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Introduction
Poststroke hyperglycemia is a common phenom-
enon in the acute setting of stroke and has been 
considered an independent predictor of poor clin-
ical outcomes in both ischemic and hemorrhagic 
stroke.1–6 Thus, hyperglycemia management with 
intensive treatment had been expected to improve 
clinical outcomes. Despite the initial enthusiasm, 
randomized controlled clinical trials did not 

confirm the safety and efficacy of such treatment 
approaches.7,8 On the contrary, aggressive proto-
cols with intravenous insulin infusions signifi-
cantly increased the risk of hypoglycemia, which 
has been related to adverse functional outcomes 
in patients with acute ischemic stroke.9

By focusing strictly on hyperglycemia and hypogly-
cemia, however, we might have been overlooking a 
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Introduction: Glycemic variability (GV) has been associated with worse prognosis in critically 
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third independent component of dysglycemia: 
glycemic variability (GV), which is defined as the 
degree of fluctuation in glucose values over 
time.10 GV has been correlated with higher mor-
tality risk in critically ill patients, even when 
mean glucose values are within normal limits.11,12 
GV has been consistently overlooked in relevant 
randomized controlled clinical trials, although it 
may be a key reason why intensive glycemic con-
trol has failed to demonstrate significant clinical 
benefit in stroke patients.13,14 In recent years, 
there has been a growing interest regarding the 
role of GV in stroke outcomes in several observa-
tional studies.15–21 Those studies, however, are 
relatively limited either by the lack of continuous 
glucose monitoring (CGM) data or by the assess-
ment of only a proportion of the existing GV 
indices.22

In this prospective, cohort study, we examined 
the association between GV and clinical out-
comes in consecutive diabetic and nondiabetic, 
ischemic, and hemorrhagic acute stroke patients 
using CGM and calculated GV by measuring 13 
different qualitative and quantitative indices. We 
hypothesized that increased GV in the acute 
stroke setting is associated with adverse short- 
and long-term clinical outcomes.

Methods
Consecutive patients with acute ischemic or hem-
orrhagic stroke were prospectively evaluated at 
two tertiary stroke centers (‘Attikon’ University 
Hospital, National and Kapodistrian University 
of Athens, Athens, Greece and Beth Israel 
Deaconess Medical Center, Harvard Medical 
School, Boston, USA) over a 3-year period. 
Patients were eligible for inclusion if they experi-
enced acute neurological impairment within the 
last 48 h, attributable to acute ischemic or hemor-
rhagic stroke, as was confirmed by neuroimaging 
evaluation [brain computed tomography (CT) 
scan or magnetic resonance imaging (MRI) scan]. 
The patient cohort included both diabetic and 
nondiabetic patients. Patients with traumatic 
intracerebral hemorrhage, subarachnoid hemor-
rhage (aneurysmal or nonaneurysmal), or sub- or 
epidural hemorrhage were excluded from partici-
pation in the study. Other exclusion criteria were 
patients younger than 18 years old, symptoms 
onset >48 h from hospital admission, unwilling-
ness to undergo subcutaneous CGM device inser-
tion, or lack of informed consent.

All patients were treated according to standard of 
care.23–25 In addition, all patients underwent the 
following clinical laboratory and imaging exami-
nations, as previously described: serial assess-
ments of stroke severity using National Institute 
of Health Stroke Scale (NIHSS) score, brain CT 
scan or MRI scan, full blood count, biochemical 
blood analysis [baseline glucose values and 
Hemoglobin A1c (HbA1c) included], electrocar-
diogram, consecutive blood pressure measure-
ments.26–29 In cases of ischemic stroke, cardiac 
ultrasound, 24-h Holter heart rhythm monitor-
ing, carotid duplex ultrasound, and CT or  
magnetic resonance (MR) brain angiography  
or transcranial doppler ultrasound were also  
performed for the etiological classification accord-
ing to Trial of ORG 10172 in Acute Stroke 
Treatment (TOAST) classification,30 as previ-
ously described.28 Hemorrhagic strokes were also 
classified according to most probable etiology.31 
In cases of intracerebral hemorrhage, hematoma 
volume was measured by two independent certi-
fied stroke neurologists according to the ABC/2 
formula,32 as previously described.26

