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Many neuroimaging studies have demonstrated the different functional contributions of
spatially distinct brain areas to working memory (WM) subsystems in cognitive tasks
that demand both local information processing and interregional coordination. In WM
cognitive task paradigms employing electroencephalography (EEG), brain rhythms such
as θ and α have been linked to specific functional roles over given brain areas, but their
functional coupling has not been extensively studied. Here we analyzed an arithmetic
task with five cognitive workload levels (CWLs) and demonstrated functional/effective
coupling between the two WM subsystems: the central executive located over frontal
(F) brain areas that oscillates on the dominant θ rhythm (Frontalθ/Fθ) and the storage
buffer located over parieto-occipital (PO) brain areas that operates on the α2 dominant
brain rhythm (Parieto-Occipitalα2/POα2). We focused on important differences between
and within WM subsystems in relation to behavioral performance. A repertoire of brain
connectivity estimators was employed to elucidate the distinct roles of amplitude, phase
within and between frequencies, and the hierarchical role of functionally specialized brain
areas related to the task. Specifically, for each CWL, we conducted a) a conventional
signal power analysis within both frequency bands at Fθ and POα2, b) the intra- and
inter-frequency phase interactions between Fθ and POα2, and c) their causal phase
and amplitude relationship. We found no significant statistical difference of signal power
or phase interactions between correct and wrong answers. Interestingly, the study of
causal interactions between Fθ and POα2 revealed frontal brain region(s) as the leader,
while the strength differentiated between correct and wrong responses in every CWL
with absolute accuracy. Additionally, zero time-lag between bilateral Fθ and right POa2

could serve as an indicator of mental calculation failure. Overall, our study highlights the
significant role of coordinated activity between Fθ and POα2 via their causal interactions
and the timing for arithmetic performance.
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INTRODUCTION

Based on a psychology theory, the human working memory
(WM) system possesses a star topology with the executive
element in the center and supportive elements in the periphery.
The central executive is the core of the human WM system
and controls and organizes information selection and processing.
Peripheral WM subsystems store task-relevant information for
the short term and can be called buffers (e.g., like a visuospatial
sketch of a visual stimulus).

Neuroimaging studies have identified the brain regions
involved in accessing these storage systems, providing new
anatomic insight for better understanding the coordination of
neural activities from multiple brain regions in the WM system
(Sauseng et al., 2005; Kawasaki et al., 2010; Zanto et al., 2011).
It was previously assumed that the prefrontal cortex (PFC)
affects processing in posterior brain regions (Friese et al., 2013;
Szczepanski et al., 2014; Harding et al., 2015). This assumption
led to the hypothesis that PFC activity should precede parietal
activity in cognitive control (Brass et al., 2005). It is generally
accepted that top-down signals from frontal areas are important
for cognitive control (Desimone and Duncan, 1995; Miller and
Cohen, 2001; Corbetta and Shulman, 2002). Frontal activity,
specifically in the PFC, is thought to affect posterior regions and
facilitate the processing of task-relevant information (Reynolds
and Chelazzi, 2004; Maunsell and Treue, 2006). Two time series
{X,Y} [e.g., electroencephalography (EEG) oscillations] have a
causal relationship when past values of X can be useful for
predicting future values of Y. This terminology of causality was
first formulated by Granger (1969). The above assumption is
supported by the time precedence of prefrontal activity (Brass
et al., 2005; Grent-’t-Jong and Woldorff, 2007), synchronization
between prefrontal and posterior regions (Buchel and Friston,
1997; Sakai and Passingham, 2003), and modulation of posterior
region activity after inactivation of prefrontal regions via
transcranial magnetic stimulation (TMS; Taylor et al., 2007).

The causal role of the PFC modulating evoked activity in the
extrastriate cortex during experiments related to scenes and faces
(Miller et al., 2011) and recent combined TMS/EEG and TMS/
functional magnetic resonance imaging (fMRI) studies (Feredoes
et al., 2011; Higo et al., 2011; Zanto et al., 2011) clearly supports
the idea that the PFC is the source of top-down signals and plays
a key role in allocating attentional resources related to semantic
long-term memory (e.g., letters, numbers, sounds, and motor or
sensory information; D’Esposito and Postle, 2015).

