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Abstract: Although there has been technical and pharmacological progress in kidney transplant
medicine, some patients may experience acute post-transplant complications. Among the mechanisms
involved in these conditions, ischemia/reperfusion (I/R) injury may have a primary pathophysiolog-
ical role since it is one of the leading causes of delayed graft function (DGF), a slow recovery of the
renal function with the need for dialysis (generally during the first week after transplantation). DGF
has a significant social and economic impact as it is associated with prolonged hospitalization and
the development of severe complications (including acute rejection). During I/R injury, oxidative
stress plays a major role activating several pathways including ferroptosis, an iron-driven cell death
characterized by iron accumulation and excessive lipid peroxidation, and mitophagy, a selective
degradation of damaged mitochondria by autophagy. Ferroptosis may contribute to the renal damage,
while mitophagy can have a protective role by reducing the release of reactive oxygen species from
dysfunctional mitochondria. Deep comprehension of both pathways may offer the possibility of
identifying new early diagnostic noninvasive biomarkers of DGF and introducing new clinically
employable pharmacological strategies. In this review we summarize all relevant knowledge in this
field and discuss current antioxidant pharmacological strategies that could represent, in the next
future, potential treatments for I/R injury.

Keywords: ischemia/reperfusion injury; oxidative stress; ferroptosis; mitophagy; kidney transplantation

1. Introduction

Kidney transplantation represents the most cost-effective modality of renal replace-
ment therapy for patients with irreversible chronic kidney failure (end-stage renal disease,
stage 5 chronic kidney disease) [1]. However, despite continuous technical and pharmaceu-
tical progress in transplant medicine, some patients develop early acute post-transplant
complications and experience a slow recovery of the renal function with the need for dialy-
sis (generally during the first week after transplantation). This clinical condition, namely
delayed graft function (DGF), has a significant social and economic impact as it is associated
with prolonged hospitalization [2], poly-pharmacological approaches (particularly in the
presence of concomitant acute allograft rejection) [3], and shorter graft survival [4].

The risk of DGF is higher in specific organ transplant programs using kidneys from
non-heart-beating, elderly, multimorbid (e.g., diabetes, hypertension) donors, recipients
with a previous allograft failure and/or allosensitized, and organs damaged by acute
kidney injury and prolonged cold ischemia time [5,6].
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Particularly, during ischemia, the significant reduction in oxygen supply and the
consequent cellular switch from an aerobic to an anaerobic metabolism, may decrease
the rate of ATP production [7] and cause the accumulation of lactate (leading to acidosis).
Consequently, Na+/K+ ATPases, Na+/H+ and Ca2+-ATPase pumps can become dysfunc-
tional, and sodium, hydrogen and calcium accumulate in the cytoplasm with consequent
hyper-osmolality, a rise in water transport across cell membranes, and cellular swelling [8].

During reperfusion, the rapid increase of oxygen and pH normalization, may enhance
cytosolic calcium concentration activating cysteine proteases (e.g., calpains, caspases) and
triggering the apoptotic pathway. Moreover, calcium overload stimulates the opening of
the mitochondrial permeability transition pores (mPTP) that allow the release of substances
such as cytochrome C, succinate and mitochondrial DNA which can induce cell death
through apoptosis and necrosis and act as danger/damage-associated molecular patterns
(DAMP) promoting activation of both the innate and adaptive immunity [9–11]. In addition,
these mechanisms may result in progressive interstitial fibrosis [12–14].

Furthermore, the overproduction of reactive oxygen species (ROS) following is-
chemia/reperfusion (I/R) may be induced by deregulation of numerous enzymes able to
reduce molecular oxygen forming superoxide and/or hydrogen peroxide such as NADPH
oxidase, nitric oxide synthase (NOS), the mitochondrial electron transport chain, and
xanthine oxidoreductase (XOR).

XOR is a complex molybdoflavoenzyme that controls the rate-limiting step of purine
catabolism and exists in two interconvertible forms, xanthine dehydrogenase (XDH) and
xanthine oxidase (XO). XDH preferably uses NAD+ as an electron acceptor, while XO uses
O2 as the terminal electron acceptor thereby exhibiting the ability to generate ROS [15]. This
enzyme converts hypoxanthine into xanthine generating superoxide (O2

−) and hydrogen
peroxide (H2O2) that play an important role in mediating the recruitment and/or activation
of leukocytes that orchestrate the tissue damage [16].

Additionally NADPH oxidases, multimeric complexes that generate superoxide or
H2O2, composed of seven family members (NOX1–5, DUOX1–2) [17], are implicated in the
production of ROS following I/R. NOX enzymes use oxygen as final electron acceptors
via NADPH, FAD, and heme groups. The DUOX enzymes predominately produce hydro-
gen peroxide along with NOX-4, while the remaining NOX isoenzymes largely produce
superoxide. NOXs are constitutively inactive and require cell stimulation to translocate to
the membrane and generate ROS [16]. In I/R this enzymatic complex may be activated by
several chemical mediators that are produced and released by cells, such as: hypoxia in-
hibitory factor-1α (HIF-1α) [18], phospholipase A2 [19], arachidonic acid [20], complement
system [21], cytokines such as TNF-α and IL-1β from macrophages and mast cells [22].

