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SUMMARY

Immunological experiments that record primary molecular sequences of T-cell receptors produce moderate
to high-dimensional categorical data, some of which may be subject to extra-multinomial variation caused
by technical constraints of cell-based assays. Motivated by such experiments in melanoma research, we
develop a statistical procedure for testing the equality of two discrete populations, where one population
delivers multinomial data and the other is subject to a specific form of overdispersion. The procedure
computes a conditional-predictive p-value by splitting the data set into two, obtaining a predictive dis-
tribution for one piece given the other, and using the observed predictive ordinate to generate a p-value.
The procedure has a simple interpretation, requires fewer modeling assumptions than would be required
of a fully Bayesian analysis, and has reasonable operating characteristics as evidenced empirically and by
asymptotic analysis.

Keywords: Bayesian p-value; Dirichlet multinomial; Double overdispersion; Fisher’s exact test; HPRT assay; Mass
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1. INTRODUCTION

When testing the equality of two discrete populations, Fisher’s exact test applies naturally to multinomial
samples (e.g. Agresti, 1990, p. 62). It is widely used, easily developed, and readily interpreted, but it lacks
robustness of validity when sources of variation create overdispersion relative to the multinomial. A more
suitable model-based test is available in a case study from immunology that motivates the present work.
One of the interesting features of the problem addressed concerns distributional shifts expected in the
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alternative hypothesis. If the biology is as suspected, then one population becomes a reduced-entropy ver-
sion of the other. That is, probability masses in one population are concentrated on fewer support points
when compared with the other population. But a similar concentration is a consequence of the overdis-
persion mechanisms governing data generation, even if the null hypothesis holds. Separating these effects
to deliver refined statistical inference is the goal of the present work. Given the availability of powerful
sequencing technology, we expect that data of this type will continue to be generated, and thus we are
motivated to develop appropriate statistical methodology.

We address the testing problem by developing a conditional predictive p-value. Briefly, this involves
splitting the data into two pieces. We condition on one piece to drive posterior inference for unknown
parameters as well as predictive inference for the second piece of data; the predictive ordinate at the
observed data acts as a test statistic. The approach is effective in the case study considered and exhibits
good operating characteristics as determined through simulation and asymptotic analysis.

2. BIOLOGICAL CONTEXT

Research on cancer immunotherapy aims to understand and enhance those components of the adaptive
immune system that recognize and attack tumor cells. Recognition is through T cells, whose cell-surface
receptors enable them to bind antigen, in the context of the appropriate antigen-presenting molecule, and
initiate an immune response. The task of identifying T cells that are reactive to tumor-cell antigens is
complicated by the tremendous diversity of the T-cell repertoire within the body. It is estimated that 1012

T cells constitute a human, with possibly 107 distinct clonal types from among 1018 possibilities. This
diversity is caused by combinatorial and stochastic processes by which T cells mature in the thymus, and
it is manifested in a variation of DNA that encodes the α and β components of the T-cell receptor (e.g.
Robins and others, 2009; Venturi and others, 2011). Of interest in the experiments summarized below are
the J (joining) and V (variable) regions of the complementarity determining region 3 (CDR3) of the T-cell
receptor β chain, which exhibits hypervariability and contributes to the antigen specificity of the T cell.

A T cell proliferates after it has been activated by recognition of its cognate antigen, and it produces a
clone of descendants that share its specific cell-surface receptor. Thus, a promising approach to narrow the
search for tumor-reactive T cells is to select from a patient’s blood sample those T cells that have undergone
post-activation cell proliferation. Assays have been developed based on somatically acquired mutations
in the hypoxanthine-guanine phosphoribosyltransferase (HPRT) gene (Albertini and others, 2001, 2008).
Briefly, cells that have incurred a loss-of-function mutation in HPRT are resistant to the effects of the
nucleoside analog 6-thioguanine (6-TG), which otherwise is lethal to the cell. The frequency of HPRT
mutant (MT) T cells is affected by various factors, is in the range 10−6 to 10−5 per mononuclear cell, and
is readily estimated from a patient’s sample via MT frequency analysis (Albertini, 2001). The rationale
for HPRT-based selection is that, when compared with quiescent T cells, proliferating T cells are at an
increased risk for having somatic gene mutations. The HPRT MT T cells therefore should be enriched
for proliferating cells compared with wild-type (WT) T cells that have not been selected with 6-TG. In
the analysis of data from these selection experiments, an important baseline statistical test is of the null
hypothesis that MT and WT cell populations are not different with respect to frequencies over possible
cell-surface receptors. It is prudent to perform the test as a check on the efficacy of the approach.

