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Today, disease detection automation is widespread in healthcare systems. The diabetic

disease is a significant problem that has spread widely all over the world. It is a genetic

disease that causes trouble for human life throughout the lifespan. Every year the number

of people with diabetes rises by millions, and this affects children too. The disease

identification involves manual checking so far, and automation is a current trend in the

medical field. Existing methods use a single algorithm for the prediction of diabetes. For

complex problems, a single model is not enough because it may not be suitable for

the input data or the parameters used in the approach. To solve complex problems,

multiple algorithms are used. These multiple algorithms follow a homogeneous model

or heterogeneous model. The homogeneous model means the same algorithm, but the

model has been used multiple times. In the heterogeneous model, different algorithms

are used. This paper adopts a heterogeneous ensemble model called the stacked

ensemble model to predict whether a person has diabetes positively or negatively.

This stacked ensemble model is advantageous in the prediction. Compared to other

existing models such as logistic regression Naïve Bayes (72), (74.4), and LDA (81%), the

proposed stacked ensemble model has achieved 93.1% accuracy in predicting blood

sugar disease.

Keywords: random forest, KNN classifier, decision tree, gradient boosting, SVM and Gaussian Naïve Bayes, PIMA

dataset, healthcare systems

INTRODUCTION

People’s regular foods contain a vast amount of carbohydrates and calories. Three primary reasons
that a person may suffer from diabetes are genetics, lifestyle, and environment. The first reason
for diabetic positivity is genetics. Family studies proved that the children whose parents are type 2
[Muoio and Newgard (1)] diabetic have three times more chances to develop diabetic positive than
the parents who don’t have diabetic positive. Lifestyle is the second reason for the diabetic positive
because proven studies show that the individual lifestyle causes diabetic positive even though their
ancestors are not diabetic positive. The third reason for the diabetic positive is adopting intricate
weight loss mechanisms. It causes kidney failure or heart issues that lead to diabetes positive in
the future.
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The symptoms for the diabetic positive are eye powerlessness,
sudden weight loss, frequent urination, frequent hunger, and
thirst. Due to these types of factors, diabetes (sugar patients)
risk has increased worldwide. The diabetic disease has become
a significant issue in the world. This disease is categorized into
two types: type 1 and type 2. According to the International
Diabetes Federation (IDF), 463 million people worldwide will
have diabetes in 2019 and by 2045, this will rise to 700 million.
Early detection of diabetic positives helps reduce patients’
medical expenditure, death rate, and risk because they may not
have proper health care facilities nearby.

The diabetic patient is categorized into two categories, namely
type 1 and type 2. Type 1 diabetic patients are dependent on
insulin to control the disease. Type 2 diabetic patients are non-
dependent on insulin to control the disease. The diabetic-positive
patient has a high risk of several problems such as cardiac arrest,
kidney failure, dry skin, paralysis, eye problems, etc. Rural area
people are unaware of early-stage symptoms to prevent this
diabetic disease, and they are unaware of early-stage symptoms
to prevent this diabetic disease.

Diabetes patients increase irrespective of age across all regions
of the world, and there is no medicine (vaccine) to prevent it.
The diabetic positive type 2 patient body makes gradually used
insulin. The insulin increases the blood sugar to save energy
into the cells for later usage. The diabetic positive diagnosis
or confirmation is made at the hospital through conducting
various lab/clinical tests. In this modern life, people are interested
in saving their time to save money. It leads to many health
complications; one of these is diabetic disease. The proposed
system is one of the automated processes of early prediction of
diabetic positives. There are several machine learning models
were proposed for predicting the person with diabetes positively.
The proposed model has outperformed in terms of prediction
of diabetic positive compared to other existing models and has
achieved 93% accuracy as a detection rate.

Limitations on Existing Works
The existing approaches in the prediction of diabetic positive
are discussed in the next section. Most of the existing works
use only a single algorithm, which is used to predict whether
the patient is diabetic positive. There are two problems if one
algorithm is used for predicting the output. The first problem is
that a single algorithm is not sufficient for prediction. Also, the
selected dataset may not fit that algorithm. These problems lead
to less accuracy in output prediction. The proposed system has
used multiple machine-learning algorithms to predict whether
the patient has a diabetic positive or not.