Another source of ROS is the uncoupled NOS that produces nitric oxide (NO) by
the conversion of L-arginine to L-citrulline using NADPH as a reducing substrate and
tetrahydrobiopterin (BH4) as a redox-sensitive cofactor. This enzyme, under hypoxic
conditions may be converted to an O2-generating enzyme due to the reduced concentration
of BH4, increasing the oxidative damage [23].

Furthermore, mitochondria, organelles that generate most of the chemical energy
needed to power the cell, contribute to ROS production through univalent reduction of O2
mainly by the leakage of electrons at complex I and α-ketoglutarate dehydrogenase [24].

During ischemia, the alteration of mitochondrial structure, the high NADH/NAD+
ratio, and the accumulation of the citric acid cycle metabolite succinate exacerbate this
process [25,26].

Oxidative stress, then, plays a key role in organ damage after I/R by activating
ferroptosis, an iron-driven cell death characterized by iron accumulation, excessive ROS
and lipid peroxidation products and mitophagy, the selective degradation of damaged
mitochondria by autophagy.



Antioxidants 2022, 11, 769 3 of 17

2. Ferroptosis: Role in Kidney Allograft I/R Injury

Ferroptosis is a form of regulated cell death driven by iron accumulation, lipid perox-
idation and subsequent plasma membrane rupture [27]. It is mainly characterized by: a
nucleus lacking chromatin condensation, mitochondria with reduced volume and cristae,
significant cell enlargement and plasma membrane rupture [28,29].

In the context of renal I/R, the iron accumulation, through the Fenton reaction, may
generate a large amount of ROS (also increased by the concomitant mitochondrial dysfunc-
tion and NOX family activity) that can severely enhance intra-cellular oxidative stress and
lipid peroxidation (Figure 1).

Antioxidants 2022, 11, x FOR PEER REVIEW 3 of 18 
 

Oxidative stress, then, plays a key role in organ damage after I/R by activating 
ferroptosis, an iron-driven cell death characterized by iron accumulation, excessive ROS 
and lipid peroxidation products and mitophagy, the selective degradation of damaged 
mitochondria by autophagy. 

2. Ferroptosis: Role in Kidney Allograft I/R Injury 
Ferroptosis is a form of regulated cell death driven by iron accumulation, lipid 

peroxidation and subsequent plasma membrane rupture [27]. It is mainly characterized 
by: a nucleus lacking chromatin condensation, mitochondria with reduced volume and 
cristae, significant cell enlargement and plasma membrane rupture [28,29]. 

In the context of renal I/R, the iron accumulation, through the Fenton reaction, may 
generate a large amount of ROS (also increased by the concomitant mitochondrial 
dysfunction and NOX family activity) that can severely enhance intra-cellular oxidative 
stress and lipid peroxidation (Figure 1). 

 
Figure 1. Schematic representation of the mechanisms of ferroptosis and mitophagy in renal 
ischemia/reperfusion (I/R) injury. During I/R several pathways contribute to ferroptosis: (i) the 
overproduction of ROS by NADPH oxidase (NOX), nitric oxide synthase (NOS), xanthine 
oxidoreductase (XOR) and mitochondria promotes lipid peroxidation and plasmatic membrane 
rupture; (ii) the reduction in glutathione (GSH) content inhibits glutathione peroxidase 4 (GPX4) 
activity and its protective action against membrane lipid peroxidation; (iii) I/R can indirectly induce 
ferritinophagy which causes the degradation of intracellular ferritin, and the increment of 
intracellular labile iron pool. Mitophagy is activated in I/R through both ubiquitin-dependent and 
ubiquitin-independent mechanisms and seems to have a protective role in I/R injury by reducing 
the release of reactive oxygen species from dysfunctional mitochondria. In physiological conditions, 
PINK1 is imported into mitochondria where it is cleaved by the intramembrane serine protease 
presenilin associated rhomboid-like (PARL) and ultimately degraded. When mitochondria are 
damaged, and lose their membrane potential, PINK1 accumulates on the mitochondrial outer 
membrane (MOM) and recruits Parkin. Parkin ubiquitinates several mitochondrial substrates such 
as voltage-dependent anion-selective channel protein (VDAC) and dynamin-1-like protein (DRP1). 
These ubiquitinated proteins can recruit mitophagy receptors (such as optineurin, p62) that link 
mitochondria to autophagosomes through interacting with LC3. This causes an autophagic 