Recently, our group sequenced T-cell receptor CDR3’s from cells in several compartments from six
melanoma patients (Zuleger and others, 2011). We reconsider here data from the blood compartment in
order to carefully develop a test of equality of discrete MT and WT populations. In the Zuleger and others
(2011) data, counts of various types of CDR3’s would have had multinomial distributions if the receptor
sequences were obtained from random samples of MT and WT cells. However, the mass culture (MC)
conditions used to propagate cells in vitro induced additional variability in the MT-type counts. The initial
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sample of cells from each donor was distorted by two related factors in culture. First, 6-TG treatment
created a population bottleneck by killing all but the small fraction of input cells that carried an HPRT
mutation. Second, cells were grown back to sufficient number to enable receptor sequencing. There was
the possibility that different clones had different in vitro growth rates, and if so the type frequencies at the
sampling/sequencing time would have differed from those of interest immediately after 6-TG treatment.

Receptor sequence data were obtained by two protocols; the MC method, indicated above, created extra-
multinomial variation in MT counts. A second protocol was applied to a subset of sampled material; the
single-cell (SC)-derived isolates produced less sequence data but were not subject to the overdispersion
phenomenon. Whereas MC consists of culturing T cells from the blood as a bulk population, SC involves
plating blood cells at limiting dilutions so that the derived monoclonal cultures can be sequenced and uti-
lized in functional assays. Further details are provided in Section S2 of supplementary material available
at Biostatistics online.

3. DATA STRUCTURE, SAMPLING MODEL, AND PRIOR

3.1 Data

Receptor sequencing was performed separately on material from different tissue samples. With i indexing
the tissue sample and t indexing the type of the CDR3 receptor, the primary observable data are counts
{Xmc

i,t , Y mc
i,t , X sc

i,t , Y sc
i,t }, which for sample i and CDR3 type t count the number of sequences of that type in

that sample by one of two methods (SC and MC) and in one of two cell types (WT and MT).

Xmc
i,t ←→WT cells; MC,

Y mc
i,t ←→MT cells; MC,

X sc
i,t←→WT cells; SC-derived isolates,

Y sc
i,t ←→MT cells; SC-derived isolates.

At the finest scale, t records the specific CDR3 amino-acid sequence; several thousand distinct t’s were
observed in Zuleger and others (2011). To increase expected type counts, we performed analysis at coarser
scales, in which t records any one of many distinct CDR3 sequences sharing a specific structural property.
The J-region of the CDR3 assumed one of 13 possible structures; the V-region assumed one of 48 possi-
bilities. Owing to experimental exigencies, a possibly different amount of sequencing was performed in
each sample i on study. With reference to the above notation, the total numbers sequenced were

mmc
i =

∑
t

Xmc
i,t , nmc

i =
∑

t

Y mc
i,t ,

msc
i =

∑
t

X sc
i,t , nsc

i =
∑

t

Y sc
i,t .

Tables 1 and 2 show MC and SC J-region counts from six melanoma patients. V-region data on these
patients are in Tables S1 and S2 of supplementary material available at Biostatistics online.

3.2 Sampling model

The primary inference task was to compare MT and WT populations using the count data. To this end, let
θ = {θt : t ∈ T } denote a vector recording the underlying proportion of each CDR3 type in the population

http://biostatistics.oxfordjournals.org/lookup/suppl/doi:10.1093/biostatistics/kxt039/-/DC1
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Table 1. Data: frequencies of J-region types, melanoma patients, blood, MC method