Main Contributions of the Current Work
The proposed system has considered the increasing number
of diabetic-positive patients, one of the common problems
of all countries globally. Every country has suffered from
two main problems without solutions. One is climate change
and increasing diabetic positive patients. Thus this paper has
investigated the common health issue, diabetic positive, which
has no proper software system to predict with high accuracy.
This paper has adopted several machine learning algorithms

for automating the prediction of diabetic positives. Since the
proposed system is a generic model for diabetic prediction, this
software system can be used in any region in the world.

LITERATURE REVIEW

Dhomse Kanchan and Mahale Kishor (2) used multiple machine
learning algorithms for rare disease prediction. Kavakiotis
et al. (3) proposed multiple machine learning models for the
diabetic positive prediction. Kononenko (4) surveyed various
medical diagnoses using several artificial intelligent approaches.
Kandhasamy and Balamurali (5) used various data mining
models such as J48, KNN, and Random Forest, SVM, to predict
diabetes mellitus under two different situations (one is before
pre-processing and another is after pre-processing). Iyer et al.
(6) employed two techniques, namely J48 and Naïve Bayes, to
classify diabetic patients. The model J48 approach has achieved
74.87% and Naïve Bayes algorithm has obtained 76.96% accuracy
in analyzing diabetes. Ashiquzzaman et al. (7) proposed a Deep
Neural Network (DNN) to predict the diabetic positive. The
DNNmodel is also adopted to reduce data overfitting.

Yuvaraj and SriPreethaa (8) adoptedHadoop clusteringmodel
for prediction of diabetic positive on big data. Sisodia and Sisodia
(9) usedDecision Tree, SVM, andNaive Bayes to predict diabetes.
The SVM has obtained 65.10% of accuracy using SVM, and
Naïve Bayes classifier has obtained 73.82%. Negi and Jaiswal
(10) developed a machine learning model for diabetic prediction
on different global datasets. This approach is a first attempt
of diabetic prediction on global datasets. Soltani and Jafarian
(11) proposed a Probabilistic Neural Network (PNN) model for
diagnosing diabetes type 2 using the PIMA Indians Diabetes
data set. This PNN approach has achieved 90% accuracy in
analyzing diabetes. Rakshit et al. (12) used a Two-Class Neural
Network to predict diabetes. This model has achieved an 83.3%
detection rate of type 2 diabetes. Mamuda and Sathasivam
(13) compared four machine learning approaches, Naïve Bayes,
Quadratic Discriminant Analysis, Linear Discriminant Analysis,
and Gaussian Process Classifier, and obtained the accuracy as
81.97% with respect to cross validation of 10.

Farran et al. (14) proposed several prediction models to
predict the risk factor of diabetic two positive patients. Anand
and Shakti (15) combined multiple machine learning models
to predict the diabetic based on personal lifestyle indicators.
Malik et al. (16) proposed a non-invasive detection model for
blood glucose level using saliva. Mirshahvalad and Zanjani (17)
proposed multiple ensemble techniques for diabetes prediction.
Mohebbi et al. (18) developed a deep learning model to detect
type 2 diabetics. Pham et al. (19) developed a deep learning
model for analyzing medical records to predict the trajectories.
Askarzadeh and Rezazadeh (20) proposed a neural network
model to achieve an effective training novel optimization
algorithm for the clinical data analysis. Rao et al. (21) developed
a combined classifiers for disease diagnosis. Kopitar et al. (22)
employed three techniques, namely Random Forest algorithm,
Naïve Bayes classifier, and KNN, for predicting the diabetic.
Apart from these machine learning algorithms for predicting
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diabetic positive, they also applied XGBOOST, Glmnet, and
LightGBM methods for diabetic prediction. Among these
methods, the XGBOOST outperformed in diabetic prediction.
It has obtained 88% accuracy. Naveen et al. (23) adopted
five different machine learning algorithms, SVM, selection
Tree, Naive Bayes, Logistic Regression, and KNN, to predict
the diabetic positive in the PIMA dataset. This combined
machine learning algorithm has obtained 75% accuracy in
diabetic prediction.