Figure 1. Schematic representation of the mechanisms of ferroptosis and mitophagy in renal is-
chemia/reperfusion (I/R) injury. During I/R several pathways contribute to ferroptosis: (i) the
overproduction of ROS by NADPH oxidase (NOX), nitric oxide synthase (NOS), xanthine oxidore-
ductase (XOR) and mitochondria promotes lipid peroxidation and plasmatic membrane rupture;
(ii) the reduction in glutathione (GSH) content inhibits glutathione peroxidase 4 (GPX4) activity
and its protective action against membrane lipid peroxidation; (iii) I/R can indirectly induce fer-
ritinophagy which causes the degradation of intracellular ferritin, and the increment of intracellular
labile iron pool. Mitophagy is activated in I/R through both ubiquitin-dependent and ubiquitin-
independent mechanisms and seems to have a protective role in I/R injury by reducing the release
of reactive oxygen species from dysfunctional mitochondria. In physiological conditions, PINK1 is
imported into mitochondria where it is cleaved by the intramembrane serine protease presenilin
associated rhomboid-like (PARL) and ultimately degraded. When mitochondria are damaged, and
lose their membrane potential, PINK1 accumulates on the mitochondrial outer membrane (MOM)
and recruits Parkin. Parkin ubiquitinates several mitochondrial substrates such as voltage-dependent
anion-selective channel protein (VDAC) and dynamin-1-like protein (DRP1). These ubiquitinated
proteins can recruit mitophagy receptors (such as optineurin, p62) that link mitochondria to au-
tophagosomes through interacting with LC3. This causes an autophagic engulfment of the organelle
necessary for its degradation. The ubiquitin-independent mechanism is regulated by mitophagy re-
ceptors that localize on MOM, such as BCL2 interacting protein 3 (BNIP3), BNIP3-like (BNIP3L/NIX),
and FUN14 domain containing 1 (FUNDC1). These proteins bridge mitochondria to autophagosome
by directly interacting with LC3.
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Two pathways may trigger ferroptosis: the extrinsic and the intrinsic pathway [27]. The
extrinsic pathway is initiated through the inhibition of the cystine/glutamate exchanger of
the membrane, namely the XC system, that mediates the entry of cystine into the cells, which
is used to synthesize glutathione (GSH) [30], a cofactor used by glutathione peroxidase 4
(GPX4) to eliminate lipid peroxides in the cell membranes. Therefore, inhibition of the XC
system indirectly reduces the activity of GPX4 with consequent accumulation of lethal lipid
peroxides and induction of ferroptosis. Several agents such as erastin, sulfasalazine, and
sorafenib, by blocking the XC system, are able to elicit ferroptosis through this mechanism.

The intrinsic pathway is mainly induced by drugs or small-molecule inhibitors such
as RSL3, ML162, ML210, FIN56 and FINO2 which can directly or indirectly inhibit GPX4
activity [31]. Additionally, the molecules regulating iron uptake, storage, and utilization
(such as ferritin, transferrin, and lactotransferrin) can influence ferroptosis by increasing
levels of labile iron (free-iron source that was relatively accessible for Fenton reaction) in
the cell [32]. Transferrin and lactotransferrin are proteins responsible for iron transport
that, binding to their receptors, mediate the import of Fe into the cytoplasm. Ferritin is the
intracellular iron-storage protein that can be degraded by lysosomes in a process termed
ferritinophagy and increases free iron levels thus promoting ferroptosis [33] (Figure 1).

Contrarily enzymatic and non-enzymatic systems (CoQ10, vitamin E, ferrostatins, and
liproxstatins), together with membrane repair systems, prevent lipid peroxidation and
protect the cells from ferroptosis [34–37].

Recent studies have reported that ferroptosis may be involved in the pathophysiologi-
cal pathway associated with the I/R injury [29,38].

Su et al. [39] demonstrated that pannexin 1, a membrane channel involved in regu-
lating ATP release as a DAMP molecule able to activate apoptosis or autophagy signaling
in oxidative condition [40,41], may activate ferroptosis in a mouse model of renal I/R
injury [39]. Knockout of the panx1 gene in mice subjected to I/R is associated with a lower
increment of serum creatinine and decreased tubular cell death together with decreased
lipid peroxidation compared with wild-type mice. This protective effect seemed mediated
by the inactivation of the MAPK/ERK pathway and the up-regulation of the antioxidant
gene heme oxygenase-1 (HO-1).

The anti- ferroptosis protective effects may also be exerted by the activity of the
Augmenter of Liver Regeneration (ALR), a sulfhydryl oxidase enzyme localized in the
intermembrane space of mitochondria. This enzyme participates in the “disulfide relay
system” that mediates the import of proteins to the intermembrane space [42] and has
anti-apoptotic and anti-oxidative properties. ALR expression was significantly increased
in ischemic rats and the administration of recombinant human ALR, by enhancing the
proliferation of renal tubular cells and attenuating tubular cell apoptosis, effectively reduced
tubular injury and ameliorated the impairment of renal function [43,44].

The protective role of ALR in ferroptosis could also be mediated by a reduction of ROS
levels via its interaction with the GSH-GPX4 system [45] and by promoting the clearance of
damaged mitochondria (a mechanism called mitophagy) [46].

Therefore, ALR activation may represent a possible future prevention therapeutic
strategy for I/R-induced allograft injury.

3. Mitophagy: Another Player in Kidney Allograft I/R Injury

Damaged or dysfunctional mitochondria harm the cell by producing a large amount
of ROS and releasing pro-apoptotic factors. Thus, timely removal of these organelles is
critical to cellular homeostasis and viability [47].

