

ture orientation relative to their movement direction. In the equivalent trial of the motor part,

participants again performed two strokes on the same oriented texture within the limited

exploration tunnel and then performed one stroke in a freely chosen direction. Here, we

assessed the rotation of the freely chosen direction relative to the previous movement direc-

tions. Half of the participants started with the perceptual part and the other half with the

motor part. In both experimental parts, we varied the texture orientation relatively to the

exploration tunnel in the same way. Additionally, we manipulated the spatial period of the tex-

ture. The data from the perceptual part served to estimate psychometric functions on the per-

ceived texture orientation relative to the movement direction. The data from the motor part

was used to define ‘movometric’ functions on the movement adjustments made during the
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free stroke. In the ‘movometric’ function, the rotation of the movement direction (clockwise

vs. counterclockwise) corresponds to the binary response in the psychometric function. There-

fore, cumulative Gaussian functions estimating the JNDs can be fitted to the perceptual and

motor response. In this way, we are able to directly compare perceptual and movement data.

Because they both follow the same sensory signals, we expect that the JNDs of both the haptic

orientation perception and the movement direction increase for smaller spatial period.

Methods and materials

Participants. Twelve right-handed healthy participants (age 20–33 years, 8 females; two-

point discrimination threshold of 3 mm or lower) entered the sample of this experiment. Par-

ticipants were naïve to the purpose of the experiment and had not participated in the other

two experiments.

Apparatus and stimuli. The apparatus was identical to that used in Experiment 1. Stimuli

were defined as in Experiment 1. We used two different spatial periods P for the standard stim-

ulus (1.44 and 1.86 mm). For the motor part, we additionally used 3 stimuli as the comparison

stimulus (P = 1.27, 1.61, and 2.03 mm).

Procedure and design. This experiment consisted of two parts: a perceptual part and a

motor part. Half of the participants started with the perceptual part and the other half with the

motor part. In the perceptual part, we aimed to estimate individual psychometric functions,

and in the motor part individual ‘movometric’ functions. Both parts were equivalent in the

experimental design and were each preceded by 6 trials of training.

In the perceptual part, the task of the participant in each trial was to report the texture

orientation of the standard stimulus relative to the exploration tunnel. We visualized two

response options in order to get intuitive orientation judgments [46] on the upper third of

the screen (Fig 6, actual size of each response option ~ 45.5 x 45.5 mm). Each of the response

options stood for a class of texture orientations relative to the exploration tunnel. Response

options were represented with single lines. On the left we presented the class of texture orienta-

tions, in which the texture orthogonal was rotated counterclockwise from the exploration

tunnel. On the right we presented the class of texture orientations, in which the texture orthog-

onal was rotated clockwise from the exploration tunnel. The participant could choose one of

the classes of the texture orientation by pressing virtual buttons rendered with the PHANToM.

We presented texture orientation because this is intuitive for the participants to report. For

our analyses, however, we recoded orientation to the corresponding texture orthogonal. As the

dependent variable we measured the proportion of trials in which participants reported that

the texture orthogonal was rotated counterclockwise to the exploration tunnel.

In the motor part, participants performed a two-interval forced choice (2 IFC) task judging

spatial period. At the beginning of each trial, one of the comparison gratings was placed in

Fig 6. Visually displayed response options in the perceptual part of Experiment 3. Options are plotted individually for the 3 exploration tunnels (from

left to right: 45˚, 0˚, 135˚). The light grey bar depicts the exploration tunnel and the dark grey lines represent each for sample texture orientations. The left

button always visualized the class of texture orientations rotated clockwise from the exploration tunnel, and thus texture orthogonals were rotated

counterclockwise. The right button visualized the class, defined by counterclockwise rotation of orientation, and thus the texture orthogonal rotated

clockwise from the exploration tunnel.

https://doi.org/10.1371/journal.pone.0208988.g006
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their hands. For the haptic exploration of the comparison there were no restrictions; textures

could be rotated and explored with both hands. Afterwards participants explored the standard

grating. The standard grating had the same spatial period and relative orientation (of the tex-

tures orthogonal to the exploration tunnel) as in the equivalent trial of the perceptual part.

However, now—after the two strokes within the exploration tunnel—the subjects were free

to perform one additional stroke in any direction they wanted. We measured the movement

direction in the free stroke as the dependent variable. More specifically, we looked for the pro-

portion of trials, in which the movement direction was achieved by counterclockwise rotation

from the exploration tunnel.

