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Obesity is a major public health concern, and its prevalence generally increases

with age. As the number of elderly people is increasing in the aging population,

the age-dependent increase in obesity has raised interest in the underlying

mechanism. To understand the genetic basis of age-related increase in obesity,

we identified genetic variants showing age-dependent differential effects on

obesity. We conducted stratified analyses between young and old groups using

genome-wide association studies of 355,335 United Kingom Biobank

participants for five obesity-related phenotypes, including body mass index,

body fat percentage, waist-hip ratio, waist circumference, and hip

circumference. Using t-statistic, we identified five significant lead single

nucleotide polymorphisms: rs2258461 with body mass index, rs9861311 and

rs429358 with body fat percentage, rs2870099 with waist-hip ratio, and

rs145500243 with waist circumference. Among these single nucleotide

polymorphisms, rs429358, located in APOE gene was associated with

diverse age-related diseases, such as Alzheimer’s disease, coronary artery

disease, age-related degenerative macular diseases, and cognitive decline.

The C allele of rs429358 gradually decreases body fat percentage as one

grows older in the range of 40–69 years. In conclusion, we identified five

genetic variants with differential effects on obesity-related phenotypes based

on age using a stratified analysis between young and old groups, which may

help to elucidate the mechanisms by which age influences the development of

obesity.
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Introduction

Obesity is a major risk factor for complex diseases such as

cardiovascular diseases and metabolic syndrome (Grundy, 2000)

and has become a worldwide public health problem as its

prevalence is increasing in most developed countries (OECD,

2017). As life expectancy has increased, the prevalence of obesity

has also steadily increased among older people (Jura and Kozak,

2016). This increased prevalence is related to changes in body

composition, such as an increase in fat mass and decline in lean

mass (Slawik and Vidal-Puig, 2006; Miard and Picard, 2008;

Barzilai et al., 2012; Zamboni and Mazzali, 2012). Additionally,

retirement of old people may create a change in their lifestyle that

causes a positive energy balance state leading to excess fat tissue

accumulation (Tchkonia et al., 2010).

Over the past 20 years, genome-wide association studies

(GWASs) have been conducted on obesity-related traits.

Yengo et al. (2018) identified 941 independent single

nucleotide polymorphisms (SNPs) associated with body mass

index (BMI) using 681,275 European ancestry samples from both

the United Kingom biobank (UKB) and genetic investigation of

anthropometric traits (GIANT) Consortium. Similarly, Pulit

et al. (2019) identified 463 waist-hip ratio (WHR)-associated

SNPs using 694,649 samples from UKB and GIANT. Further

studies have reported that the genome-wide SNP-heritability

(hsnp
2) for BMI and WHR was 28% and 17%, respectively

(Hou et al., 2019). Additionally, a few studies have

investigated whether genetic effects differ between old and

young individuals.

Winkler et al. studied genetic variants with different age-

dependent genetic effects on BMI and WHR using the GIANT

(Winkler et al., 2015) and found 15 loci with statistical

significance (at 5% FDR) for BMI, although they did not find

any loci for WHR. Robinson et al. found that the gene–age

interaction explained 8.1% of the BMI variance when they

performed genome-wide interaction analysis between genetic

variants and age (Robinson et al., 2017). Ge et al. investigated

the heritability of BMI as the age of a group changes and found

that BMI heritability significantly decreases with age (Ge et al.,

2017). These results suggest that age influences the genetic effects

on obesity-related traits. Genetic components that show different

effects depending on age could be useful to provide specific

pathways affecting obesity in young and old age groups. That is,

by understanding which genes are affected by age, metabolic

pathways can be targeted more specifically for future treatments

(Choh et al., 2014). However, few studies have identified the

genetic variants that interact with age for differential effects on

obesity.

In this study, we performed stratified analyses using GWASs

of five obesity-related phenotypes by grouping samples by age

using 355,335 unrelated European descendants of the UKB to

identify genetic variants with differential effects between young

and old individuals.