Baseline characteristics, including demographics, 
various vascular risk factors with special interest 
to diabetes mellitus diagnosis, prestroke treat-
ment, acute stroke treatment, the laboratory and 
imaging findings, were recorded, as previously 
described.26–29 Stroke severity at hospital admis-
sion and at discharge was documented using 
NIHSS score by certified vascular neurologists.33 
Reduction of NIHSS score of 4 or more points 
between hospital admission and discharge was 
considered as neurological improvement during 
hospitalization.34,35 Increase by any point in 
NIHSS score at discharge compared with NIHSS 
at admission was considered as neurological dete-
rioration during hospitalization. In-hospital com-
plications were also recorded: fever, aspiration 
pneumonia, infection, intubation. Certified vas-
cular neurologists also assessed functional out-
comes at 3 months by patient examination, using 
the modified Rankin scale (mRS).36 Excellent 
functional outcome was defined as an mRS score 
of 0 or 1 and functional independence was defined 
as an mRS score between 0 and 2.6

Glucose measurement and hyperglycemia man-
agement were performed according to current 
international recommendations.23,37 Each patient 
was evaluated 4 times daily by finger-prick glu-
cose measurement and subcutaneous insulin was 
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administered accordingly, in order to achieve a 
mild hyperglycemic state (between 120 and 
180 mg/dl). For hypoglycemia prevention and 
management, we implemented a nurse-initiated 
protocol when glucose values were below 70 mg/
dl, according to American Diabetes Association 
recommendations.38

In all patients a CGM device (iPro2, Medtronic®, 
Northridge, CA, USA) was inserted subcutane-
ously in the lower abdomen within the first 48 h of 
symptoms initiation. Glucose levels were recorded 
every 5 min for up to 96 h and were saved in device 
memory. After the device was removed, data were 
uploaded and calibrated with the corresponding 
glucose values derived from finger-prick measure-
ments. As an example, a diagram derived by CGM 
uploaded data is presented in Supplementary 
Figure S1. The final data set was edited anony-
mously in a macro-enabled Excel workbook using 
EasyGV© software (available free for noncommer-
cial use at https://www.phc.ox.ac.uk/research/tech-
nology-outputs/easygv).39 The EasyGV© was used 
to calculate the following indices of GV: mean glu-
cose value, standard deviation (SD), M-value, 
mean amplitude of glucose excursions (MAGE), 
average daily risk ratio (ADRR), lability index 
(LI), J-Index, low blood glucose index (LBGI), 
high blood glucose index (HBGI), continuous 
overlapping net glycemic action (CONGA), mean 
of daily differences (MODD), glycemic risk assess-
ment in diabetes equation (GRADE), and mean 
absolute glucose (MAG).12,40–48 All definitions and 
formulas of the GV indices assessed are provided 
in the Supplementary Table S1.

In the case of continuous glucose measurements, 
hypoglycemic events were defined as four or more 
consecutive values of CGM-obtained glucose 
below 70 mg/dl, which amounted to a total dura-
tion of at least 20 min.49 The hypoglycemic epi-
sodes disclosed by CGM but missed by finger-prick 
measurements were also documented.

The primary outcome of interest was 3-month 
excellent functional outcome. Secondary out-
comes were functional independence at 3 months, 
mortality at 3 months, in-hospital mortality, neu-
rological deterioration, and neurological improve-
ment during hospitalization. All endpoints’ 
assessments were performed by blinded inde-
pendent neurologists during hospitalization and 
in the outpatient setting at 3-month follow-up. In 
addition, we sought to compare CGM and 

periodic finger-prick measurements in detecting 
asymptomatic hypoglycemic events.