A B C D E F
Subject
J \Cells WT MT WT MT WT MT WT MT WT MT WT MT

1-1 15 49 9 1 9 71 14 0 7 11 16 0
1-2 8 0 4 1 9 1 13 2 10 2 6 2
1-3 0 1 6 3 1 2 5 0 5 1 2 0
1-4 1 0 1 0 1 0 2 18 1 0 2 6
1-5 5 2 3 0 5 0 8 0 7 7 12 0
1-6 0 1 1 0 4 2 3 0 9 0 1 3
2-1 12 5 12 70 14 0 12 10 14 14 13 22
2-2 13 4 8 10 5 5 5 1 10 2 2 55
2-3 12 7 9 0 10 0 8 56 7 14 6 0
2-4 1 0 0 0 2 0 0 0 1 0 1 0
2-5 3 7 10 0 16 0 2 1 4 0 5 0
2-6 1 0 1 0 2 5 1 0 2 0 0 0
2-7 18 5 21 1 13 6 19 7 20 31 12 19

Totals 89 81 85 86 91 92 92 95 97 82 78 107

WT and MT data arise from the same underlying discrete population on the null hypothesis, but MT data are subject to extra-
multinomial variation.

Table 2. Data: frequencies of J-region types, melanoma patients, blood, SC-derived isolates method

A B C D E F
Subject
J \Cells WT MT WT MT WT MT WT MT WT MT WT MT

1-1 3 6 3 3 3 3 6 9 11 7 1 4
1-2 2 3 0 9 1 5 1 8 4 7 2 6
1-3 1 1 0 0 0 0 0 2 0 2 1 1
1-4 0 0 0 0 1 6 2 1 4 1 1 0
1-5 0 3 0 1 0 2 2 0 3 6 4 1
1-6 1 1 1 3 0 3 1 4 1 7 2 3
2-1 3 12 1 2 3 4 2 7 5 5 4 18
2-2 1 6 0 13 5 4 1 1 4 2 4 11
2-3 2 3 2 2 3 8 1 6 4 9 3 13
2-4 1 0 0 0 0 0 0 0 1 1 1 0
2-5 3 5 2 1 3 10 1 4 2 7 3 7
2-6 1 1 0 0 0 0 0 2 0 1 2 0
2-7 5 5 2 5 0 10 0 19 10 10 4 5

Totals 23 46 11 39 19 55 17 63 49 65 32 69

As in Table 1, but we are justified to treat these SC-derived data as multinomially distributed.

being sampled. We worked on the hypothesis that this population was the same for WT and MT cells, and
we sought to quantify evidence against this null. The issue of whether or not different individuals could
be assumed to share this common θ was important, and one certainly expects fluctuation at some level;
however, the magnitude of such fluctuations was small. For example, a Fisher test of common θ among sub-
jects based upon the WT-SC data, which should not be affected by multinomial overdispersion, showed no
substantial violations of the common-θ assumption (see Section S3 of supplementary material available
at Biostatistics online). Thus, we retained a single θ vector in subsequent computations.

http://biostatistics.oxfordjournals.org/lookup/suppl/doi:10.1093/biostatistics/kxt039/-/DC1
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Considering the sampling and measurement process, and assuming the null hypothesis that MT and
WT populations are equivalent, we expected the following:

Xmc
i = {Xmc

i,t : t ∈ T } ∼Multinomial (mmc
i , θ),

X sc
i = {X sc

i,t : t ∈ T } ∼Multinomial (msc
i , θ),

Y sc
i = {Y sc

i,t : t ∈ T } ∼Multinomial (nsc
i , θ).

We did not expect the counts Y mc
i (those from MT cells grown in MC) to follow this sampling model,

since in vitro effects induced extra-multinomial variation. The practical consequence was that Y mc
i,t was

very high for perhaps one or just a few sequence types t (e.g. J-region type 1-1 for patients A and C,
Table 1). Interestingly, the research hypothesis is that the MT population is enriched for expanding (thus
large) clones, and so we expected such clustering of sequence data if the immune system was actively
responding to the melanoma. A goal of the statistical inference was to assess evidence against the null
hypothesis while accommodating experimental factors that induced non-null-like clustering even in the
absence of differences between the MT and WT populations.

A bottleneck was created in vitro since, on the average, a small fraction fi of cells in sample i carried
the necessary HPRT mutation to withstand the 6-TG treatment. This mutation frequency fi was estimated
for each sample (see Table S3 of supplementary material available at Biostatistics online). The surviving
population grew back in culture to yield sufficient numbers for receptor sequencing. Then a random sample
of nmc

i sequences was obtained from the cell population after it had undergone this in vitro growth, giving
observable type counts Y mc

i = {Y mc
i,t : t ∈ T }.