Mitophagy is the mechanism of selective degradation of damaged mitochondria via
autophagy [48] that is executed by a ubiquitin-dependent and ubiquitin-independent
pathway. The former is regulated by the PTEN-induced putative kinase 1 (PINK1)-Parkin
pathway. PINK1 is a mitochondrial serine/threonine kinase and Parkin is a cytosolic
ubiquitin E3 ligase. In physiological conditions, PINK1 is imported into mitochondria
where it is cleaved by the intramembrane serine protease presenilin associated rhomboid-
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like (PARL) and ultimately degraded [49]. When mitochondria are damaged and lose their
membrane potential, the import of PINK1 is hindered leading to an accumulation of this
kinase at the mitochondrial outer membrane (MOM). Subsequently, PINK1 recruits Parkin
and activates its ligase activity [50]. Parkin ubiquitinates several mitochondrial substrates
such as Mitofusin 2 (Mfn2), voltage-dependent anion-selective channel protein (VDAC),
and dynamin-1-like protein (DRP1). These ubiquitinated proteins can recruit mitophagy
receptors (such as optineurin, p62, NBR1) that link mitochondria to autophagosomes
through interacting with LC3. This causes an autophagic engulfment of the organelle
necessary for its degradation [49,51].

The ubiquitin-independent mechanism is regulated by mitophagy receptors that
localize on MOM such as BCL2 interacting protein 3 (BNIP3), BNIP3-like (BNIP3L/NIX),
and FUN14 domain containing 1 (FUNDC1) [52,53]. These proteins bridge mitochondria to
autophagosome by directly interacting with LC3 [54] (Figure 1).

Mitophagy is also regulated by proteins that participate in mechanisms of fusion and
fission of these organelles. Fusion results in a single mitochondrion being formed from
previously independent structures [55], generating networks with continuous membranes
and matrix lumen [56]. Fission produces one or more daughter organelles and, in the case
of reduced mitochondrial membrane potential, segregates this organelle for elimination by
autophagy [56].

The coordination of fission/fusion and mitophagy seems to be mediated by FUNDC1.
In physiological conditions, this receptor anchors dynamin-related GTPases optic atro-
phy 1 (OPA1) toward the inner surface of the MOM. In response to mitochondrial stress,
the disassembly of the FUNDC1–OPA1 complex and the recruitment of Drp1 promote
mitochondrial fission and mitophagy [57].

This complex and fascinating multifactorial autophagic mechanism may play a protec-
tive role in allografts undergoing I/R injury.

Deficiency of BNIP3 or Pink1 and/or Parkin in rat models of renal I/R injury resulted
in increment of ROS production, apoptosis, and tubulointerstitial inflammation [58–61].
The same effects were obtained by the suppression of the mitophagic cascade by acting on
proteins regulating fission (e.g., Drp1) or fusion (e.g., OPA1) [62,63].

The protective effects of mitophagy on kidney undergoing I/R injury were observed
after ischemic preconditioning [64], a short period of non-lethal ischemia-reperfusion that
protect solid organ against subsequent extended I/R injury [65]. The up-regulation of
mitophagy via the PINK1-Parkin pathway improved mitochondrial function, minimized
ROS production and enhanced cell survival [64].

All these findings suggest that mitophagy, preserving mitochondrial quality and
tubular cell survival, could represent a valuable protective mechanism against I/R injury
that should be promoted by pharmacological interventions.

4. Antioxidants and Ferroptosis/Mitophagy Regulators

Several pharmacological agents with anti-oxidant potentials have been proposed for
the treatment of I/R injury, including those targeting the nuclear factor erythroid 2–related
factor 2 (Nrf2), hydrogen sulfide (H2S), mitochondria-targeting antioxidants, drugs with
anti-oxidant potential, and other specific ferroptosis and mitophagy regulators (Table 1).
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Table 1. Antioxidant molecules with their class, mechanism and targets.

Molecule Class Mechanism and Targets

Nrf2 Transcription factor

In response to oxidative stress, Nrf2 escapes from
degradation throught the inactivation of Keap1 and binds to
antioxidant rensponse elements in the regulatory region of
target genes. Nrf2 induces the expression of genes encoding
proteins involved in redox homeostasis, xenobiotic
metabolism, anabolic metabolism, DNA damage,
proliferation and survival responses

H2S Gaseous mediator

H2S exerts anti-oxidant effects through several mechanisms:
(i) acts as a direct scavenger that reduces excessive amounts
of ROS; (ii) upregulates the antioxidant defense system
through the Nrf2 pathway; (iii) increases the production of
intracellular GSH

Dexmedetomidine Drug (a2-adrenoreceptor agonist with
sedative effect)

Dexmedetomidine increases antioxidant activity and
reduces the synthesis of ROS, but the exact mechanism has
not yet been fully elucidated

Edaravone Neuroprotective drug Edaravone is a scavenger of hydroxyl and peroxyl radicals

Ferrostatin-1 Arylamine Radical-trapping anti-oxidants

Liproxstatin Arylamine Radical-trapping anti-oxidants

MitoQ Quinone

MitoQ is accumulated at the matrix-facing surface of the
inner mitochondrial membrane, where complex II of the
ETC recycles it into the active ubiquinol form (MitoQH2).
This form has been shown to be a highly effective
anti-oxidant by reacting with ROS