Butt et al. (24) adopted LSTM to predict the diabetic positive
in the PIMA dataset. The machine learning models played a
major role in data analysis particularly in clinical data analysis.
Thus, the proposed work has adopted machine leaning models
for the diabetic positive prediction. Apart from this diabetic
positive prediction, the machine learning models are also helpful
in other clinical data analysis such as heart disease, cancer tumor,

and COVID-19 predictions. The following recent research is
evidence for the above statement. Jain et al. (25) proposed several
machine learning models to predict COVID-19 positive from B-
cell dataset. Shubham et al. (26) proposed deep learning based

FIGURE 1 | Ensemble techniques.

TABLE 1 | Summary of the existing work.

Author Proposed Accuracy(%) Limitations

Iyer et al. (6) J48

Naïve Bayes

74.87

76.96

WEKA tool is used for prediction and prediction accuracy rate is less.

Ahmed (26), Singhania et al. (36) J48

Logistic Regression model

Naïve Bayes classifier

73.5

74.4

74.2

A more extensive study is missed for the data analysis.

Soltani and Jafarian (11) Probabilistic Neural

Network (PNN)

89.56 Type 2 diabetics details only considered for the application development.

Kopitar et al. (22) Naïve Bayes, Random

Forest and KNN

64.47 Diabetic prediction accuracy is less compared with proposed stacking

approach.

Ashiquzzaman et al. (7) DNN, with Dropout 88.41 This method is achieved an 88.41 detection rate. Single approach is

used.

Chugh et al. (27) Decision Tree and

Gradient Boosting

machine

90.00 The proposed method achieved a 90 accuracy in analyzing diabetes. This

paper has focused only on children’s data for predicting the diabetics.

Rakshit et al. (12) Two-class neural network 83.3 This proposed model achieved an 83.3 detection rate of type 2 diabetes.

This method has considered the women dataset with their age above 21.

Maniruzzaman et al. (13) Linear Discriminant

Analysis, Quadratic

Discriminant Analysis,

Naïve Bayes classifier,

Gaussian Process

modeling

81.97 They accuracy as 81.97, which is less than the proposed method.

Sisodia and Sisodia (9) Decision Tree

SVM

Naive Bayes

76.30

65.10

73.82

Diabetic prediction accuracy is less compared to proposed stacking

approach.

Rao et al. (21) Decision Tree with radial

function

75.65 Diabetic prediction accuracy is less compared with proposed stacking

approach.

Kopitar et al. (22) XGBOOST 88.4 The obtained accuracy is less and single algorithm XGBOOST is used.

Naveen et al. (23) SVM, selection Tree,

Naive Bayes, Logistic

Regression and KNN

75 Several algorithms are used but those algorithms are not combined

together for final prediction.

Aishwarya et al. (21), Gadekallu et al. (37),

Anup et al. (37)

SVM 95 Single machine learning algorithm is used for prediction.

Kandhasamy and Balamurali (5), Meri et al.

(38), Ghazal et al. (39, 40), Hasan et al.

(41, 42), Siddiqui et al. (43), Upadhyaya

et al. (43), Bakri Hassan et al. (44), Salih

Ahmed et al. (45), Ahmed et al. (46), Alsharif

et al. (47), Khalifa et al. (48)

J48, KNN, RF, and SVM 73.82 Diabetic prediction accuracy is less compared to proposed stacking

approach.
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for identification of glomeruli in the human kidney. Mohan
et al. (27) employed two techniques, namely Decision Tree and
Gradient Boosting machine, to predict heart disease. Kumar
et al. (28) developed popular RNN model and Reinforcement
learning model for COVID-19 prediction. Ngabo et al. (29)
proposed several machine learning models and Reinforcement
Learning Model for COVID-19 prediction. Iwendi et al. (30)
proposed boosted random forest algorithm for COVID-19
disease prediction. Deepa et al. (31) developed an intelligent
system based on AI with GDM approaches for healthcare
analysis. Dhanamjayulu et al. (32) proposed an image processing
technique to identify malnutrition from facial images.