To analyze the bottleneck/growth effects, consider latent random counts Zmc
i = {Zmc

i,t : t ∈ T }, which
record how many cells of each type survived 6-TG treatment prior to expansion in vitro. These components
should be approximately independent and Poisson-distributed, with

Zmc
i,t ∼ Poisson (siθt fi ), (3.1)

where fi is the mutation frequency, θt is the population fraction of cells of CDR3 type t , and si is the
number of cells subject to 6-TG treatment in sample i (see Table S3 of supplementary material available at
Biostatistics online). If all clones grew in vitro at the same rate, then the observable MT counts Y mc

i would
be multinomially distributed, with rates proportional to each Zmc

i,t . Experimentally, it is known that growth
rates can vary; we allowed the variation in each rate to depend on the latent Zmc

i and a single overdispersion
parameter φ > 0, through a Dirichlet-multinomial model. Specifically

P(Y mc
i = y|Zmc

i = z)= nmc
i ! �(φ

∑
t zt )

�(nmc
i + φ

∑
t zt )

∏
t

{
�(φzt + yt )

yt ! �(φzt )

}
, (3.2)

for y = {yt : t ∈ T } counts summing to nmc
i and for possible latent counts z = {zt : t ∈ T }. The Dirichlet-

multinomial model has been used extensively for categorical data (e.g. Petkau and Sitter, 1989;
Johnson and others, 1997, p. 80; Dunson and Tindall, 2000). It is a convenient model to accommodate
extra-multinomial variation. Letting μt = zt/

∑
s zs , it follows from (3.2) that

E(Y mc
i,t |Zmc

i = z)= nmc
i μt ,

var(Y mc
i,t |Zmc

i = z)= nmc
i μt (1− μt )

(
1+ nmc

i − 1

φ
∑

s zs

)
.

(3.3)

The Dirichlet-multinomial model was also supported by subject-matter considerations. Suppose that type
t is present in proportion ui,t , say, in the population of cells from tissue sample i after several weeks

http://biostatistics.oxfordjournals.org/lookup/suppl/doi:10.1093/biostatistics/kxt039/-/DC1
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expanding in vitro, where the latent vector of proportions ui = {ui,t : t ∈ T } has a Dirichlet distribution with
parameters {φzt : t ∈ T }. The random sampling of sequences after in vitro growth then gives a multinomial
distribution for counts, conditionally upon ui ; the marginal Dirichlet-multinomial follows by integration.
Furthermore, the Dirichlet model for cell population at sampling time was supported by models of species
abundance, since a Gamma(φzt , 1)-distributed population size for each clone would lead to the named
Dirichlet distribution on vectors ui (Dennis and Patil, 1984). In allowing variable growth rates by this
mechanism, we have assumed that the contribution to the sampled population from each cell that survives
6-TG selection has a Gamma(φ, 1) distribution.

A useful aspect of the Dirichlet-multinomial model is that it carries over to any collapsing of the cat-
egories. Specifically, let Ť be a set of collapsed categories ť = {t ∈ T : t has specific property}. Corre-
spondingly, there are collapsed observed counts {Y̌ mc

i,t } and latent counts {Žmc
i,t } from the experimental data.

It is a property of the Dirichlet multinomial that the distribution of Y̌ mc
i , given Žmc

i , has the same form as
in (3.2), but with checks everywhere instead! We say the sampling model for Y is doubly overdispersed,
since there is extra-multinomial variation (caused by variable in vitro growth rates) even conditionally on
the Z counts, and these counts are also unknown. When the surviving cell count

∑
t Zmc

i is expected to be
small, the variance of observed counts Y mc

i,t is inflated both conditionally (through the variance inflation
factor in (3.3)) and, marginally, through extra variation in μt .

3.3 Prior

The sampling model from Section 3.2 involves unknown proportions θ = {θt } and an in vitro-growth
parameter φ > 0. Numerical experiments (not shown) indicated that the posterior distribution of these
parameters was not particularly sensitive to the prior setting. We report output in the case of a flat
Dirichlet(1, 1, . . . , 1) prior for θ and, independently, an improper flat prior for φ.