The study protocol was approved by both local 
ethics committees (Protocol No. A.3/6th Com-
mittee Meeting/15-05-2018/‘Attikon’ Univer sity 
Hospital and Beth Israel Deaconess Medical 
Center Committee on Clinical Investigations,  
IRB Protocol No. 2014 P-000163) and signed 
informed consent was obtained from the patient 
or legal representative before enrollment in all 
cases. The data that support the findings of this 
study are available from the corresponding author 
upon reasonable request.

Statistical analysis
Continuous variables are presented as mean ± SD 
(normal distribution) and as median with inter-
quartile range (IQR, skewed distribution). 
Categorical variables are presented as number of 
patients and the corresponding percentages. 
Statistical comparisons between two groups were 
performed using χ2 test, or in case of small expected 
frequencies, Fisher’s exact test. Continuous varia-
bles were compared by the use of the unpaired t 
test or Mann–Whitney U test, as indicated. 
Univariable and multivariable binary logistic 
regression models were used to evaluate the asso-
ciations of different indices of GV with clinical out-
comes before and after adjusting for potential 
confounders (demographic characteristics, stroke 
risk factors, stroke severity, in-hospital complica-
tions). A cutoff of p < 0.1 was used to select varia-
bles for inclusion in multivariable analyses that 
were conducted using backward stepwise selection 
procedure. In addition, age, sex, and index event 
were included in multivariable analysis, as they are 
considered significant potential confounders. To 
confirm the robustness of multivariable models, 
we repeated all multivariable analyses using a for-
ward selection procedure. Associations are pre-
sented as odds ratios (ORs) with corresponding 
95% confidence intervals (CIs). Statistical signifi-
cance was achieved if the p value was ⩽0.05 in 
multivariable logistic regression analyses. The 
Statistical Package for Social Science (SPSS Inc, 
Armonk, NY, USA; version 23.0 for Windows) 
was used for statistical analyses.

Results
The CGM device was inserted successfully to a 
total of 62 stroke patients (mean age: 65 ± 10 years, 
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53% men, median NIHSS score on admission: 9, 
IQR: 3–16) after a median of 32 (IQR: 25–44) h 
from stroke onset. Thirteen (21%) patients were 
diabetic. The median duration of monitoring was 
70 (IQR: 54–87) h and provided a total of 49,987 
glucose measurements for analysis. The baseline 
characteristics of the study population are pre-
sented in Table 1. Forty-eight (77%) strokes were 
ischemic and 14 (23%) were hemorrhagic. 
Ischemic strokes were primarily cryptogenic 
(38%) and cardioembolic (33%), whereas hem-
orrhagic strokes were hypertension related in the 
majority of the cases (64%). Median HbA1c was 
5.6% (IQR: 5.2–6.0%) and median blood glucose 
on admission was 118 (IQR: 105–131) mg/dl.

Patients were hospitalized for a median of 10 
(IQR: 6–12) days. Three patients died during hos-
pitalization and the in-hospital mortality rate was 
5%. Death at 3 months was recorded in six patients 
(10%). All the rest completed follow-up clinical 
evaluation at 3 months. Clinical outcomes during 
hospitalization and at 3 months are presented in 
Table 2. Thirty patients (48%) presented neuro-
logical improvement during hospitalization and 
the median NIHSS score at discharge was 3 (IQR: 
1–8). At 3 months, 34 patients (55%) were func-
tionally independent and 24 patients (39%) pre-
sented an excellent functional outcome.

Analysis of CGM-derived data provided evalua-
tion of GV by 13 different indices. Values of each 
index in all, nondiabetic and diabetic patients are 
presented in Supplementary Table S2. Diabetic 
patients had higher mean glucose value, SD, 
CONGA, J-index, HBGI, GRADE, and ADRR 
but lower LBGI value compared with nondia-
betic patients (all p < 0.05).