In each experimental part, participants explored a standard stimulus with two strokes

within one of three predefined exploration tunnels (0˚, 45˚, or 135˚). We manipulated the spa-

tial period of the stimulus (P = 1.44 mm, P = 1.86 mm) and the rotation of the texture orthogo-

nal relative to the exploration tunnel in 9 steps (-60˚, -45˚, -30˚, -15˚, 0˚, 15˚, 30˚, 45˚, 60˚; 0˚

indicates the exploration direction orthogonal to the texture) following the method of constant

stimuli. Additionally, the starting point within the exploration tunnel could be at either end of

the tunnel which was determined randomly. In each experimental part, every combination of

spatial period and relative orientation was presented 10 times, resulting in a total of 540 trials

per participant (2 [spatial periods] x 9 [relative orientations] x 3 [exploration tunnels] x 10

[repetitions]). Each experimental part was subdivided into 5 blocks with 2 repetitions each and

the resulting 108 trials per block were randomly ordered. Each experimental part resulted in

one session of about 3 hours.

Data analyses. For the perceptual part, we calculated the proportion of trials in which

the participant responded that the texture orthogonal was rotated counterclockwise from

the exploration tunnel as a function of the actual relative rotation of the texture orthogonal.

Cumulative Gaussian functions were fit to the individual psychometric functions for each

standard (see Fig 7(A) for example data). For this purpose, the psignifit4 toolbox for Matlab

that implements maximum-likelihood estimation procedures was used [47]. Points of subjec-

tive equality (PSEs) were estimated by the Gaussian parameter μ and just noticeable differences

(JNDs) by σ (84% discrimination thresholds). In Fig 7 the JND is indicated as the difference

between the rotation values of the texture orthogonal that are associated with 50% and 84%

proportions of “counterclockwise” responses.

For the motor part, the movement directions in the free stroke were analyzed as described

in Experiment 1. Thereafter, we recoded movement directions into the dichotomous variable

rotation from exploration tunnel (clockwise vs. counterclockwise). If a participant moves only

a few degrees different from the previous stroke direction, the categorization into clockwise vs.

counterclockwise rotation is straightforward. However, if a participant moves almost orthogo-

nally to the previous stroke (around 90˚ / -90˚ rotation) the proper categorization of the

underlying rotation is less clear. Therefore, trials were included only if the relative movement

direction of the last stroke was rotated between—85˚ and + 85˚ from the exploration tunnel,

and we were able to segregate 3 strokes (90% of trials). That is, we included data from trials

with a relatively clear interpretation, which thus improved measurement precision. The total

number of presented trials (270 per condition) was chosen in advance to be well above the

number required for stable fitting of psychometric curves [47], so that the exclusion of some

trials would not be problematic. We determined whether the executed movement direction

was achieved by clockwise or counterclockwise rotation from the exploration tunnel. Rotations

between 0˚–85˚ were defined as counterclockwise rotations, whereas rotations between—85˚–

0˚ were defined as clockwise rotations.

Furthermore, we calculated the proportions of trials in which the participant rotated

their finger movement counterclockwise from the exploration tunnel. To the individual
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‘movometric’ functions for each standard period, we fit cumulative Gaussian functions (see Fig

7(B) for example data) using the psignifit4 toolbox for Matlab [47]. While fitting ‘movometric’

functions, we allowed for positive and negative slopes of the cumulative Gaussian, and choose

the better fitting of the two curves. We used the fitting parameter ɳ as a measure of goodness-

of-fit for the negative slope fit and the positive slope fit. As ɳ accounts for overdispersion and

varies between 0 (no overdispersion) and 1 (high overdispersion), the fit with the lower ɳ was

chosen (for details, see Schütt et al., 2016). For 18 of 24 data sets, the positive slope resulted in

the better fitting curve, while for 6 data sets the negative slope provided a better fit. Because

also a negative slope indicates an adjustment to the texture orientation, we will consider all the

data for further analyses. However, it is important to note that the predicted main effects of the

ANOVA remained significant when participants with negative slopes were excluded.

The individual psychometric and ‘movometric’ PSEs and JNDs for each standard period

were entered into repeated-measures ANOVAs with the factors Mode (perception vs. move-

ment) and Standard Period (P = 1.44 vs. 1.86 mm).

Results

PSEs. As expected, none of the PSEs differed significantly in a single sample t-test against

the relative Rotation of 0˚ (p� .222; P = 1.44 mm: perception -3.9˚, movement 3.2˚; P = 1.86

Fig 7. Example data of participant 9 for one standard (P = 1.86 mm). (A) psychometric curve: the proportion of trials in which the participant

perceived the texture orthogonal to be rotated counterclockwise from the exploration tunnel against the actual relative rotation of the texture

orthogonal. (B) ‘movometric’ curve: plotting the proportion of trials in which the participant rotated the finger counterclockwise from the

exploration tunnel to perform the free stroke against the relative rotation of the texture orthogonal to the exploration tunnel.

https://doi.org/10.1371/journal.pone.0208988.g007
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mm: perception -1.7˚, movement 2.4˚). This result indicates that no constant biases are

observed for the perceptual or the movement data. Additionally, neither any main effect nor

the interaction, F(1,11) = .203, p = .661, were significant in an ANOVA with the within-partici-

pant variables Mode (perception vs. movement), F(1,11) = 1.432, p = .257, and Standard

Period (1.44 vs. 1.86 mm), F(1,11) = .027, p = .871.