4. CONDITIONAL PREDICTIVE p-VALUE

We combine WT counts into a vector X = {Xt } over types t by adding contributions from Xmc
i and X sc

i
across all tissue samples. That is, Xt =∑

i (Xmc
i,t + X sc

i,t ). Since we have combined multinomial counts
governed by a common probability vector, the summary counts retain the multinomial form. Further, we
let Y record the MC MT data Y mc

i from all tissue samples (these are subject to overdispersion) as well as
any available SC-derived counts Y sc

i . Here, we do not collapse by counting contributions over i , since such
summarized counts would entail undue information loss; instead Y is a collection of vectors.

To emphasize notational distinctions, X and Y refer to random elements in our actual experiment, taking
possible values x and y. As is sometimes done in p-value discussions, we introduce a separate notation for
data obtained from a hypothetical repeat of the experiment: let X rep denote a hypothetical repeated draw
of the random vector X . Having observed X = x and Y = y, the proposed p-value is

pcp(x, y)= P{p(X rep|y) � p(x |y)|Y = y}, (4.1)

where p(x |y) is a posterior predictive distribution for WT counts given observed MT counts:

p(x |y)= P(X = x |Y = y)

=
∫

P(X = x |θ, Y = y)p(θ |Y = y) dθ

=
∫

P(X = x |θ)p(θ |Y = y) dθ. (4.2)
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Here, θ is the vector of unknown probabilities over types. Although x , the possible realization of
WT counts, is used above, nowhere have we conditioned on the event {X = x}. Had we conditioned
in (4.1) instead on all the data {X = x, Y = y}, then the p-value would be a posterior predictive p-value
(Gelman and others, 1996). This object can be unduly conservative, and so we decided to condition on part
of the data only, as in the conditional predictive p-value approach (Bayarri and Berger, 1999, 2000; Evans,
2000; Robins and others, 2000). There, one conditions on part of the data, U (in our case, the MT counts
Y ), and generates a p-value from the conditional distribution of a statistic T that is as independent from U
as possible. Our particular choice to split data by MT and WT counts and to construct a test statistic from
the conditional density is most similar to Evans’ cross-validatory surprise (Evans, 2000), though examples
and properties for count data seem not to have been developed previously.

A further justification of the proposed p-value (4.1) is its structural similarity to Fisher’s exact test
p-value, which would be suitable in the absence of multinomial overdispersion. Following the notational
conventions above, Fisher’s p-value is

pFisher(x, y)= P{p(X rep|s) � p(x |s)|S = s}, (4.3)

where S = X + Y holds the sufficient statistic vector for the null frequencies θ , and where p(x |s) is a
generalized hypergeometric mass function. In the absence of overdispersion, this p-value is exact in the
frequentist sense of being dominated by the uniform distribution, but unaccounted sources of variation tend
to deflate and invalidate pFisher. Splitting the data into its natural components X and Y enables construction
of a conditional p-value that is similarly reliant on a conditional mass function as a test statistic. Further,
in conditioning on one of the data components, it is more sensible to condition on Y , as we propose, since
Y contains information on the frequency parameters θ as well as the overdispersion parameter. The WT
data X informs only θ , on the other hand conditioning on X instead of Y would make the computation
more difficult and more sensitive to prior information.

The null sampling distribution of the conditional predictive p-value proposed in (4.1) is neither exactly
uniformly distributed nor dominated by the uniform distribution. Since posterior simulation is used to
average over unknown variables, this null distribution is difficult to determine. The proposed p-value is
a valid frequentist p-value in the sense that it converges to a uniform distribution as sample sizes diverge
(Section 6). A fully Bayesian test of homogeneity between MT and WT proportions provides an alterna-
tive approach to the inference problem. This could be pursued since Bayesian analysis is already used to
generate conditional predictions. We take a different approach, partly because a full Bayesian development
would require further non-null modeling assumptions. Gelman and Shalizi (2012) discuss this and related
factors supporting the use of predictive p-values.