In the univariate analyses, no statistically signifi-
cant association was found between GV indices 
and functional independence or excellent func-
tional outcome at 3 months (all p > 0.1; Table 3). 
No further analysis was performed for death at 
3 months and neurological deterioration during 
hospitalization due to infrequent events (Table 2). 
Higher ADRR and MAG values, however, were 
associated with lower likelihood of neurological 
improvement during hospitalization (Table 4). In 
multivariable models using backward selection 
procedure and adjusting for potential confound-
ers (demographics, risk factors, baseline stroke 
severity, baseline neuroimaging and laboratory 

findings), MAG emerged as an independent pre-
dictor of the likelihood of neurological improve-
ment during hospitalization with an inverse 
association (OR per 1-unit increase: 0.135, 95% 
CI: 0.024–0.751, p = 0.022; Table 4). We found 
identical results by repeating the multivariable 
analyses using forward selection procedure.

None of the GV indices were associated with neu-
rological improvement during hospitalization at a 
corrected (for multiple comparisons) level of sig-
nificance: p = 0.05 / 13 ≈ 0.004 (unpaired t test 
after Bonferroni’s correction for multiple com-
parisons; Supplementary Table S3).

Asymptomatic hypoglycemic episodes were 
detected in 17 patients (27%) during CGM 
recordings; none of these had been identified with 
finger-prick measurements. In total, 32 hypogly-
cemic episodes had gone unrecognized by the 
standard finger-prick glucose measurements and 
left untreated in those patients. No symptomatic 
hypoglycemic episodes were detected by either 
CGM or finger-prick measurements. Up to six 
hypoglycemic episodes with a total duration of 
18 h were recorded in a single nondiabetic patient, 
which remained hypoglycemic for more than 27% 
of the CGM recording. In this patient, the hypo-
glycemic episodes were recorded almost exclu-
sively during sleep. The prevalence of hypoglycemic 
episodes was higher in nondiabetic patients (35%) 
than in diabetic individuals (0%, p = 0.013 by 
Fisher’s exact test). Those under-recognized hypo-
glycemic episodes were not associated with nei-
ther 3-month nor in-hospital clinical outcomes 
(Supplementary Table S4).

Discussion
Our pilot study showed that elevated GV 
expressed by higher MAG values was associated 
with a lower likelihood of neurological improve-
ment during hospitalization. Clinical outcomes at 
3 months, however, were not related to any of the 
GV indices measured in our study. This result 
can be explained by the fact that temporary oxi-
dative stress and endothelial dysfunction pro-
moted by GV may have contributed to short-term 
cerebrovascular damage and the corresponding 
lower likelihood of neurological improvement.50,51 
This effect, however, appears not to interfere with 
long-term clinical outcomes at 3 months. Another 
potential explanation may be associated with the 
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Table 1. Baseline characteristics of the study population (N = 62).

Variable Overall

Demographics

 Age, years, mean ± SD 65 ± 10

 Female sex, n (%) 29 (47)

Index event

 NIHSS score, points, median (IQR) 9 (3–16)

 Ischemic stroke, n (%) 48 (77)

  Large artery atherosclerosis, n (% IS) 9 (19)

  Cardio embolism, n (% IS) 16 (33)

  Small vessel occlusion, n (% IS) 2 (4)

  Other determined etiology, n (% IS) 3 (6)

  Undetermined etiology, n (% IS) 18 (38)

 Hemorrhagic stroke, n (%) 14 (23)

  Hypertension related, n (% ICH) 9 (64)

  Oral anticoagulant related, n (% ICH) 4 (29)

  Vascular abnormalities related, n (% ICH) 1 (7)

Stroke risk factors

 Diabetes, n (%) 13 (21)

  Noninsulin dependent, n (% DM) 11 (85)

  Insulin dependent, n (% DM) 2 (15)

 Hypertension, n (%) 45 (73)

 Hyperlipidemia, n (%) 47 (76)