Materials and methods

Study population

The UKB is a population-based cohort that recruited

502,620 individuals aged 37–73 years in the United Kingdom

during 2006–2010 (Collins, 2012). We excluded samples based

on the following criteria provided by the Neale lab (http://www.

nealelab.is/uk-biobank): 1) related samples that were excluded

from principal component (PC) analysis, 2) sex chromosome

aneuploidy, 3) non-European descendants estimated by PCs, and

4) non-White British samples based on self-reported ethnic

background (white British, Irish, and white). After quality

control of the samples, 355,335 individuals were selected for

further analyses.

Phenotypic data

We selected five obesity-related phenotypes including BMI,

body fat percentage (BFP), WHR, waist circumference (WC),

and hip circumference (HC). BMI was calculated as weight (field

ID: 21,002) divided by square of height (field ID: 12,144) (kg/m2).

WC (field ID: 48) and HC (field ID: 49) were selected, and WHR

was calculated as WC divided by HC. BFP (Field ID: 23,099) was

estimated using impedance measurements. Additionally, age at

recruitment (field ID: 21,022), sex (field ID: 31), genotyping array

(field ID: 22,000), PCs (field ID: 22,009), and TDI (field ID: 189)

were selected as covariates for GWASs. And LDL (field ID:

30,780), and HDL (field ID: 30,760) were selected for testing

the association with rs429358. All phenotypic data were from

baseline (at recruitment).

Genotypic data

The UKB genotyped 487,409 participants using the UKB

Axiom array and the United Kingom BiLEVE Axiom array from

Affymetrix (Santa Clara, CA, United States) (Sudlow et al., 2015;

Bycroft et al., 2018). Genotyping was performed using the United

Kingom10 K Project and 1,000 Genome Project Phase

3 reference panels (Huang et al., 2015). SNP quality control

procedures were applied to 93,095 623 imputed SNPs based on

the following exclusion criteria: SNPs with missing genotype call

rates >0.05, minor allele frequency <0.01, and p-value for Hardy-

Weinberg equilibrium test <1.00 × 10–6. In total, 5,664 578 SNPs

were retained for further analysis.

Statistical analysis

Because we wanted to compare each age group with the same

sample size, we divided the subjects into quartiles based on age at
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recruitment (Q1, Q2, Q3, and Q4). And we performed analyses of

genome-wide association studies (GWAS) between genetic

variants and five obesity-related phenotypes separately, using

the linear regression model adjusted for age, sex, genotyping

array, and PC1–10 in each age group with PLINK v.1.90 software

(Purcell et al., 2007).

To analyze the age-stratified effect of SNPs, first we estimated

the correlation among age groups. The correlation coefficient, r,

was calculated using the Spearman rank across all SNPs of Q1,

Q2, Q3, and Q4. Second, we selected the pair of age groups with

the lowest r in each obesity-related trait. And then we computed

differential p-values (Pdiff) by testing the difference in beta

coefficients between age groups using t-statistic as follows

(Winkler et al., 2015):

t � b1 − b2���������������������
SE2

1 + SE2
2 − 2r · SE1 · SE2

√

b1and SE1, and b2 and SE2 are the beta coefficients and

standard errors for each SNP in the age group 1 and 2,

respectively. r is the correlation coefficient between the beta

coefficients of age group 1 and 2. Stratified analysis and

correlation analysis were performed using R v3.6.0 software.

The GWAS significance threshold (Pdiff < 5 × 10−8) was

considered statistically significant to account for multiple

testing. The lead SNPs were identified by FUMA (https://

fuma.ctglab.nl), an online platform that provides functional

annotation, visualization and interpretation of GWAS results.

We carried out clumping using FUMA to identify lead SNPs

based on the clumping conditions as follows; Pdiff < 5 × 10–8, r2 <
0.1, and distance between LD blocks >250 kb. The linkage

disequilibrium (LD) information, r2, was computed using

1,000 Genome Project phase 3 European as a reference panel.

Manhattan plots and QQ plots were generated using R

v3.6.0 software. Regional plots for significant loci were created

using LocusZoom (Pruim et al., 2010) and linkage disequilibrium

(LD) was presented based on a European sample from the

1,000 Genome Project phase I reference panel (1000 Genomes

Project Consortium et al., 2010).