Iwendi et al. (33) proposed a model called N-sanitization,
which is used to analyse the unstructured medical datasets
for various disease diagnosis. Ahmed et al. (34) used multiple
machine-learning models, namely J48, Logistic Regression (LR),
and Naïve Bayes (NB). The model of J48 achieved 73.5%, Logistic
Regression gained 74.4%, and Naïve Bayes achieved 74.2% with
10-fold cross-validation. Kalra et al. (35) performed a detailed
study on diabetic type 1 patients’ medical records. Table 1 shows
the accuracy details of diabetic positive prediction with respect to
existing works.

METHOD AND TECHNIQUES

Ensemble Techniques
In the conventional approach, only one machine algorithm is
used for problem-solving. But the single algorithm is not enough
for the complex problems. That algorithmmay not fit to the input
data due to parameter constraints, input data format constraints,
and so on. That is the reason that combining more than
two machine algorithms, called an “ensemble model,” becomes
popular. But the popular question on the ensemble technique
is, “How do ensemble models achieve better performance than
single approach?” The answer is simple. Just as diversity in nature
contributes to more robust biological systems, ensembles of ML
models produce stronger results by combining the strengths (and
compensating for the weaknesses) of multiple sub models. The
proposed system adopts multiple machine learning algorithms
(ensemble) to predict the diabetic.

The Ensemble technique has three categories, bagging,
boosting, shown in Figure 1. Each model has its merit and

demerits. Among these three, the proposed system has used
stacked ensemble modeling for predicting diabetic positive.
Table 2 shows the performance analysis of three ensemble
models. From Table 2, the stacking is better compared to the
other two models in improving the accuracy. In the healthcare
system, prediction accuracy is a significant feature to evaluate the
system. Since diabetic positive or negative prediction is under the
healthcare system, the stacked ensemble approach is used in the
proposed model.

Stacking
Stacking is a two-level classification technique, namely level-
0, level-1, or Meta classifier. Unless conventional bagging
and boosting, the stacking creates a new training dataset for
the final prediction. This approach is entirely different from
other multi-classifier algorithms because other multi-classifier
approaches use the averaging or voting for the final prediction.
But the stacking relays on the predicted probability set, which
is generated from all the classifiers. In level 0, more than one
algorithm is used. Level 0 works in either a homogeneous
or heterogeneous algorithm set. In homogeneous, the same
algorithm is used with different parameters, whereas different
algorithms are used in heterogeneous. These level-0 algorithms
are trained from the original dataset. After the training,
the algorithms do not predict the final output. Instead, the
probabilities of each class are predicted. Each algorithm predicted
the probability of each class and finally generated the predicted
probability set. This set will be given as the input to the level-
1 algorithm. The level-1 algorithm is trained from the predicted
probability set for the final prediction.

TABLE 2 | Ensemble techniques comparisons.

Bagging Boosting Stacked

Multiple Classifiers are

trained parallelly.

Builds the new learner in a

sequential way.

Multiple Classifiers are

trained parallelly.

The result is obtained

by averaging the

responses of the N

learners.

On each iteration, update the

model by weights until the

desired result is obtained.

The result is obtained from

the second level classifier.

Reduces the variance. Reduces the bias. Increases the accuracy.

FIGURE 2 | Stacked ensemble model.
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FIGURE 3 | Proposed system: Stacked ensemble model architecture.

The generic model of the proposed stacked ensemble model
is shown in Figure 2. In Figure 2, the base learners 1, 2. . . N are
level-0 classifiers, also called as weak learners. The base learners
are trained from the dataset to construct the new training set.
Meta learner is the level-1 classifier, and it will be trained with the
newly created set. After training, the level-1 classifier will predict
the test set.