 Current smoking, n (%) 18 (29)

 Excessive alcohol intake, n (%) 8 (13)

 Coronary artery disease, n (%) 14 (23)

 Previous history of TIA or stroke, n (%) 10 (16)

 Heart failure, n (%) 7 (11)

 Valvular disease, n (%) 1 (2)

 Peripheral arterial disease, n (%) 9 (15)

Prestroke treatment

 Antiplatelet, n (%) 23 (37)

 Anticoagulant, n (%) 7 (11)

(Continued)
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Variable Overall

 Antihypertensive, n (%) 32 (52)

 Statins, n (%) 30 (48)

Acute stroke treatment

 Intravenous thrombolysis, n (% IS) 21 (44)

 Mechanical thrombectomy, n (% IS) 3 (6)

Laboratory findings

 Glucose on admission, mg/dl, median (IQR) 118 (105–131)

 Hemoglobin A1c, %, median (IQR) 5.6 (5.2–6)

 Low-density lipoprotein, mg/dl, mean ± SD 113 ± 38

 Systolic blood pressure, mmHg, median (IQR) 150 (140–165)

 Diastolic blood pressure, mmHg, median (IQR) 85 (76–97)

Neuroimaging findings

 Anterior circulation, n (%) 54 (87)

 Right hemisphere, n (%) 31 (50)

 Hematoma volume, mm3, median (IQR) 21 (12–30)

DM, diabetes mellitus; ICH, intracerebral hemorrhage; IS, ischemic stroke; IQR, interquartile range; NIHSS, National 
Institute of Health Stroke Scale; SD, standard deviation; TIA, transient ischemic attack.

Table 1. (Continued)

small sample size that may not have allowed the 
decreased odds of neurological improvement in 
patients with increased GV to translate into worse 
functional outcomes at 3 months.

GV has previously been shown to correlate well 
with oxidative stress, as it was estimated from 24-h 
urinary excretion rates of free 8-iso prostaglandin 
F2a.52 In fact, acute glucose fluctuations expressed 
by MAG were associated with higher production 
and urinary excretion of free 8-iso prostaglandin 
F2a, while no relationship was confirmed between 
oxidative stress and more traditional hyperglyce-
mic markers, such as fasting plasma glucose, mean 
glucose, and HbA1c.52 Thus, increased oxidative 
stress may represent the link between increased 
GV during the first hours of ictus and early neuro-
logical deterioration occurring during hospitaliza-
tion. MAG value represents the mean absolute 
glucose change, counting for all glycemic varia-
tions over time. It is calculated by the sum of all 
differences between consecutive glucose values 
(even when they are within normal range), divided 

by the total time of monitoring, measured in 
hours.12 MAG has been correlated with short-term 
outcomes, such as intensive-unit and in-hospital 
mortality, in critically ill patients.12

Clinical outcomes at 3 months were not associ-
ated with any of the GV indices measured in our 
study. On the contrary, Wada and colleagues20 
showed that high mean glucose levels, distribu-
tion time with blood glucose values more than 
8 mmol/L, and areas under the curve presenting 
blood glucose values more than 8 mmol/L during 
the initial 72 h of acute stroke were associated 
with death or dependency at 3 months. All of the 
associated factors, however, reflected a hypergly-
cemic state that has previously been correlated 
with adverse clinical outcomes in stroke.1,53–55 
GV indices that reflected glucose fluctuations at 
both hyperglycemic and hypoglycemic values 
were not assessed in the Japanese study. Also dif-
ference in sample size (62 versus 100 patients), 
study population (Caucasians and African 
Americans versus Asians), and baseline stroke 
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severity (9 versus 6 points in NIHSS score) may 
account for the discrepant findings between our 
and the report by Wada and colleagues.20

Our pilot study suggests an excellent feasibility and 
tolerability of CGM in the acute stroke setting. 
CGM devices were successfully inserted in 62 
patients without any adverse event, such as skin 
irritation or subcutaneous hematomas, even in the 
subgroup of patients that received intravenous 
thrombolysis (34%). Only few studies have imple-
mented CGM recordings in order to measure GV 
and investigate its association with acute or short-
term stroke outcomes.19,20,56 Those studies, how-
ever, calculated only a proportion of existing GV 
indices that are valid and widely used for GV 
assessment.57–59 In our study, we used EasyGV© 
software that provided 13 quantitative and 

qualitative GV markers.39 All of these markers 
were evaluated for possible associations with stroke 
outcomes during hospitalization and at 3 months.