Functional annotation tools

To analyze the biological functions of age-stratified SNPs,

we used several approaches, including HaploReg V4.1 (Ward

and Kellis, 2012), GTEx V8 (Consortium, 2020), GWAS

Catalog (Buniello et al., 2019), and PhenoScanner V2

(Kamat et al., 2019). HaploReg was used to search for the

effect of the identified SNPs on the transcription factor-

binding site motif and perform enhancer enrichment

analysis. The GTEx database was used to evaluate the

association between genetic variations and gene expression.

The GWAS Catalog and PhenoScanner databases were further

used to search for associations between genetic variants and a

broad range of phenotypes.

Results

After the quality control of samples described in the Methods

section, the sample size used in this study consisted of

355,335 individuals (40–69 years) from White British and

Irish populations in the UKB. The 355,335 individuals were

divided into quartiles, with a similar number of individuals in

each group for further analysis of GWAS (Figure 1). The basic

characteristics of these groups are presented in Table 1 (Q1:

40–50 years, Q2: 51–58 years, Q3: 59–63 years, and Q4:

64–69 years). The mean age of each quartile group is

45.47 years, 54.68 years, 61.07 years, and 66.28 years in Q1,

Q2, Q3, and Q4, respectively. And the age range in each

group is 10, 7, 4, and 5 years in Q1, Q2, Q3, and Q4,

respectively. All groups had a lower percentage of men than

women, in the range 43.93%–49.47%. The mean values for

obesity-related phenotypes, such as BMI, BFP, WHR, WC,

and HC, in each group gradually increased with age, although

those of Q4 were similar to those of Q3. These trends are

presented in Supplementary Figure S1. In addition, the

association between age and these phenotypes was analyzed

by linear regression adjusted for sex, and all phenotypes

showed statistical significance in a positive direction

(Supplementary Table S1).

Stratified analysis of genome-wide
association studies identified age-
dependent genetic variants for obesity-
related phenotypes.

We identified genetic variants with different effects between

the quartile groups stratified by age, as the study design shown in

Figure 1. First, we performed analysis of GWAS in each group of

Q1, Q2, Q3, and Q4 separately for each obesity-related

phenotype. The association results for each phenotype are

shown as Manhattan plots in Supplementary Figure S2, and

quantile-quantile plots of results from the analysis of GWAS are

shown in Supplementary Figure S3. To select the pair of age

groups for performing stratified analysis, we carried out

correlation analyses for each pair of GWAS results. For all

obesity-related phenotypes, the lowest correlation coefficients

were observed in the Q1 and Q4 pair (Supplementary Figure S4).

We then performed stratified analyses of GWAS results between

the youngest group Q1 and the oldest group Q4, and the

differential p-value (Pdiff) for each SNP between Q1 and

Q4 was examined using t-statistic, as described in the

Methods section. We selected genome-wide significant lead

SNPs from the results of stratified analyses using the FUMA
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FIGURE 1
Schematic diagram of study design. N, sample size; QC, quality control; GWAS, genome-wide association study; UKB, United Kingom Biobank.

TABLE 1 Basic characteristics of the United Kingom Biobank cohort.

Phenotype Q1 Q2 Q3 Q4

BMI (kg/m2) N (%) 88,977 (45.52%) 93,693 (44.02%) 87,111 (45.76%) 85,009 (49.63%)

age 45.57 ± 3.02 54.69 ± 2.30 61.08 ± 1.36 66.28 ± 1.69

BMI 26.97 ± 4.92 27.46 ± 4.96 27.57 ± 4.68 27.53 ± 4.39

BFP (%) N (%) 87,887 (45.55%) 92,541 (43.93%) 85,767 (45.66%) 83,345 (49.47%)

age 45.57 ± 3.01 54.68 ± 2.30 61.07 ± 1.36 66.28 ± 1.69

BFP 29.72 ± 8.63 31.52 ± 8.58 32.04 ± 8.44 32.09 ± 8.18

WHR N (%) 89,060 (45.54%) 93,815 (44.03%) 87,258 (45.77%) 85,152 (49.64%)

age 45.57 ± 3.01 54.69 ± 2.30 61.08 ± 1.36 66.28 ± 1.69

WHR 0.85 ± 0.09 0.87 ± 0.09 0.88 ± 0.09 0.89 ± 0.09

WC (cm) N (%) 89,076 (45.55%) 93,827 (44.03%) 87,275 (45.78%) 85,157 (49.64%)