JNDs. Individual JNDs (Fig 8) entered an ANOVA with the within-participant variables

Mode (perception vs. movement) and Standard Period (1.44 vs.1.86 mm). As expected, JNDs

were lower for higher Spatial Period, F(1,11) = 34.015, p< .001. The JNDs were significantly

lower in the perception Mode, F(1,11) = 5.369, p = .041. The interaction between the two vari-

ables did not reach significance, F(1,11) = 2.016, p = .183. The estimated statistical power of

our experimental design to find an effect of at least 10˚ in a one-sided test is more than 90%

(standard deviation assessed as 11˚).

Discussion Experiment 3

Experiment 3 carefully examined the relationship between the perceived orientation of a hap-

tic texture and a freely chosen movement direction over the texture. Our results show that

both perception and movements were influenced by spatial frequency. Participants perceived

the orientation of textures with low spatial frequencies more precisely. This expands previous

findings about the role of spatial period for orientation discrimination [48, 15] to active per-

ception. Additionally, we show that movement adjustments were more pronounced in the

condition of low spatial frequencies. This allows us to conclude that perception and move-

ments are based on a similar mechanism in natural haptic exploration of surface texture.

Furthermore analyzing participants’ ‘movometric’ and psychometric curves, we found that

movements were less precise than perception. This result is in line with Gegenfurtner and

Franz [49], who showed that visual location perception was more precise than pointing move-

ments to a seen location, and explained this finding by additional motor variance. Along these

Fig 8. Average JNDs. JNDs from the psychometric (dark grey) and the ‘movometric’ curves (light grey) plotted with

their within-participant standard errors [40].

https://doi.org/10.1371/journal.pone.0208988.g008
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lines, studies on visual perception reported (at least for certain time windows) that perceptual

precision was better than movement precision (e.g., [33, 50]). However, other studies on visual

perception report similar perceptual and eye movement precision (e.g., [51, 33, 35]). These dif-

ferent findings are likely due to the complexity of the tasks, whereby less fine and more com-

plex movements, such as the present hand movements, seem to come along with more motor

variance [50–54]. However, it is important to note that in the present experiment we measured

movements and perception in different experimental parts with different tasks. Although the

identical standard stimulus with the identical texture orientation was presented in each given

trial for both experimental parts for a specific participant, differences in the precision of move-

ments and perception may have arisen by the fact that both were not measured in exactly the

same moment in time rather than by motor variance alone. In contrast to the studies on visual

perception [34, 35, 49] we, therefore, do not want to draw strong conclusion about the exact

differences in the information processing. Nevertheless, given these possible differences in the

measurement of movements and perception, the main effect of spatial period provides even

stronger evidence for common mechanisms in orientation perception and movements in the

exploration of spatial frequency.

General discussion

This study investigated the interdependence between perception and movement directions

for oriented textures. On the one hand, our results indicate that perception depends on the

exact movement parameters executed: When participants followed the texture orthogonal in

their movement directions more closely, they perceived the texture’s spatial period more pre-

cisely as compared to moving in line with the texture (Experiment 1, absolute movement ori-

entation seem not to play a similar role). On the other hand, movement control depends on

the sensation of texture orientation: Only after gathering sufficient sensory signals did partici-

pants adjust their movement in the direction of the texture orthogonal in free exploration

(Experiment 2). In addition, sensory signals that are used to perceive texture orientation are

likely also used for movement adjustment, as shown by the finding that the precision of per-

ception and movement adjustments were influenced in the same manner by the spatial period

of the stimuli (Experiment 3). Taken together, our study speaks in favor of sensorimotor con-

trol mechanisms that improve haptic perception by choosing parameters of exploratory move-

ment on the basis of sensations.

Our results extend previous research in several ways. First, as for the long standing debate

about the role of temporal cues produced by movements in texture perception (e.g., [16,17]),

we provide an estimate for the advantage of movements, at least in the context of our spatial

period discrimination task. We can estimate the advantage of temporal cues, when comparing

JNDs measured in Experiment 1 for movement orthogonal to the texture (= optimal temporal

cues) to the JNDs for movements in line with the texture (= no temporal cues). JNDs are com-

posed of the variance for standard (σs) and the variance for the comparison stimulus (σc),

which is assumed to be equal in our design (σc = σs). Under the assumption of independent

percepts of comparison and standard, the JND can be directly related to the variance of the

stimulus (JNDj = 2 σs for the condition j). The empirical JNDs indicate that the variance dou-

bles when temporal cues are removed. In this case, the Maximum Likelihood Estimation

(MLE) model of optimal integration (e.g., [55]) suggests that temporal cues are equally impor-

tant and therefore should be weighted equally to spatial cues for the frequency estimation.