5. POSTERIOR AND PREDICTIVE SAMPLING

Calculating the conditional predictive p-value (4.1) involves sampling hypothetical WT data vectors X rep

from their conditional distribution, given the observed MT data structure Y = y. It also requires repeated
evaluation of the predictive ordinate p(X rep|y) as well as the predictive ordinate on the observed WT
data p(x |y). We achieve the first task by Markov chain Monte Carlo (MCMC) coupled with predictive
simulation. Specifically, X rep has a multinomial distribution conditional upon θ , which we readily sam-
ple after MCMC delivers a sample of θ vectors from the posterior p(θ |Y = y). The marginal posterior
of θ is naturally sampled by working with the higher-dimensional posterior of (Z , θ, φ), where Z is the
data structure recording all the latent MT counts immediately after 6-TG treatment and prior to in vitro
growth (Section 3.2), and where φ is the overdispersion parameter related to variability in clonal growth
rates. Briefly, each scan updated Z , θ , and φ in blocks according to a Metropolis–Hastings sampler (e.g.,
Robert and Casella, 1999, Chapter 6). The target posterior distribution was p(z, θ, φ|Y = y), that is, the
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Fig. 1. Summary statistics for J region frequencies from Tables 1 and 2. Colored bars show empirical frequencies of
each J region type, from various data sources. Boxplots summarize posterior analysis of the underlying proportions
conditional on the MT (not WT) data. Types are arranged from top to bottom by increasing value of the posterior
median proportion. Note that the boxplots track the green bars better than the red bars, since the SC data are less
variable than the MC data. The hypothesis test asks if the common (vector over types) mean of the MT data differs
significantly from the mean of the WT cells (blue).

distribution of unknowns given the MT count data. Details of the proposal distributions, algorithm struc-
ture, and output diagnostics, and code are presented in supplementary material available at Biostatistics
online.

The second task in evaluating pcp(x, y) is to compute the predictive ordinate p(x∗|y), both for the
realized WT data x∗ = x and the many realized conditional predictions x∗ = x rep (as in (4.2)). We eschew
Monte Carlo approximations for this purpose and instead use a simple numerical approximation associated
with treating p(θ |Y = y) as a Dirichlet distribution. Realized θ vectors from the MCMC sampling are
summarized to give a method-of-moments approximation to the parameters of this Dirichlet. Then the
predictive ordinate is the ordinate of a Dirichlet-multinomial distribution, as the integration is achieved
analytically. Details are provided in supplementary material available at Biostatistics online.

We applied the proposed computations to both J-region and V-region data from the six melanoma
patients. Figure 1 summarizes features of p(θ |y) in comparison to empirical-type frequencies for the
J-region data. (See Figure S1 of supplementary material available at Biostatistics online presents the V-
region results.) Visually there is reasonably good agreement between MT and WT frequencies over differ-
ent J-region types; substantial deviations (e.g. MT-MC compared with WT for types 1-1 and 2-1) reflect
possible non-null behavior, though this must be gauged by intrinsic variations (e.g. see deviations between
MT-MC and MT-SC). Balancing these factors, the Monte Carlo estimated conditional predictive p-value
is pcp = 0.046, using 104 saved draws from a well-mixed Markov chain (see Figure S2 of supplementary
material available at Biostatistics online). In contrast to this borderline significance value, the V-region
data give pcp = 0 using the same simulation size. Evidently fluctuations as seen in the J-region data
(Figure 1) are not particularly unusual on the null hypothesis of equal MT and WT frequencies. Significant
deviations are evident in V-region data from patients.

The main point of the developed pcp was to enable basic judgements about the MT/WT comparison
in light of extra-multinomial variation. We note, for comparison, that direct application of Fisher’s exact
test would yield pFisher = 0.00096 (J) and pFisher < 2.2e − 16 (V), but this method is not reliable in the

http://biostatistics.oxfordjournals.org/lookup/suppl/doi:10.1093/biostatistics/kxt039/-/DC1
http://biostatistics.oxfordjournals.org/lookup/suppl/doi:10.1093/biostatistics/kxt039/-/DC1
http://biostatistics.oxfordjournals.org/lookup/suppl/doi:10.1093/biostatistics/kxt039/-/DC1
http://biostatistics.oxfordjournals.org/lookup/suppl/doi:10.1093/biostatistics/kxt039/-/DC1
http://biostatistics.oxfordjournals.org/lookup/suppl/doi:10.1093/biostatistics/kxt039/-/DC1
http://biostatistics.oxfordjournals.org/lookup/suppl/doi:10.1093/biostatistics/kxt039/-/DC1
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present context. For another comparison, we approximated the likelihood ratio statistic. Maximum likeli-
hood estimation (MLE) is difficult in this hierarchical model. However, we approximated the MLEs using
the posterior mean parameter settings from the developed MCMC sampler, separately for null and alter-
native hypotheses, and we used forward simulation to calculate likelihood components marginalizing the
latent counts in Z (see Section S5 of supplementary material available at Biostatistics online). This gives
pLR = 0.04 (J) and pLR < 10−10 (V), assuming χ2 asymptotics.