Level-0 Classifier
Figure 3 depicts the proposed system architecture. The proposed
system has selected six different type of machine learning models
as level-0 classifiers.

The selected level-0 classifiers are Random Forest, KNN
classifier, Decision tree, Gradient Boosting, SVM, and Gaussian
Naïve Bayes added as base classifiers. These base classifiers are
trained with the original dataset and output a new training
dataset for the level-1 classifier.

The advantage of a level-0 classifier in the stacked
ensemble technique is two-level classification. In the
conventional approach, only one machine algorithm is
used for problem-solving. The stacked ensemble learning

TABLE 3 | Level-0 Input Set.

Attribute Set Target output label

AttrVec1 (1st row) y1

AttrVec2 (2nd row) y2

AttrVec3 ym

.

.

.
.
.
.

AttrVecn (nth row) y2

model is called a multiple classifier system that uses base
classifiers to build new training data to classify unknown
data. In Figure 3, the level-1 classifier logistic regression is
represented as a Meta classifier. The level-0 classifier predicted
probability output is given as input to the logistic regression
Meta classifier.

Level-0 Classifier Input
For the level-0 classifiers, the input is the original dataset.
The dataset consists of an input vector set (AttrVec1,
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FIGURE 4 | Level-1 classifier input set.

AttrVec2. . . AttrVecn) and the output attribute is
(y1, y2 , . . . , yn). The format for the level-0 input is given
in Table 3.

Proposed System Level-0 Classifiers
Random Forest
This is one of the supervised machine learning algorithms. It
is used to solve classification and regression problems. The
random forest builds the forest from decision trees to solve the
problem and improve its performance. The decision tree consists
of branches, internal nodes, and leaves. Leaf node represents the
final result or class label. Internal nodes are evaluators which
decide the branch selection on an attribute (e.g., whether age
is eligible to vote or not). The following hyperparameters are
used to build the random forest. The number of the estimator is
assigned as n_estimators, maximum depth of the tree is assigned
as max_depth, minimum number of the split is assigned as
min_samples_split, a number of maximum features is assigned
as max_features, and the number of a maximum leaf node
is assigned as max_leaf_nodes. In addition, n_estimators is a
hyperparameter, which indicates the number of decision trees
to be generated for the prediction. A higher number of trees
is recommended for better prediction, but it may increase the
execution time. The default value of n_estimators is 10, and
it can be increased up to 500 based on the problem. For the
proposed system, the n_estimators is set to 10. That is, every
attribute must have min_samples_split samples to divide into
two splits. For the proposed method, min_samples_split is set
as 2.

Gini index is used to generate the decision tree based on the
input dataset. The equation for the Gini index is given below.

Gini = 1−

c
∑

i=1

(pi)2 (1)

C is the total number of classes in the dataset. For our problem,
c is assigned as 2. In our Pima dataset, there are a total of
eight input attributes and one output class label. The class
labels are 1 and 0; 1 indicates the patient has diabetes, and 0
indicates that the patient has not diabetic. pi is the probability
of selecting the branch among the branches in the ith level

FIGURE 5 | Proposed system flow chart.

for the next level prediction. The proposed system algorithm is
shown below.

K Neighbors Classifier
KNN is one of the supervised machine learning algorithms
used for classification and regression problems. KNN finds
the relationship between the sets X and Y, where X is the
input attribute set and Y is the output data. In the KNN,
similar training data points are grouped by capturing the
distance between the data points. The lesser distance data points
are closer than the broader distance data points. Euclidean
distance method is used to compute the distance between the
data. The following equation is used to calculate Euclidean
distance method.

d =

√

√

√

√

k
∑

i=1

(

xi− yi
)2

(2)
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TABLE 4 | Attribute details of Pima Indian Diabetes dataset (PIDD).