SS-31 Peptide-based cell-permeable antioxidant
compound

SS-31 can scavenge H2O2 and ONOO− and inhibit lipid
peroxidation

Tempol Superoxide dismutase-mimetic Tempol scavenges H2O2, NO, ONOO−, lipid peroxyl, and
alkoxyl radicals

Mito-TEMPO Piperidine nitroxide TEMPO combined with
the TPP cation

Mito-TEMPO possesses O2
− and alkyl radical scavenging

properties

XJB-5-131 4-NH2-TEMPO combined with pentapeptide
fragment from gramicidin S XJB-5-131 is both an electron scavenger and an anti-oxidant

4.1. Regulation of the Nuclear Factor Erythroid 2–Related Factor 2 (Nrf2)

The nuclear factor erythroid 2–related factor 2 (Nrf2) is an inducible transcription
factor that regulates the expression of antioxidant response elements [66] (Figure 2).

In physiological conditions Nrf2 binds to Kelch-like ECH-associated protein-1 (Keap1)
in the cytoplasm and is degraded by the ubiquitin-proteasome pathway [67]. Under
oxidative stress, Nrf2 escapes from degradation thanks to the inactivation of Keap1, forms
dimers with a member of the small Maf proteins in nuclei, binds to anti-oxidant response
elements, and activates transcription of the antioxidant genes [68].

In the course of renal I/R, the hyperactivation of Nrf2 by 1-[2-cyano-3-,12-dioxooleana-
1,9(11)-dien-28-oyl] imidazolide (CDDO) in the initial phase of the ischemia process pre-
vents the progression of ROS-mediated tubular damage by inducing the expression of genes
involved in anti-oxidant response [NADPH: quinone acceptor oxidoreductase 1 (Nqo1),
Sulfiredoxin-1 (Srxn1) and Thioredoxin Reductase 1 (Txnrd1)], glutathione metabolism
[Glutamate-Cysteine Ligase Modifier Subunit (Gclm) and Glutathione S-Transferase Mu
1 (Gstm1)], and NADPH synthesis [Glucose-6-Phosphate Dehydrogenase (G6pd) and
Phosphogluconate Dehydrogenase (Pgd)] [69].
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Figure 2. Mechanism of Nrf2 regulation in the treatment of renal I/R. In physiological condition
Nrf2 binds to Kelch-like ECH-associated protein-1 (Keap1) in the cytoplasm and is degraded by
ubiquitin-proteasome pathway. During renal I/R the hyperactivation of Nrf2 by CDDO, H2S, water-
soluble H2S donor (such as GYY4137) leads to nuclear traslocation of Nrf2 that binds to antioxidant
response elements and activates transcription of the genes encoding proteins involved in antioxidants
mechanisms and iron metabolism thereby preventing the ROS-mediated tubular damage and the
ferroptotic cascade.

Nrf2 also regulates the expression of genes encoding for proteins mediating iron
metabolism and is able to prevent the ferroptotic cascade, such as ferritin light and heavy
chain (FTL/FTH1), ferroportin (SLC40A1) [70,71], GPX4, and HO-1, by which ferroptosis
is inhibited and I/R-associated kidney injury alleviated [72,73].

Contrarily, silencing Nrf2 in mice undergoing I/R injury, triggered worse renal func-
tion and elevated histological tubular damage, increased renal vascular permeability,
oxidative stress, and apoptosis compared to wild-type mice [74–76].

4.2. Antioxidant Effects of Hydrogen Sulfide (H2S)

Hydrogen sulfide (H2S) is a membrane-permeable, gaseous mediator that inhibits
oxidative damage through scavenging free radicals and ROS by increasing the level of GSH
and thioredoxin, and the activation of Nrf2 signaling by inactivation of Keap1 [77,78].

Several studies have reported the protective effect of soluble forms of H2S (such as
sodium hydrosulfide or sodium sulfide) in animal models of I/R injury [79–84] (Table 2).
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Table 2. Studies reporting the beneficial effects of H2S in animal models of I/R injury.

Model Treatment Effects Ref

Ischemic rats

NaHS (100 umol/kg, 2 mL/kg) was
administered topically onto the kidneys
15 min before ischemia and 5 min before
reperfusion

Reduced renal dysfunction through both
anti-apoptotic and anti-inflammatory effects
secondary to modulation of the signaling
pathways leading to activation of MAPK and
NF-kB

[79]

Ischemic mice
NaHS (100 µmol/kg, 8 mL/kg, i.p.) was
administered 30 min prior to ischemia
and 6 h into reperfusion

Reduced renal dysfunction [80]

Mouse embryonic fibroblasts Cells were treated with menadione
H2S stabilized Nrf2 through inhibition of
Keap1 with consequent Nrf2-mediated
induction of cytoprotective genes

[81]

Ischemic mice

H2S was administered in 3 different
treatment regimens: PRE-TREATMENT
(H2S 100ppm administered for 30 min
before ischemia and last for 25 min
during ischemia); POST-TREATMENT
(H2S 100 ppm administered 5 min before
reperfusion); PRE- and
POST-TREATMENT (H2S 100ppm
starting 30 min before ischemia until 30
min after reperfusion)