To check the reliability of the proposed pcp, we did a small simulation experiment in which system
parameters were taken to be the posterior means from the J-region data and where sample sizes similarly
matched the J-region data. MCMC sampling and predictive simulation were performed on each simu-
lated data set. Figure S3 of supplementary material available at Biostatistics online illustrates the empiri-
cal distribution of 1000 null simulated pcp’s, and confirms that this estimated distribution is very close to
uniform. To assess power, we also simulated the distribution of pcp under the alternative, taking separate
estimates of θ for MT and WT cells in order to match as closely as possible the experimental setting (see
Section S5 of supplementary material available at Biostatistics online). We found a 0.67 and 0.84 proba-
bility for pcp � 0.01 and pcp � 0.05, respectively, in this case.

6. ASYMPTOTIC THEORY

Asymptotic uniformity of the proposed p-value can be proved using a curious fact about the large-sample
distribution of the multinomial density of a multinomial sample. Fix θ = (θ1, θ2, . . . , θK ) subject to θ j > 0
and

∑
j θ j = 1, and let Xn = (Xn

1 , Xn
2 , . . . , Xn

K ) denote a multinomially distributed random vector on n
trials with probability vector θ . Recall the probability mass function

p(x |θ)= n!∏
j x j !

∏
j

θ
x j

j ,

for suitable count vectors x .

LEMMA 6.1 For the non-random sequence cn = (K − 1) log(2πn)+∑K
j=1 log(θ j ,

−2 log p(Xn|θ)− cn −→d χ2
K−1,

as n −→∞, where χ2
K−1 is a χ2 distributed random variable on K − 1 degrees of freedom.

A proof is given in supplementary material available at Biostatistics online (Section S6). As MT sam-
ple sizes increase, the posterior p(θ |Y = y) converges to a point mass at the true θ vector, by standard
large-sample Bayesian theory (e.g. Schervish, 1995, p. 428). Thus, the predictive ordinate p(x |y) is indis-
tinguishable from the ordinate of the true multinomial distribution p(x |θ). Taking logs and centering as
in Lemma 6.1, the predictive p-value pcp(X, Y ), now considering inputs as random elements X and Y , is
asymptotically equal in distribution to h(V ), where

h(v)= P( f (U ) � f (V )|V = v), (6.1)

where U and V are independent and identically distributed χ2 variables on K − 1 degrees of freedom,
and where f is the density of this common distribution. The association is V is the limiting centered log
mass p(X |θ) and U is the limiting centered log mass of p(X rep|θ). The uniformity of h(V ) is immediate
from the probability integral transform. Note that MT data Y enter the game only to infer the parameter θ ;
otherwise, testing is left up to the WT data.

http://biostatistics.oxfordjournals.org/lookup/suppl/doi:10.1093/biostatistics/kxt039/-/DC1
http://biostatistics.oxfordjournals.org/lookup/suppl/doi:10.1093/biostatistics/kxt039/-/DC1
http://biostatistics.oxfordjournals.org/lookup/suppl/doi:10.1093/biostatistics/kxt039/-/DC1
http://biostatistics.oxfordjournals.org/lookup/suppl/doi:10.1093/biostatistics/kxt039/-/DC1
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Our first attempt to obtain a useful test of the MT/WT difference used a different construction that
exhibited unusual sampling properties. We imputed missing counts Z as in the proposed method, condi-
tionally upon the MT data, but for each of these we calculated the Fisher test p-value that would be suitable
in the absence of missing data. Then we averaged the resulting p-values. Computational experiments indi-
cated that this p-value might be adjustable to provide a valid test; however, a detailed mathematical analysis
uncovered a sampling defect associated with plugging in a consistent parameter estimate. The calculation
is tangential to our main argument, but it was helpful in guiding us to a more useful construction, and so
we include it in supplementary material available at Biostatistics online (Section S6).

SUPPLEMENTARY MATERIAL

Supplementary Material is available at http://biostatistics.oxfordjournals.org.
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