SLO. Feature name with

description

Feature name (short) Variable type Min val Max val Labeled

value

1 Number of times pregnant-

Number of pregnancy

Pregnant Integer 0 17 Pregnancies

2 Glucose concentration (2-h oral

glucose test [mg/dL])

gl Integer 0 199 Glucose

3 Blood Pressure (Diastolic blood

pressure [mm Hg])

bp Integer 0 122 Blood

pressure

4 Skin thickness (Triceps skin fold

thickness [mm])

sk Integer 0 99 Skin

thickness

5 Serum Insulin (2-H serum insulin

[mu U/mL])

in Integer 0 846 Insulin

6 BMI (Body Mass Index [kg/m2]) bmi Real 0 67.10 BMI

7 Diabetes Pedigree Function

(Diabetes in family history)

dp Real 0.08 2.42 Diabetes

Pedigree

Function

8 Age (Age in Years) age Integer 21 81 Age

9 Class Target label Binary 0 (0-Tested

Negative

[500])

1 (1-Tested

Positive [268])

Target output

ALGORITHM 1 | Algorithm Stacked Ensemble.

1. Input: A training set D: = (a1, Y ), (a2, Y )… (an, Y)

Input: A testing set T: =(a1, Y ), (a2, Y )… (am, Y)

where Y: 0 or 1

Feature set F: {f1, f2, f3, …, fn}

2. Step 1: Assign level-0 classifiers

3. Number of level-0 learners l=6

4. Step 2: Train the level-0 classifiers using the following

5. for i = 1 to n do

for j = 1 to l do

assign (aj, bj) to li Calculate predicted probability set Pli

end for

end for

6. Step 3: Prepare new training set (D’)

D’ = (Pl1, Pl2, Pl3, ……, Pl6, Y),

(P21, P22, P23, ……, P26, Y),

.

.

.

(Pn1, Pn2, Pn3, ……, Pn6, Y)

7. Generate Level-0 classifier input set with target output

for i = 1 to n do

8. Mh = (a1’, Y ), where a1’=(Pl1, Pl2, Pl3, ……, Pl6).

Mh – Meta classifier input

9. end for

10. Step 4: Assign (D’) to level-1 classifier (LR)

11. Step 5: Train level-1 classifier using D’

12. Step 6: Prepare testing set (D”) for level-0 classifier without

target output

13. Step 7: Execute level-1-classifier(LR) on D”

for i = 1 to m do

(Pi1, Pi2, Pi3, ……, Pi6) predict Y.

end for

Decision Tree Classifier
This is a supervised machine learning model that is used for
classification. It is a rule-based approach to solve the classification
problem. Decision tree is built from the attribute set by applying
the if-else pattern set. To create an if-else pattern set or rule
set from the attribute, any one of the Gini index, entropy, or
misclassification error methods is followed. The most popular
approach is the Gini index. These methods are used to create the
decision on the internal node and split the samples for the next
level in the tree.

Gini = 1−

c
∑

i=1

(pi)2 (3)

Entropy = −
∑

j

pj log2 pj (4)

Misclassification Error = 1−maxpj (5)

Gradient Boosting
Gradient boosting is a tree-based machine learning algorithm.
Boosting is a method that converts weak learners into strong
learners. Initially, a tree is built with the dataset attributes and
evaluates the model. In evaluation, the error is calculated by
original error minus predicted error. This error is also called a
classification error. That is, the rate of misclassification is high.
This error is minimized or eliminated by building new trees
in the subsequent iterations. The error and the first built tree
are considered to build the second tree. The second tree is the
improved version of the first model, where the misclassification
is reduced while compared to the first model. The new tree is
built in every iteration using the previous tree classification error
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FIGURE 6 | Pearson correlation coefficient of Pima dataset input attributes.

FIGURE 7 | Pearson correlation coefficient result of Pima input attribute set.

and the previous three. This new tree construction is continued
until the error becomes negligible or no changes in the error. The
following steps are followed for the classification in the gradient
boosting approach.