The H2S-induced reduction in metabolism
before ischemia (PRE-TREATMENT/PRE-
and POST-TREATMENT) protected against
acute tubular necrosis, apoptosis, loss of
mitochondrial integrity and mitochondrial
swelling associated with I/R injury. The
protection was less pronounced when H2S
was administered after the hypoxic period
(POST-TREATMENT)

[82]

Ischemic mice

Mice received daily intraperitoneal
administration of sodium hydrosulfide
hydrate (NaHS; 500 µg/kg) beginning 2
days after ischemia until 8 days after
surgery

Exogenous supplement of H2S by NaHS
after ischemia improved recovery of kidney
function by accelerating tubular epithelial
cell proliferation, suppressing interstitial cell
proliferation and fibrosis. Furthermore,
NaHS treatment reduced post-I/R oxidative
stress by prevention of reduction of
glutathione level

[83]

Ischemic mice

Mice received GYY4137 (H2S donor) 50
mg/kg via intraperitoneal injection for 2
consecutive days before
ischemia/reperfusion

GYY4137 attenuated the deterioration of
renal function and morphology by increasing
the expression of anti-oxidant enzymes via
activation of the Nrf2 pathway

[84]

During renal I/R injury, the expression of the enzyme cystathionine gamma-lyase that
catalyzes H2S formation is up-regulated and consequently, H2S production, as well as its
plasmatic concentration, increased [80]. This could represent a defensive mechanism of the
kidney against I/R. In fact, the administration of exogenous NaHS (15 min before ischemia
and 5 min before reperfusion) prevented the I/R-induced activation of caspase-3 as well
as the decline in the expression of the apoptotic markers Bid and Bcl-2 [79] with positive
functional and histological effects.

Another protective mechanism mediated by H2S is based on its ability to induce
hypometabolism (50% reduction in oxygen consumption and 60% in carbon dioxide out-
put) [85]. The demand for O2 is reduced to such an extent that H2S-treated mice can survive
in 5% O2 for over 6 h [86].

In a mouse model of renal I/R injury, H2S administrated before the ischemic insult
may preserve renal function, prevent apoptosis and limit the influx of leukocytes and
granulocytes into the renal interstitium [82]. Contrarily, a post-ischemic treatment with
H2S may not exert any protective effects. These results demonstrated that the reduction in
O2 demand during hypoxia prevents the activation of detrimental pathways associated
with I/R [82].
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According to these findings, Han et al. demonstrated, in an ischemic kidney mouse
model, the capability of NaHS treatment to accelerate the regeneration of damaged tubular
cells by activating anti-oxidant effects [83].

More recently Zhao et al. also found that a water-soluble H2S donor (GYY4137) was
able to attenuate the deterioration of renal function and morphology in the renal I/R model
by increasing the nuclear localization of Nrf2 [84].

These findings indicate that the H2S-producing system may play a critical role in the
recovery from acute kidney injury and prevention of progression to chronic kidney disease.

4.3. Mitochondria-Targeting Antioxidants

The commonly used antioxidants could be ineffective in limiting mitochondrial ROS
production, due to their low penetrance to the mitochondria interior. To overcome these
limitations, mitochondria-targeting anti-oxidants have been developed to provide their
delivery to the mitochondrion interior [87]. These molecules have been used in numerous
pre-clinical and clinical studies (Table 3) [88–102].

Table 3. Main published preclinical and clinical studies investigating mitochondria-targeting anti-oxidants.

Molecule Type of Study Model/Disease Treatment Results Ref

MitoQ

Preclinical
study Animal model of I/R injury

MitoQ (4 mg/kg) was
administered to the mice
intravenously 15 min prior to
ischemia

MitoQ attenuated renal
dysfunction through a
reduction in oxidative
damage

[88,89]

Clinical studies

To evaluate the efficacy of
MitoQ for improving
physiological function
(vascular, motor, and
cognitive) in middle-aged
and older adults (≥60 years)

Oral supplementation of
MitoQ (20 mg/day for
6 weeks)

MitoQ improved endothelial
function, reduced aortic
stiffness and decreased
plasma oxidized LDL without
altering circulating markers
of inflammation or traditional
cardiovascular disease risk
factor

[90]

Treatment of patients with
Parkinson’s Disease

Two doses of MitoQ (40 or 80
mg once daily) for a period of
12 months versus placebo

MitoQ did not slow the
progression of Parkinson’s
Disease

[91]

A Phase 2, randomized,
double-blind, parallel design
trial to evaluate the ability of
MitoQ to reduce raised serum
alanine transaminase (ALT)
seen in patients with chronic
Hepatitis C compared with
placebo

Two doses of MitoQ (40 or 80
mg once daily) for 28 days

Both treatment groups
showed significant decreases
in absolute and percentage
changes in serum ALT from
baseline to treatment day 28

[92]

SS-31
(Elamipretide,
Bendavia,
MTP-131)

Preclinical
study

Animal model of I/R injury

SS-31 (2.0 mg/kg per day)
was administered for 6 weeks,
starting 1 month after
ischemia

SS-31 restored mitochondria
structure in endothelial cells,
podocytes, and tubular cells
with consequent restoration
of peritubular and glomerular
capillaries, preservation of
podocyte architecture,
suppression of inflammation,
and fibrosis

[93]

Mice treated with aristolochic
acid or adriamycin to induce
acute kidney injury

SS-31 (3 mg/kg) was
administered
intraperitoneally once a day,
starting 1 day before the
disease-inducing drugs and
then daily until day 6

SS-31 modulated the
expression of of members of
the RAS system

[94]
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Table 3. Cont.