GV indices were significantly different between 
diabetic and nondiabetic patients of our cohort. 
This should be expected because diabetic patients 
and patients with impaired blood glucose regula-
tion have more pronounced glucose fluctuations 
and intraday glycemic excursions.58,60 In our 
cohort, nondiabetic patients had GV indices val-
ues within the proposed normal reference ranges 
for Caucasians patients.39 CGM, however, dis-
closed 32 hypoglycemic events that had gone 
unrecognized by the periodic finger-prick glucose 
measurements. All hypoglycemic episodes were 
recorded in the subgroup of nondiabetic patients. 
This finding could be partially attributed to dys-
phagia and food deprivation in the first days after 
stroke that may lead to hypoglycemia even in the 
absence of insulin treatment or history of diabetes 
mellitus.61 Despite that insulin treatment was not 
recorded in our study, such a finding would sug-
gest for careful glycemia management in this 
patient subgroup. We also postulate that reactive 
endogenous hyperinsulinemia and insulin resist-
ance may be a preexisting and predisposing factor 
for endothelial damage in this population. 
Characteristically, antidiabetic medications that 
do not increase GV, such as pioglitazone, have 
already proven beneficial for secondary stroke 
prevention in patients with diabetes mellitus, pre-
diabetes, and insulin resistance as well.62

During those under-recognized hypoglycemic 
events, glucose values were below 70 mg/dl, but no 
patient exhibited severe hypoglycemia with glu-
cose values below 40 mg/dl. Although this could be 
a potential explanation for hypoglycemic episodes 
being asymptomatic and without significant asso-
ciation with poststroke functional outcomes, it has 
been previously reported that glucose values lower 
than 67 mg/dL within the first 24 h of ictus have 
been related to adverse functional outcomes in 
patients with acute ischemic stroke.9 Another rea-
son for the lack of association between under-rec-
ognized hypoglycemic events and clinical outcomes 
may be attributed to the low sample size. The use 
of improved CGM sensors that do not require cali-
bration and instantly provide glucose values may 
help identify hypoglycemic episodes and other gly-
cemic excursions in real time and guide a more 
personalized hyperglycemia management in the 
acute stroke setting.63 Moreover, CGM has been 

Table 2. Clinical outcomes during hospitalization and 
at 3 months.

Variable Overall

During hospitalization

Complications

 Death, n (%) 3 (5)

 Fever, n (%) 20 (32)

 Infection, n (%) 19 (31)

 Aspiration pneumonia, n (%) 10 (16)

 Intubation, n (%) 7 (11)

Clinical outcomes

  Exit NIHSS Score, points,  
median (IQR)

3 (1–8)

 Neurological deterioration, n (%) 7 (11)

 Neurological improvement, n (%) 30 (48)

At 3 months

Clinical outcomes

 mRS score, median (IQR) 2 (1–4)

 Death, n (%) 6 (10)

 Functional independence, n (%) 34 (55)

 Excellent functional outcome, n (%) 24 (39)

IQR, interquartile range; mRS, modified Rankin Scale; 
NIHSS, National Institute of Health Stroke Scale.
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approved for nonadjuvant use, meaning that insu-
lin treatment can be administered based on CGM-
derived data without confirmatory blood glucose 
measurements.64 CGM sensors combined with 
closed-loop systems of insulin or dual-hormone 
(insulin or glucagon) delivery may act as an ‘artifi-
cial pancreas’ and appear as an attractive option 
for the optimization of glycemia management in 
acute stroke patients.65 The safety and efficacy of 
the implementation of such an integrated method 
in the setting of a stroke unit remain to be explored 
in future studies.