1. Fit a decision tree to the data: F1(x)
2. Fit the following decision tree to the residuals of

the previous: h1(x)= y–F1(x),
3. Add this new tree to our algorithm: F2(x)= F1(x)+ h1(x),
4. Fit the next decision tree to the residuals of F2: h2(x) =

y–F2(x),
5. Add this new tree to our algorithm: F3(x)= F2(x)+h1(x),
6. Continue this process until the desired output is reached.

The generic formula of GBM is given in Equation 6.

f (x) =

B
∑

b=1

f b (x) (6)

Support Vector Machine (SVM)
SVM is a supervised machine learning approach used for
both classification and regression problems. SVM is best
suited for classification-related problem-solving approaches.
In this approach, the data points are placed in the n-
dimensional space, where n is the output classes or features.
The SVM is well-suited for binary classification than multiclass
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FIGURE 8 | Accuracy chart of various models and proposed model comparison chart.

classification. Equations 7 and 8 are used for computing
classification output.

wT X + b ≥ c (7)

wT X + b < c (8)

If the weight matrix and input vector result are higher than c,
then the classification output is y1; otherwise, the classification
output is y2. Here y1 and y2 are the output class labels.

Gaussian Naïve Bayes
This is a special type of Naïve Bayes approach and suitable
for classification problems. It is a supervised machine learning
algorithm. It works under the principle of Bayes theorem. The
conditional probability calculation is shown in Equation 9.

p (Y|x1, x2, . . . , xn) =
p (Y) p(x1, x2, . . . , xn|Y)

p(x1, x2, . . . , xn)
(9)

Level-1 Classifier or Meta Classifier
Figure 4 shows the level-1 classifier input set. For level 1, the
logistic regression model is used for the final prediction; this

model is trained with a new training dataset generated in level-
0 classifiers. The flow chart for the proposed system is shown in
Figure 5.

This dataset consists of set predicted probabilities of each class
of each classifier. A row ri is the predicted probabilities base
classifiers of each class of ith row of the original dataset. The
formula for the final prediction is done by using Equation 10.

p =
eb0+b1(x)

1+ eb0+b1(x)
(10)

b0, b1 are the constants, and x is the input vector. p is the final
prediction, which is >0.5, then the patient has diabetic positive;
otherwise, the patient has diabetic negative.

PIMA DATASET DESCRIPTION

Table 4 shows the Pima dataset attributes description. This
dataset consists of 768 rows and nine columns. The last column is
the output class, containing 1 and 0; 1 indicates diabetic positive,
and 0 indicates diabetic negative.

Figure 6 shows the correlation between the attributes in
the dataset. The proposed method used Pearson’s correlation
method, which finds the relationship between the variables in
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FIGURE 9 | Precision-Recall Curve of the proposed system and various machine learning models.

the Pima dataset. This correlation says how strong an association
or correlation of two attributes. Pearson, correlation coefficient
formula, returns a value between −1 and 1. The correlation
coefficient between two attributes (X, Y) is 1; then, Y’s positive
value will also increase for every X positive value increase. If
the correlation coefficient between two attributes is negative,
then any positive value increase of X, Y’s negative value will
also decrease. If the correlation coefficient is 0, then there is no
relation between X and Y. In Figure 6, for every attribute pair, the
Pima dataset correlation is displayed as a scatterplot. In Figure 7,
the coefficient value of every two attributes of the Pima dataset is
displayed. These two figures depict that most of the attributes in
the Pima dataset are independent. The prediction result depends
on all the attributes in the dataset.

EXPERIMENTAL RESULTS AND ANALYSIS

The Pima Indians Diabetes (PID) Data Set is applied in
the experimental purpose. The whole experiment is done in
an Intel Core i5- 6200U CPU @ 2.30GHz 4 cores with 4
Gigabytes of DDR4 RAM with the help of python programming
language (32, 33, 37). Figure 8 shows that the proposed system
stacked ensemble model obtained higher accuracy, around 93%,
compared to all other existing models.

True Positive (TP) measures correctly predicted the
diabetic patients.
True Negative (TN) measures correctly predicted the non-
diabetic patients.
False Negative (FN) measures incorrectly predicted the non-
diabetic patients.