Molecule Type of Study Model/Disease Treatment Results Ref

Clinical studies

Patients with severe
atherosclerotic renal artery
stenosis scheduled for
percutaneous transluminal
renal angioplasty (PTRA)

Patients were treated before
and during PTRA with
elamipretide (0.05 mg/kg per
hour intravenous infusion) or
placebo

Adjunctive elamipretide
during PTRA was associated
with attenuated
postprocedural hypoxia,
increased renal blood flow,
and improved kidney
function

[95]

Phase 2a, randomized,
double-blind,
placebo-controlled trial
enrolling 300 patients with a
first-time anterior STEMI and
an occluded proximal or
mid-left anterior descending
artery undergoing primary
percutaneous coronary
intervention (PCI) that
evaluated the efficacy and
safety of Bendavia

Patients were randomized to
receive either Bendavia at 0.05
mg/kg per hour or a placebo

Treatment with MTP-131 was
not associated with a decrease
in myocardial infarct size

[96]

Double-blind,
placebo-controlled trial to
evaluate safety, tolerability,
and pharmacokinetics of
escalating single intravenous
infusion doses of Bendavia
(MTP-131)

Patients with heart failure
with reduced ejection fraction
(ejection fraction, ≤35%) were
randomized to either a single
4-h infusion of elamipretide
(cohort 1, 0.005; cohort 2, 0.05;
and cohort 3, 0.25
mg·kg−1·h−1) or placebo

A single infusion of
elamipretide was safe and
well-tolerated. High-dose
elamipretide resulted in
favorable changes in left
ventricular volumes that
correlated with peak plasma
concentrations, supporting a
temporal association and
dose-effect relationship

[97]

Elamipretide in adults with
primary mitochondrial
myopathy

Participants were randomly
assigned (1:1) to 40 mg/day
subcutaneous elamipretide
for 4 weeks followed by
placebo subcutaneous for 4
weeks, separated by a 4-week
washout period, or the
opposite sequence

Elamipretide was generally
well-tolerated and
participants who received
short-course daily
elamipretide for 4 weeks had
clinically meaningful
improvements in 6 min walk
test

[98]

Randomized, double-blind,
placebo-controlled crossover
trial followed by an
open-label extension to test
the effect of elamipretide in
Barth syndrome (BTHS)

A group of patients (12
subjects) was randomized to
receive 40 mg per day of
elamipretide or placebo for 12
weeks, followed by a 4-week
washout and then 12 weeks
on the opposite arm. Ten
subjects continued on the
open-label extension (part 2)
of 40 mg per day of
elamipretide, with 8 subjects
reaching 36 weeks

At 36 weeks in part 2, there
were significant
improvements in 6 min walk
test and BTHS Symptom
Assessment (BTHS-SA) scale

[99]

Tempol Pre-clinical
study Animal model of I/R injury

Tempol (30 mg/kg
intravenously) prior to and
throughout reperfusion

Tempol attenuated renal
dysfunction at least partially
through reduced renal
activity of MPO and level of
MDA

[100]

Mito-TEMPO Pre-clinical
study Animal model of I/R injury

25 µL Mito-tempo was
directly injected into each
kidney of the mice after
reperfusion followed by daily
intraperitoneal injection of
mito-TEMPO (5 mg/kg) until
day 5

Mito-TEMPO restored the
renal mtDNA level,
mitochondrial mass, and ATP
production with consequent
reduced inflammation and
kidney injury

[101]

XJB-5-131 Pre-clinical
study Animal model of I/R injury

The mice were injected
intraperitoneally with
XJB-5-131 (10 mg/kg) 30 min
prior to ischemia and for 3
consecutive days after
surgery

XJB-5-131 attenuated
I/R-induced renal injury and
inflammation in mice by
specifically inhibiting
ferroptosis

[102]
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MitoQ: a quinone comprises a lipophilic triphenylphosphonium (TPP) cation cova-
lently linked by an aliphatic 10-carbon chain to an antioxidant ubiquinone moiety [103].
The TPP lipophilic cation passes rapidly through biological membranes and its positive
charge drives the extensive accumulation of these molecules into mitochondria where it
acts as a chain-breaking anti-oxidant to prevent oxidative damage [104].

In a mouse model of bilateral renal ischemia, followed by up to 24 h reperfusion,
intra-venous administration of MitoQ 15 min prior to ischemia reduced the severity of I/R
injury to the kidney by decreasing oxidative damage [88,89].

Its ability to preserve mitochondrial integrity and function limits ferroptosis induced
by loss of GPX4 or exposure to RSL3 [105].

Szeto-Schiller peptide SS-31 (also known as MTP-131, elamipretide, and bendavia) is a
peptide agent that interacts with cardiolipin [106] in the inner mitochondrial membrane
and exerts strong anti-oxidant propriety [107].