Neural activity and related oscillations can be studied at
many levels using spike trains, local field potentials (LFPs), and
large-scale oscillatory activity that can be measured with EEG.
For large-scale oscillations, amplitude changes due to variable
synchronization in a neural ensemble are usually referred to
in the literature as local synchronization. Oscillatory activities
between distant neural structures (neural ensembles or single
neurons) can also be synchronized. Neural synchronization and
oscillations with a specific frequency profile have been associated
with various cognitive functions like memory, perception,
motor control, and information transfer (Fries, 2005; Fell and
Axmacher, 2011).

EEG oscillations are thought to reflect the orchestration
of cell assemblies via the synchronization of neurons related
to specific functions and the activities of many local cell
assemblies linked to different functions that are integrated via
large-scale synchronization (Varela et al., 2001). This hypothesis
is the basis for the use of EEG-dominant oscillations for
exploring dynamic functional connectivity (Dimitriadis et al.,
2012). Numerous EEG studies using scalp recordings have
demonstrated modulated θ and α brain rhythms in anatomically
restricted brain regions and simultaneous phase synchronization
between them during various WM tasks (Jensen and Tesche,
2002; Mizuhara et al., 2004; Sauseng et al., 2005; Kawasaki and
Watanabe, 2007; Klimesch et al., 2008; Kawasaki et al., 2010).
Each EEG oscillation is closely related to the functional role
of each anatomically distinct brain area linked to one or more
separate cognitive functions (Başar et al., 2014). Even though
there is a debate about the link between cognitive functions
and the dominant interaction type, there is ample evidence
that cross-frequency coupling (CFC) based on phase domain
may be the substrate that links these frequency-independent
cognitive functions (e.g., WM subsystems; Fell and Axmacher,
2011). For instance, Kawasaki et al. (2010) suggested that
WM task-relevant brain regions [i.e., Frontal (F) and Parieto-
Occipital (PO) regions] are coordinated by an m:n phase
synchronization between θ oscillation (θ, 5–8 Hz) in frontal
(Fθ) and α2 oscillation (α2, 10–13 Hz) at PO regions (POα2).
In a systematic review, Fell and Axmacher (2011) highlighted
that phase–amplitude coupling and m:n phase coupling are
crucial for a non-interfering representation of multiple objects in
the WM.

Among various WM tasks, mental arithmetic is often used
to investigate the neurophysiologic basis of WM. Two studies
based on EEG event-related responses for mental subtraction
and addition adopted a calculation strategy that highlighted
the importance of θ and α oscillations (De Smedt et al.,
2009; Grabner and De Smedt, 2011). Moreover, evidence from
several neuroimaging studies indicates that several cortical areas
distributed over both hemispheres are generally implicated in
arithmetic processing (Menon et al., 2000; Gruber et al., 2001;
Dehaene et al., 2003, 2004; Kong et al., 2005; Fehr et al., 2007;
Ischebeck et al., 2009). For example, multiplication operations
demand the retrieval of arithmetic facts (e.g., multiplication
tables) that are stored in the verbal memory (manipulation
of verbal numbers) and specifically require left angular gyrus
activation (Gruber et al., 2001; Dehaene et al., 2003; Ischebeck
et al., 2009). In contrast, subtraction and addition demand a
calculation where the two numerical quantities must first be
represented as quantities, and this process activates regions
in the parietal cortex (Chochon et al., 1999; Menon et al.,
2000; Dehaene et al., 2003; Fehr et al., 2007). It is important
to understand the different roles of each brain area involved
in mental arithmetic (Dehaene et al., 2004), their preferred
“working” frequencies (Ishii et al., 2014), and possible cross-
frequency coordination to obtain a correct outcome (Roux and
Uhlhaas, 2014).