age 45.57 ± 3.02 54.69 ± 2.30 61.08 ± 1.36 66.28 ± 1.69

WC 88.10 ± 13.52 90.03 ± 13.80 91.13 ± 13.33 92.01 ± 12.89

HC (cm) N (%) 89,062 (45.54%) 93,817 (44.03%) 87,258 (45.78%) 85,156 (49.64%)

age 45.57 ± 3.02 54.69 ± 2.30 61.08 ± 1.36 66.28 ± 1.69

HC 103.06 ± 9.28 103.61 ± 9.48 103.60 ± 9.06 103.38 ± 8.64

Values are presented as total number (N) and male percentage (%) in each group, or mean ± standard deviation (SD).
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FIGURE 2
Manhattan plots for p-value of T-scores in stratified analyses between groups Q1 and Q4. (A) Body mass index, (B) body fat percentage, (C)
waist-hip ratio, (D) waist circumference, and (E) hip circumference. The red horizontal line (p < 5 × 10–8) denotes the threshold for genome-wide
significance.

TABLE 2 The results of the age-stratified analysis on obesity-related phenotypes (Pdiff < 5 × 10–8).

Phenotype Chromosome Positiona SNP Nearest gene Alleleb (A1/A2) Pdiff

BMI 9 110,323,540 rs2258461 KLF4 G/A 2.15E-08

BFP 3 195,760,948 rs9861311 TFRC* G/C 3.02E-08

19 4,5,411,941 rs429358 APOE* C/T 1.91E-08

WHR 19 57,209,395 rs2870099 AC006115.1 C/T 1.70E-09

WC 4 168,845,945 rs145500243 RP11-310I9.1 T/C 3.46E-08

aChromosomal positions are based on the 1000 Genomes Project’s haplotype phase 1 in NCBI, build 37 (hg19).
bA1/A2 is minor/major allele of the variant. * denotes the gene within which the lead SNP, locates.
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program (Watanabe et al., 2017). Five lead SNPs satisfied the

genome-wide significance level (Pdiff < 5 × 10–8): one for BMI

(rs2258461), two for BFP (rs9861311 and rs429358), one for

WHR (rs2870099), and one for WC (rs145500243) (Figure 2 and

Table 2). Regional plots of the five lead SNPs were generated

using LocusZoom software (Supplementary Figure S5), and

suggestive SNPs (Pdiff < 1 × 10–6) are shown in

Supplementary Figure S2.

The three SNPs rs9861311, rs429358, and

rs145500243 showed a gradual change in effect size along

with the age of the quartile groups (Table 3,Supplementary

Table S3; Supplementary Figure S6). Minor allele (G allele) of

rs9861311 was associated with a decrease in BFP in the youngest

age group, but increased BFP with increasing age, and beta

coefficients of the association analyses were as follows; Q1:

−0.147, Q2: 0.006, Q3: 0.022, and Q4: 0.075. As shown in

Supplementary Table S3, mean BFPs in the youngest group

were 29.82% in CC genotype subjects and 29.68% in CG +

GG genotype subjects, showing 0.14% lower in the G allele

carrier. And mean BFPs in the oldest group were 31.96% in

CC and 32.16% in CG +GG, showing 0.20% higher in the G allele

carrier. That is, if a person has a minor allele of rs9861311, he/she

can have lower BFP when he/she is young and higher BFP when

older, compared to people with the major allele. rs145500243 was

associated with a decrease in WC in the youngest age group, but

was associated with an increase in WC in the oldest age group,

and beta values were as follows; Q1: −0.596, Q2: −0.419, Q3:

−0.209, and Q4: 0.539. Mean WCs in the youngest group were

88.15 cm in CC genotype subjects and 87.57 cm in CT + TT

genotype subjects, showing 0.58 cm smaller in the T allele carrier.