Certain limitations of the present pilot study need 
to be acknowledged. The sample size of the study 
was limited (N = 62) and the performed analyses 
are exploratory and may serve for hypothesis gen-
eration. Unwillingness to undergo subcutaneous 
CGM device insertion was the main reason of the 
limited recruitment. Moreover, only 13 patients 
(21%) were recruited within 24 h after symptoms 
onset, when oxidative stress and GV may have 
been more pronounced and possibly related to 
functional outcomes. In addition, data about insu-
lin treatment and feeding status of patients during 
hospitalization, which could have explained glu-
cose fluctuations and hypoglycemic events, were 
not available. Because our primary aim was to 
identify possible associations between stroke out-
comes and GV, irrespective of the underlying 
mechanisms that may have led to the glycemic 
excursions, however, this limitation seems unlikely 
to have confounded our results. Furthermore, 
data regarding acetaminophen use, which can 
interfere with CGM sensing, were not prospec-
tively collected.66 Moreover, the duration of CGM 
recording was no more than 96 h and different val-
ues of GV indices could have been calculated, if a 
more prolonged monitoring were undertaken. 
Another study that evaluated poststroke hypergly-
cemia through CGM proposed that a minimum of 
72 h of CGM poststroke should be performed.67 
In fact, we have studied CGM for a more pro-
longed period compared with other stroke studies 
that have investigated the association of GV with 
clinical outcomes. It should also be noted that, 
due to the limited sample, we conducted no  
subgroup analyses evaluating the association of  
GV indices with early outcomes in specific stroke 
subgroups according to etiopathogenic mecha-
nism, nor we adjusted for infarct or hematoma 
volume in the subgroups of patients with ischemic 
stroke or intracerebral hemorrhage accordingly. 
Last, none of the 13 GV indices were associated 
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Table 4. Univariable and multivariable logistic regression analyses depicting the associations of GV indices, 
baseline characteristics, and in-hospital complications with the likelihood of neurological improvement during 
hospitalization.

Variable Univariable logistic regression 
analysis

Multivariable logistic 
regression analysisa

Odds ratio (95% CI) p Odds ratio (95% CI) p

GV indices

 Mean glucose 0.724 (0.487–1.079) 0.113  

 SD 0.532 (0.193–1.473) 0.225  

 CONGA 0.731 (0.481–1.110) 0.141  

 Li 0.792 (0.448–1.4) 0.422  

 J-index 0.959 (0.906–1.016) 0.156  

 LBGI 1.193 (0.877–1.623) 0.262  

 HBGI 0.897 (0.731–1.101) 0.299  

 GRADE 0.865 (0.7–1.069) 0.179  

 MODD 0.590 (0.224–1.554) 0.286  

 MAGE 0.759 (0.48–1.2) 0.238  

 ADRR 0.843 (0.722–0.985) 0.032 0.924 (0.743–1.148) 0.160

 M-value 1.010 (0.938–1.087) 0.79  

 MAG 0.333 (0.108–1.029) 0.056 0.135 (0.024–0.751) 0.022**

Baseline characteristics

 Age 1.003 (0.956–1.053) 0.891 1.018 (0.949–1.091) 0.353

 Gender 1.308 (0.481–3.558) 0.599 0.771 (0.195–3.041) 0.498

 Index event 0.338 (0.093–1.231) 0.1 0.301 (0.054–1.667) 0.312

 Diabetes 0.393 (0.107–1.449) 0.161  

 Hypertension 1.076 (0.352–3.290) 0.898  

 Hyperlipidemia 2.273 (0.673–7.674) 0.186  

 Smoking 1.5 (0.498–4.519) 0.471  

 Alcohol 1.933 (0.419–8.911) 0.398  

 Coronary artery disease 1.087 (0.330–3.576) 0.891  

 Previous history of stroke 1.080 (0.279–4.181) 0.911  

 Heart failure 1.487 (0.304–7.277) 0.624  

 Peripheral arterial disease 0.831 (0.201–3.440) 0.798  

 Antiplatelet pretreatment 0.551 (0.193–1.571) 0.265  

(Continued)
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Variable Univariable logistic regression 
analysis