False Positive (FP) measures incorrectly predicted the
diabetic patients.

Precision =
TP

TP + FP
(11)

Recall =
TP

TP + FN
(12)

F1− Score = 2∗
Precision∗Recall

Precision+ Recall
(13)

Accuracy =
TP + TN

TP + TN + FP + FN
(14)

A Precision-Recall Curve (PRC) is a metric used to compute
the quality of the classifier model. The PRC curve is represented
in a graph, where X-axis contains recall values Y-axis contains
precision values. This curve depicts the compromise between
precision and recall. In a graph, the PRC curve occupies a high
area, which means that the obtained recall and precision rates
are high. High precision leads to a less false positive rate, and
high precision leads to a less false-negative rate. Figure 9 shows
that the proposed stacked ensemble model curve has occupied a
higher area than other machine learning models such as KNN,
Random Forest, and Gradient Boosting. The curve values are
represented as TP/ (TP+FN) on the Y-axis.

The proposed system is compared with other machine
learning models by quality metrics such as precision, recall,
accuracy, and F1-score. These values are plotted in Figure 10.
The proposed stacked ensemble model obtained higher results
compare to all other methods. Table 5 shows the quality metrics
results. The proposed method is combination of machine
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FIGURE 10 | Precision, Recall, F1-Score, and Accuracy results of the proposed system and various machine learning models.

TABLE 5 | Quality metrics results.

Methods Precision Recall F1-Score Accuracy

Random forest 78 78.3 77.8 68.5

KNN 69.3 70.1 69.5 62.4

Logistic regression 75.7 76.2 75.3 71

Gradient boosting 76.1 76.6 75.9 70

Ada boosting 77.9 77.5 77.9 72.7

SVM 76.5 76.6 75.4 73.1

Stacking 84 83.9 83.5 93.1

learning algorithms. Generally multiple algorithms for a single
problem shows better performance. Each machine learning
model has its own strengths and weaknesses. If more than
one model is combined, then the weakness may be averaged
and strength will be increased for many problems, but not
all problems. Thus the ensemble techniques such as bagging,
boosting, and stacking are popular. Processing time can be
higher than single algorithms. The proposed work is also tested
with fewer than 6 machine learning approaches with different
combination in ensemble technique and obtained lesser than 93%
of accuracy of proposed approach.

COMPARED WITH EXISTING WORKS

The proposed stacking ensemble model is compared with
other machine learning models. The python language is
used to implement the proposed model. And the popular
machine learning algorithms such as Random Forest,
KNN, Logistic Regression, GBM, etc., are implemented
and tested with the PIMA dataset. The obtained result is
given in Table 5. Compared to the existing models such
as Aishwarya et al. (49), Singh et al. (22), and Mamuda
and Sathasivam (13), the proposed stacking method has
obtained a higher detection rate in detecting the diabetic
positive patients.

CONCLUSIONS AND FUTURE WORKS

One of the essential approaches in the medical field is the
detection of diseases in the initial stage. Today, diabetes
patient increase rates are high irrespective of age across all
regions of the world, and there is no medicine (vaccine) to
prevent it. The diabetic disease is a big challenge throughout
the world, as it affects irrespective of age. Early detection
of diabetic positive helps to reduce the medical expenditure,
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death rate, and risk of patients. As long as the early
prediction on this disease is not famous, the proposed
system initiated the prediction of diabetic positive. Experiments
are carried out on the Pima Indians Diabetes Database
(PIDD). A stacked ensemble model has been adopted in
the proposed work and obtained 93% accuracy for a highly
categorical dataset.

The existing models in the diabetic prediction used a
single algorithm. But the single algorithm will not be suitable
for the unstructured and large datasets. Thus, the proposed
system has adopted multiple machine learning models called
stacked ensemble models. The proposed prediction model
has predicted diabetic patients accurately about 93% of the
time. In the future, the designed system with the used
stacked ensemble method can predict other diseases. The
work can be extended and improved for the automation
of diabetes analysis, including machine learning and deep
learning algorithms.
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