And those in the oldest group were 91.98 cm and 92.58 cm in CC

and CG + GG, respectively, showing 0.60 cm larger in the T allele

carrier. Both rs9861311 and rs145500243 continuously changed

from a negative to positive effect size fromQ1 to Q4, although the

statistical significance of these effect sizes did not meet the

threshold of p < 0.05 in some quartile groups, as shown in

Table 3. Minor allele (C allele) of rs429358 was associated with a

decrease in BFP in all age groups. The beta values of

rs429358 gradually changed to a stronger negative effect as

the age of the group increased as follows: −0.021 in

Q1, −0.086 in Q2, −0.198 in Q3, and −0.325 in Q4. The mean

BFPs in the youngest group were 29.73% in TT genotype subjects

and 29.71% in TC + CC genotype subjects, showing 0.02% lower

in the C allele carrier. And mean BFPs in the oldest group were

32.21% in TT and 31.81% in TC + CC, showing 0.40% lower in

the C allele carrier. This suggest that people with a minor allele of

rs429358 may not differ in BFP at a young age compared to

people with the major allele, but the difference may gradually

increase with age.

Moreover, the five SNPs showed similar age-dependent

pattern of effects on the other phenotypes (Supplementary

Table S4). For all phenotypes, the effect sizes (beta

coefficients) of rs145500243 were the most negative in the

youngest group, showing that all obesity-related phenotypes in

the minor allele carrier were the lowest among age groups. The

effect sizes became reduced in the middle groups of age, Q2 and

Q3, and finally became positive in the oldest group, indicating

that all obesity-related phenotypes in the minor allele carrier

became increased. The rs9861311 polymorphism also showed a

continuous change from a negative effect size to a positive effect

size with respect to age in four other phenotypes as in BFP, except

in HC. Again, rs429358 gradually changed into stronger negative

effect sizes as the age of the group increased in four other

phenotypes, as in BFP.

Functional annotation of five lead single
nucleotide polymorphisms

For the functional annotation of the five lead SNPs, we

examined data from HaploReg V4.1 (Ward and Kellis, 2012),

GTEx V8 (Consortium, 2020), GWAS Catalog (Buniello et al.,

2019), and PhenoScanner V2 (Kamat et al., 2019) databases.

rs9861311 (located in TFRC) is an intronic SNP, rs429358

(located in APOE) is a missense SNP, and rs2258461 is

located 71 kb from 5′ of KLF4 (Supplementary Table S5).

TABLE 3 The results of GWASs in each age group.

SNP Phenotypes Groups Beta (SE) P

rs2258461 BMI Q1 −0.076 (0.024) 1.56E-03

Q2 0.012 (0.024) 6.01E-01

Q3 −0.001 (0.023) 9.78E-01

Q4 0.091 (0.022) 3.68E-05

rs9861311 BFP Q1 −0.147 (0.032) 4.20E-06

Q2 0.006 (0.030) 8.33E-01

Q3 0.022 (0.030) 4.67E-01

Q4 0.075 (0.030) 1.18E-02

rs429358 BFP Q1 −0.021 (0.043) 6.34E-01

Q2 −0.086 (0.041) 3.58E-02

Q3 −0.198 (0.041) 1.59E-06

Q4 −0.325 (0.040) 1.01E-15

rs2870099 WHR Q1 0.0018 (0.0004) 5.36E-05

Q2 0.0002 (0.0004) 7.11E-01

Q3 0.0010 (0.0004) 2.62E-02

Q4 −0.0018 (0.0004) 7.57E-05

rs145500243 WC Q1 −0.596 (0.160) 1.94E-04

Q2 −0.419 (0.158) 7.91E-03

Q3 −0.209 (0.159) 1.90E-01

Q4 0.539 (0.154) 4.64E-04

The data are presented as the Beta (SE). The associations between genetic variants and

each obesity-related trait were analyzed using a linear regression model in each age-

stratified group, adjusted for age, sex, genotyping array, and PC1~10. SE, standard error;

BMI, body mass index; BFP, body fat percentage; WHR, waist-hip ratio; WC, waist

circumference.
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Based on the PhenoScanner data, only rs429358, among the five

lead SNPs, has previous reports of genome-wide significant

associations and shows associations with diverse age-related

diseases, such as Alzheimer’s disease, age-related macular

degeneration, coronary artery disease, and cognitive aging, in

addition to diverse obesity-related phenotypes (Lambert et al.,

2013; Fritsche et al., 2016; Raj et al., 2017; van der Harst and

Verweij, 2018) (Supplementary Table S6). Similarly, only

rs429358 was reported to be associated with late-onset

Alzheimer’s disease, parental lifespan, cognitive aging, and

type 2 diabetes, in addition to obesity-related traits, based on

the GWAS Catalog (Joshi et al., 2017; Mahajan et al., 2018;

Kamboh et al., 2019; Lo et al., 2019) (Supplementary Table S7).