In a rat model of renal I/R injury, treatment with SS-31 protected mitochondrial
structure and respiration during early reperfusion, accelerated recovery of ATP, reduced
apoptosis and necrosis of tubular cells, and abrogated tubular dysfunction [93]. In addition,
SS-31 seemed to be able to modulate the expression of members of the RAS system (an
important regulator of kidney functions), in particular aminopeptidase A (APA) and Ang
receptors (AT2R) [94].

In a recent Phase 2a prospective, multicenter, randomized, double-blind, placebo-
controlled study Saad et al., assessed the safety, tolerability, and efficacy of IV administered
elamipretide (clinical formulation of SS-31) for reduction of reperfusion injury in patients
with severe atherosclerotic renal artery stenosis undergoing revascularization with per-
cutaneous transluminal renal angioplasty (PTRA) [95]. Patients were treated before and
during PTRA with elamipretide (0.05 mg/kg per hour intravenous infusion) or placebo.
Compared to the placebo group, the patients who received elamipretide showed increased
estimated GFR and a decline in systolic blood pressure after 3 months.

Tempol (4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl or 4-hydroxy-tempo) is a
stable piperidine nitroxide that scavenges superoxide anions and reduces the intracellular
concentrations of Fe2+ and, hence, the formation of hydroxyl radicals via the Fenton or
Haber-Weiss reactions [108,109].

In a rat model of renal I/R injury, administration of tempol prior to and throughout
reperfusion attenuated renal dysfunction at least partially through reduced renal activity of
myeloperoxidase (MPO) and levels of malondialdehyde (MDA) [100].

This compound is currently under investigation in a clinical trial evaluating its ability
to prevent many of the toxicities associated with cisplatin and radiation treatment (includ-
ing the prevention of mucositis, nephrotoxicity, and ototoxicity) in head and neck cancer
patients (NCT03480971).

Mito-TEMPO is a combination of the intracellular anti-oxidant piperidine nitrox-
ide TEMPO (2,2,6,6-tetramethylpiperidin-1-yloxy) and the TPP cation which facilitates
1000-fold accumulation into the mitochondrial matrix and selectively targets mitochondrial
ROS [110]. Administration of mito-TEMPO in rats after reperfusion and for 3 or 5 consecutive
days after surgery restored the renal mtDNA level, mitochondrial mass, and ATP produc-
tion with a consequently reduced inflammation and kidney injury [101].

XJB peptides are composed of 4-NH2-TEMPO, a stable nitroxide radical with anti-
oxidant properties conjugated to a pentapeptide fragment from gramicidin S (Leu-d-Phe-
ProVal-Orn), a natural membrane-active cyclopeptide antibiotic localized in the inner
mitochondrial membrane [111]. The most studied of all the XJB peptides is XJB-5-131.
Mice injected intraperitoneally with XJB-5-131 (10 mg/kg) 30 min prior to ischemia and for
3 consecutive days after surgery showed decreased kidney inflammation, regeneration and
repair of injured renal tubular cells at least partially through the inhibition of I/R induced
ferroptosis [102].
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4.4. Drugs with Antioxidant Properties

Dexmedetomidine is a highly selective and specific α2-adrenoreceptor agonist with a
sedative effect.

In a rat model of I/R, dexmedetomidine, administered intraperitoneally at different
dosages (from 10 to 100 ug/kg) at the starting of ischemia or reperfusion or after surgery,
attenuated renal dysfunction, acute tubular necrosis and inflammatory response at least
partially through increased renal p38 MAPK, anti-oxidant levels, and maintenance of
autophagy [112–115].

Edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one) is a potent scavenger of hydroxyl
and peroxyl radicals. As recently reported in the literature, administration of edaravone
(from 3 to 10 mg/kg) intravenously in a mouse model of I/R injury (by clamping of renal
arteria) protected against kidney damage by reducing oxidative stress, inhibiting apoptosis,
and improving mitochondrial injury through JAK/STAT signaling [116,117].

In the future, edaravone could be potentially employable in clinical organ preservation
and transplantation.

4.5. Ferroptosis and Mitophagy Specific Agents:

Besides the aforementioned antioxidant agents that can have an indirect role on both
ferroptosis and mitophagy, specific molecules have been proposed for the direct regulation
of these two pathways, including ferrostatin-1 and liproxstatin, two specific inhibitors
of ferroptosis that because of their reactivity as radical trapping antioxidants may allow
to reduce the accumulation of lipid hydroperoxides [118]. Liproxstatin-1 was reported
to be able to suppress ferroptosis in human renal proximal tubule epithelial cells, in
Gpx4−/− kidney, and in an I/R-induced tissue injury models [37]. However, additional
studies (including clinical trials) should be undertaken to better address the clinical utility
of these agents.

5. Conclusions

There are no therapeutic strategies available in clinical practice to slow down the onset
and development of the allograft damage induced by I/R injury. However, data obtained
in vitro and in animal models suggest that modulation of ferroptosis and mitophagy could
represent a future therapeutic tool to prevent or slow-down the progression of the allograft
I/R injury. Moreover, some of the components of both biological mechanisms could be
proposed as novel (and not invasive) early diagnostic biomarkers for I/R injury-induced
allograft complications (mainly delayed graft function).
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