Multivariable logistic 
regression analysisa

Odds ratio (95% CI) p Odds ratio (95% CI) p

 Anticoagulant pretreatment 0.386 (0.069–2.16) 0.278  

 Antihypertensive pretreatment 1.482 (0.544–4.036) 0.441  

 Statin pretreatment 1.133 (0.418–3.072) 0.806  

 Glucose on admission 0.990 (0.975–1.005) 0.190  

 HbA1c 0.507 (0.257–1.001) 0.05 0.541 (0.245–1.196) 0.107

 LDL 0.998 (0.985–1.012) 0.778  

 SBP 0.991 (0.971–1.012) 0.4  

 DBP 0.997 (0.971–1.023) 0.811  

 Stroke of anterior circulation 0.6 (0.13–2.764) 0.512  

 Stroke in right hemisphere 2.192 (0.794–6.051) 0.130  

In-hospital complications

 Fever 1.1 (0.379–3.192) 0.861  

 Infection 0.943 (0.32–2.779) 0.915  

 Aspiration 1.75 (0.441–6.94) 0.426  

 Intubation 0.386 (0.069–2.160) 0.386  

ADRR, average daily risk ratio; CI, confidence interval; CONGA, continuous overlapping net glycemic action; DBP, diastolic 
blood pressure; GRADE, glycemic risk assessment in diabetes equation; GV, glycemic variability; HbA1c, Hemoglobin 
A1c; HBGI, high blood glucose index; LBGI, low blood glucose index; LDL, low-density lipoprotein; Li, lability index; MAG, 
mean absolute glucose; MAGE, mean amplitude of glucose excursions; MODD, mean of daily differences; NIHSS, National 
Institute of Health Stroke Scale; SBP, systolic blood pressure; SD, standard deviation.
aAge, sex, index event, and every variable presenting cutoff value of p < 0.1 in the univariate analysis were used for 
selection of candidate variables for inclusion in multivariable logistic regression models. NIHSS score at admission was 
not included in this analysis, as the outcome (neurological improvement during hospitalization) is a composite of both 
NIHSS score at admission and NIHSS score at discharge.
**Indicates statistical significance, p value < 0.05.

Table 4. (Continued)

with neurological improvement during hospitali-
zation at a corrected (for multiple comparisons) 
level of significance of p = 0.05 / 13 ≈ 0.004 
(unpaired t test after Bonferroni’s correction for 
multiple comparisons) and our results require fur-
ther validation in larger studies.

Conclusions
GV was calculated during CGM recording in 
acute stroke patients and was expressed by 13 dif-
ferent indices. Elevated GV as indicated by higher 
MAG values was independently associated with 
lower likelihood of neurological improvement 

during hospitalization in acute stroke patients. 
ADRR index and HbA1c value were also associ-
ated with neurological improvement in the uni-
variate analysis, but after adjusting for confounders 
they did not retain their statistical significance. 
No GV index was related to 3-month clinical out-
comes, pointing to a more short-term impact of 
GV on early poststroke neurological status. CGM 
recording detected several hypoglycemic episodes 
in the nondiabetic stroke patients that were 
missed by the periodic blood glucose measure-
ments, underscoring that glycemia management 
in the acute stroke setting should be further opti-
mized. Larger multicenter studies are required to 
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further investigate the validity of these prelimi-
nary observations and determine the potential 
detrimental effects of increased MAG values on 
early clinical outcomes of acute stroke patients.
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