Finally, we investigated eQTL data for the five SNPs based on

GTEx data (Consortium, 2020) and found eQTL genes for

rs9861311 and rs429358. The eQTL genes for rs9861311 were

MUC4 in the skin, thyroid, and liver, andMUC20 in the adipose

tissue, and eQTL gene for rs429358 was APOC1 in the esophagus

and adrenal gland (Supplementary Table S8). There were no

functional analysis results for rs2870099 and rs145500243, even

with proxy SNPs (r2 > 0.1).

Discussion

In this study, we performed age-stratified analyses for five

obesity-related phenotypes using 355,335 European from the

UKB. To identify genetic variants with differential effects

between age groups, we divided samples into quartile groups

and compared the association results between the youngest and

the oldest groups. We identified five SNPs with significantly

different genetic effects in the two age groups. Of these, the

direction of the genetic effects for each phenotype was reversed

with increasing age in four SNPs: rs2258461 (BMI), rs9861311

(BFP), rs2870099 (WHR), and rs145500243 (WC). For example,

the minor allele of rs9861311 lowered mean BFP by 0.14% in the

youngest group but increased it by 0.20% in the oldest group. In

contrast, the genetic effect of rs429358 on BFP became increased

with age. The minor allele of rs429358 lowered mean BFP by

0.02% in the youngest group and lowered it by 0.40% in the oldest

group.

The effect of genetic variants on obesity can vary with age

(Winkler et al., 2015; Ge et al., 2017; Robinson et al., 2017; Wang

et al., 2019). Winkler et al. investigated genetic variants with age-

dependent genetic effects on BMI and WHR using

320,485 individuals from GIANT and reported 15 SNPs with

statistical significance only on BMI (Winkler et al., 2015).

Winkler’s study and ours are similar to each other that these

two studies carried out the same method called the stratified

analysis. However, there were several differences between two

studies as follows. First, Winkler et al. divided samples into two

groups based on the age of 50 years, whereas we divided samples

into quartile groups and selected the youngest (Q1, 40–50 years)

and the oldest (Q4, 64–69 years) groups. Second, Winkler et al.

used FDR 5% for multiple testing threshold, whereas we used

genome-wide significant p-value (5 × 10–8) for multiple testing

threshold. If we applied a genome-wide significant P threshold to

Winkler’s results, there would be no statistically significant loci in

BMI as well as WHR. Despite these differences, we found that

one genetic variant among five significant SNPs in our study

showed similar trend in the association results between younger

and older groups. rs429358 of our study and rs4420638 of

Winkler’s study having a high LD each other (r2 = 0.69) had

significant genetic effects only in old age group. Additionally, we

compared 15 SNPs from Winkler’s results with our results on

BMI (Supplementary Table S9). Among these 15 loci, 3 SNPs of

rs9936385 (FTO), rs2867125 (near TEME18), and rs4420638

(near APOC1) were replicated in our results based on the

Bonferroni corrected P-threshold, 3.33 × 10–3 (=0.05/15).

One of the five lead SNPs, rs9861311, is an intronic SNP

located in the TFRC gene that encodes the transferrin receptor

necessary for cellular iron uptake by receptor-mediated

endocytosis. Transferrin is a major iron carrier in blood that

maintains cellular iron homeostasis. The sentinel SNP

rs9861311 does not show TFRC as an eQTL gene in the

GTEx data but shows MUC4 (skin, thyroid, and liver) and

MUC20 (adipose tissue) (Supplementary Table S8). However,

several proxy SNPs, including rs34906439 (r2 = 0.28), rs41298087

(r2 = 0.28), rs9859260 (r2 = 0.28), rs2300775 (r2 = 0.28), and

rs3804139 (r2 = 0.28), showed TFRC as the eQTL gene in the

spleen, lungs, and skin (Supplementary Table S8). Recently,

several publications have supported the association of serum

iron and transferrin with lipolysis of adipocytes. Romero et al.