However, it is important to note, that in contrast to other studies addressing the question on

the role of temporal cues (e.g., [17,19]) we asked for a spatial frequency instead of a roughness

judgment. Therefore, we cannot draw conclusions about roughness perception from our
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study. Nevertheless, we would suspect that when measuring roughness discriminability and

manipulating directional shift of movements from texture orthogonal, results could be compa-

rable. The reason is that we chose stimuli in a range where spatial period manipulation and

roughness perception are monotonically related (see [11]). Additionally, it should be noted

that previous research was also often measuring the magnitude of perceived roughness rather

than its discriminability (e.g., [19]). Second, we introduced a new method, the ‘movometric’

functions, which allowed a systematic comparison between movements and perception. Such

functions are not limited to the context of our task. Natural movement adjustments fordiverse

exploration tasks can be used to assess the movement precision as in the present study. This

only requires that movement data be converted to binary responses in order to fit ‘movo-

metric’ functions. Future research could define such ‘movometric’ functions for movement

adjustments within other exploratory procedures. For instance, indentation force is a key

parameter in softness exploration [4]. Here one could fit ‘movometric’ functions to the proba-

bility that indentation force was reduced or increased as a function of stimulus softness, and

then compare these to psychometric data on perceived softness.

Moreover, it is interesting to note, that not all participants moved in the way we expected.

In Experiment 2, individual data for 4 out of 13 participants showed adjustments in the last

stroke also over the comparison stimulus, and yet this stimulus did not have one clear orienta-

tion. While this adjustment does not seem to be very useful, it also does not harm perceptual

performance. In Experiment 3, some participants adjusted their movements to the oriented

textures in a way that deviated from our prediction. That is, some of the fitted psychometric

curves had negative slopes. This indicates that the respective participant moved along the tex-

ture orientation rather than orthogonal to it. Nevertheless, it is important to note that even

reverse adjustments indicate that these participants used sensory information to adjust their

movement direction. Based on the results from Experiment 1, we could argue that these partic-

ipants moved in an inefficient way. However, one possible explanation for both observations

might be that, in addition to our predicted bottom-up effects, movements are also influenced

by top-down effects. Thus, in Experiment 2, the 90˚ direction of movement over the (not

uniquely oriented) comparison was possibly chosen in order to match the movement over the

standard grating of the same trial. Given that the task is to compare two stimuli, moving over

each of them in the same way could be a reasonable strategy. Hence, even if there is no sensory

information gain to maximize (bottom-up), the task itself might influence movement control

(top-down). This is in line with a recent study which showed that movement kinematics

depend on both the task and the texture characteristics [56].

The task requirements might explain the unnecessary (but not inefficient) adjustments

we observed in Experiment 2, but how does the task relate to the inefficient movers in Experi-

ment 3? On first sight, the task in Experiment 3 does not seem to induce movement in line

with texture orientation. However, the instruction of having only one free movement might

have provoked some participants to strategize more for this task compared to more natural

exploration tasks (like Experiment 2). This was also indicated by the comments of 2 observers,

who reported to have chosen movements orthogonal to the previous movement. In contrast to

rather natural movement planning strategies, cognitive strategic decision making seems more

prone to non-optimality [57–58]. Therefore, if some participants felt the need to choose a

cognitive strategy, they might have chosen the wrong one. For instance, the strategy to move

orthogonal to the previous movement might seem like a good idea to collect information in

the most diverse way. Taken together, some parts of the data might be due to task induced top-

down influence on movement control. However, we suggest that these task effects act in addi-

tion to our proposed sensorimotor processes and are not an alternative to it. We base this

assumption on the fact that these movement effects are represented in some individual
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participants, not the average data across participants. Hence, they also do not devaluate our

significant findings. Further studies might systematically investigate the importance of top-

down influences for movement control in haptic exploration.

Overall, we presented evidence that perception and movement are highly interdependent

for the exploration of oriented textures. Sensory information about texture orientation is

used to adjust movement directions towards the texture orthogonal. As a consequence, opti-

mal sensory information about the structure of the texture can be extracted and used for the

perceptual task. Interestingly, this co-influence happens, although it was shown that textural

orientation and structure information are not processed within the same pathway [15, 59–60].

By introducing a method, which allows for a direct comparison between perception and move-

ment control, we were able to demonstrate that shared sensory information is supplied to both

systems. Future studies can apply our method to study other perceptual dimensions, which

will help to understand the interplay between sensory and motor processes in general.
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