examined the role of iron in regulating the energy balance and

found that a short course of dietary iron caused a negative energy

balance, resulting in a severe wasting phenotype, indicating iron-

mediated lipolysis (Romero et al., 2022). Another study showed

that TFRC-controlled transferrin contributed to lipolytic effects

in isolated rat adipocytes, resulting in a maximal 50% increase in

basal lipolysis (Rumberger et al., 2004). In addition, iron

participates in key processes, such as oxygen transport,

oxidative metabolism, and DNA synthesis and repair related

to aging, and elevated iron levels in an organismmay have a toxic

effect due to its high redox reactivity (Gurzau et al., 2003;

Donovan et al., 2006; Theil and Goss, 2009). The cumulative

increase in oxidative damage and lowering of the antioxidant

defense capacity of the organism are believed to be the main

features of aging (Beckman and Ames, 1998; Liguori et al., 2018).

Supporting the idea that iron homeostasis may be involved in the

process of age-related disease, a study demonstrated that

transferrin concentration in circulation was related to the

development of age-related macular degeneration disease

(Wysokinski et al., 2013). Based on these studies, we

hypothesized that rs9861311 affects the expression of TFRC

that changes the serum iron concentration or the cellular iron

concentration, leading to lipolysis of adipose tissue, which may
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be linked to age via oxidative damage and antioxidant defense

capacity. This hypothesis awaits further investigation.

The genetic variant rs429358 is a missense variant, replacing

a cysteine with arginine at amino acid 112 (Cys112Arg) of APOE

gene. Among the five lead SNPs, rs429358 was the only SNP that

was reported significant associations with various traits in

previous GWASs. As shown in Supplementary Tables S6,S7,

the traits associated with rs429358 include diverse age-related

diseases, such as Alzheimer’s disease, dementia, coronary artery

disease, age-related macular degeneration, and cognitive decline

(Lambert et al., 2013; Fritsche et al., 2016; Raj et al., 2017; van der

Harst and Verweij, 2018; Rongve et al., 2019). In addition, it is

also associated with lifespan and longevity (Timmers et al., 2020).

APOE binds to lipoprotein particles and transports lipids within

the particles through circulation (Zannis et al., 2004). By binding

to the LDL receptor, APOE mediates lipid uptake into cells and

plays a crucial role in lipid metabolism and homeostasis.

Furthermore, the new roles of APOE have been reported to

be a multifunctional protein in immune cells and the brain, such

as the inflammation and aggregation of amyloid beta,

respectively (Tudorache et al., 2017).

Three APOE isoforms, ε2, ε3, and ε4, are formed by a

combination of two missense variants (rs429358 and

rs7412 in APOE), and the ε3 allele is the most common

(~78% globally), followed by ε4 (~14%) and ε2 (~8%) (Zannis

and Breslow, 1981; Weisgraber et al., 1982; Egert et al., 2012;

Husain et al., 2021). Among these isoforms, the ε4 isoform

formed by carrying the C allele of rs429358 and C allele of

rs7412 is well known for its association with a 3–4 fold increased

incidence of Alzheimer’s disease as with ε4 heterozygote and

9–15 fold with ε4 homozygotes compared to those in non-

carriers of ε4 (Farrer et al., 1997; Neu et al., 2017). The

ε4 allele or rs429358 has also been previously reported to be

associated with BMI andWC decreasing obesity with the C allele

of rs429358, which is similar to the results of this study (ε2 > ε3 >
ε4 for BMI andWC) (Tejedor et al., 2014; Palmer et al., 2021). In

addition, Kulminski et al. (2019) reported that the association of

rs429358minor allele (C allele) with decreased in BMI only in old

subjects of the study. Similarly, we demonstrated that the

negative effect of rs429358 became stronger as the group age

increased for all five obesity-related phenotypes (Supplementary

Table S4). Also, rs429358 was also reported to be associated with

serum cholesterol and triglyceride levels (Tejedor et al., 2014;

Palmer et al., 2021). We also found an association between

rs429358 and HDL and LDL, as shown in Supplementary

Table S10, confirming previous results.

Another SNP for the formation of the APOE isoform, rs7412,

is also well known for its effect on plasma lipid levels and obesity-

related phenotypes, similar to rs429358 (Tejedor et al., 2014).

However, the association of rs7412 with obesity-related

phenotypes showed the opposite trend. rs7412 increases BMI

and WC, unlike rs429358 (Tejedor et al., 2014). We examined

whether the effect of rs7412 is also age-dependent, but we did not

find a clear age-dependency (Supplementary Table S11).

Although the effects of rs7412 on BMI, BFP, and HC in

Q2 and Q3 were stronger than those in Q1, the effects in

Q4 were weaker than those in Q2 and Q3. Moreover, the Pdiff
of rs7412 was not significant for any obesity-related phenotype

when the difference between the Q1 and Q4 groups was tested.

The mechanism for the association of APOE with obesity and

body fat mass is speculated to be attributed to its role in regulating

the expandability and functionality of adipose tissues (Huang et al.,

2006; Arbones-Mainar et al., 2008; Huang et al., 2009a; Huang et al.,

2009b; Li and Liu, 2014). However, we could not explain why the

genetic effects of rs429358 changed with age. This may be related to

the fact that rs429358 is strongly associated with lifespan. Timmers

et al. (2020) investigated genetic variants related to human aging

using a multivariate meta-analysis of parental lifespan, health span,

and longevity inUKB participants. They found rs429358 as themost

significant multivariate SNP, and the average increase in parental

lifespan was 12.7months per T allele of rs429358. Notably, the allelic

effect of rs429358 (T allele) on lifespan increased as the sample age

increased, increasing the effect by 32% for every 10 years increase in

parental survival.

rs2258461 is an intergenic SNP with KLF4 as the nearest

gene, which encodes a protein that belongs to the Kruppel family

of transcription factors. Based on the GWAS catalog, KFL4 is

associated with breast and prostate cancers, but no other

phenotypes are associated with genome-wide significance

levels. Several members of the KLF gene family affect lipid

and glucose metabolism as well as adipocyte differentiation,

thus influencing energy homeostasis and contributing to

obesity (Pollak et al., 2018). Mice with myeloid-specific KLF4

deletions tended to express diet-induced obesity, glucose

intolerance, and insulin resistance (Liao et al., 2011). In

addition, the expression of KLF4 in vascular endothelium

decreases with age (Hsieh et al., 2017a; Hsieh et al., 2017b).

We speculate based on these results that the role of KLF4 in

obesity may change with age. Therefore, we hypothesize that the

effect of rs2258461 on the expression of KLF4 may be modified

by age, decreasing the level of KLF4 in old subjects resulting in

increased BMI. This hypothesis awaits further study.

To ascertain further functional information of rs2870099 and

rs145500243, we tested SNPs within 1 Mb flanking these two

SNPs. As a result, we found GWAS signals relevant to obesity

around rs2870099 as follows: rs34863160 (ZNF470), rs11670527

(DUXA, ZNF264), and rs16987303 (ZNF471) were associated

with birth weight, BMI, and height, respectively. We also found

GWAS signals around rs145500243 as follows: rs13133687

(ANXA10), rs538044222 (DDX60L, DDX60), and rs1963569

(DDX60L) were associated with Alzheimer disease (age at

onset), BMI-adjusted HC, and energy intake, respectively.

Our study had several limitations. Owing to the UKB sample

characteristics, subjects in this study were aged 40–69 years within

a narrow age range, which made it challenging to find genetic

variants that differentially affect obesity-related phenotypes based
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on age. Therefore, further studies using cohorts with a wider age

range, including young subjects, are needed to identify additional

genetic variants with differential effects based on age. Another

limitation is that our findings in European samples were not

validated in other ethnic populations, and replication studies

using other ethnic populations are needed for these five lead SNPs.

In summary, we performed age-stratified analysis of GWAS for

obesity-related phenotypes (BMI, BFP, WHR, WC, and HC) using

European participants in the UKB and identified five lead SNPs that

differed according to age. In particular, the C allele of rs429358 in

APOE gradually decreases BFP as one grows older in the range of

40–69 years. Our findings may increase the understanding of the

underlying mechanisms by which genetic variants differentially

influence obesity-related phenotypes based on age, which could

provide the better target biomarker for the age-dependent treatment

of obesity. Also, the identification of age-affected genetic variants

underscores the importance of age in precision medicine using

genetic variants, and allows to construct age-specific genetic risk

scores for more precise disease prediction based on age.
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