In our first attempt, we aimed to differentiate two extreme
cognitive workload levels (CWLs): the addition of single-digit
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numbers (CWL-1) with three-digit numbers (CWL-5) based
on a single-subject dataset. We successfully separated the two
CWLs using highly accurate connectivity patterns (Dimitriadis
et al., 2013). Based on these promising results, we focused on
how to correctly predict any CWL among the five CWLs. We
discriminated on a high recognition-rate (96%) the five CWLs
by constructing the first functional connectivity graph (FCG)
that incorporates intra-frequency phase coupling within frontal
and PO brain areas operating on their dominant oscillation
(θ and α, respectively) and the inter-frequency phase-to-phase
coupling between those two areas. The FCG was analyzed with
a tensorial approach (Dimitriadis et al., 2015b). As the next step,
we attempted to predict performance in arithmetic calculations
based on the previous analysis and a causal relationship between
prefrontal and parietal activity in which cognitive control was
addressed (Brass et al., 2005). To study causal relations between
Fθ and POα2, we introduced a new information-theoretic
method based on symbolic transfer entropy that quantifies
the strength, direction, and delay of coupling between neural
signal activities in different frequency ranges (Dimitriadis et al.,
2015d). We found that this method successfully uncovering
the leading role of θ band oscillation in F areas over α2
frequency oscillation in PO at each CWL (Dimitriadis et al.,
2016a).

Here we employ these techniques to predict arithmetic
performance. The scope of this work was fourfold: (i) to uncover
the different roles of amplitude and phase representation of θ and
α2 activity while performing mental calculations, (ii) to study the
different types of phase synchronization between Fθ and PO WM
subsystems, (iii) to address and quantify the causal interactions
between the two WM subsystems (Fθ and POα2), and (iv) to
investigate how WM subsystems can be coordinated for coherent
cognitive function. To address these questions, we analyzed the
correct and wrong answers in an EEG arithmetic task (addition)
with varying difficulty (Lv; i.e., increasing the numbers of digits
in the added numbers). Our hypothesis was based on the model
in Figure 1 where stimulus-related information is stored in the
posterior brain areas via the α2 brain rhythm, while manipulation
of the abstract-stored information is manipulated by the frontal
executive brain areas under θ rhythm via the cross-frequency
coupling pathway (Kane and Engle, 2002).

MATERIALS AND METHODS

Subjects
We recruited 16 young, right-handed volunteers (nine males
and seven females, ages 21–26 years, mean age of 21.5
[SD = 1.5 years]) from the National University of Singapore.
All participants had normal or corrected-to-normal vision and
reported that they did not have verbal or non-verbal learning
disabilities. The study was approved by the Institutional Review
Board of the National University of Singapore conforming
with the Code of Ethics of the World Medical Association
(Declaration of Helsinki), and written inform consent was
obtained from each participant after the procedures were clearly
explained.

FIGURE 1 | Schematic illustrations of working memory (WM)
manipulation of the visual representations. The external visual
information is stored in the modality-specific posterior region by the α2
rhythm. For manipulation of the stored representations, the cross-frequency
phase coupling (CFPC) between θ–α2 connect the frontal (F) executive
regions with parieto-occipital (PO) regions where the visual and number
related information is stored. Moreover, θ–α2 interact within both F and PO
regions.

EEG Recordings
EEG data were recorded from 64 channels at 256 Hz with
an ActiveTwo Biosemi system and referenced using an average
reference. The experiment details were described previously
(Dimitriadis et al., 2015b, 2016a). Briefly, we asked each
participant to perform the mental summation of two numbers
presented on a PC screen. When the subject finished the
arithmetic task, he/she pressed the spacebar, and two possible
answers appeared on the screen. The subject had to compare
the mentally calculated summation with the two options. The
participant was asked to press either the left or right arrow
key (⇐ or ⇒) that corresponded to the correct answer. If
the participant responded correctly or incorrectly, the trial was
characterized as correct or wrong, respectively. The experiment
design included five difficulty levels that differed by the number
of digits of the added numbers. For the first level, arithmetic
problems involved the summation of two one-digit numbers
(e.g., 7 + 9). For each subsequent level, the number of digits of
one of the numbers increased by one; therefore, at level five the
mental arithmetic task consisted of the summation of two three-
digit numbers (e.g., 235 + 164). The experimental paradigm was
divided into 1-min with 30-sec rests to avoid cognitive fatigue. All
the arithmetic problems within each block had the same difficulty
level. After a three repetitions of the five difficulty levels, subjects
relaxed by viewing a slide show with landscape pictures with a
frequency of 1 picture every 30 sec. We selected landscapes over
a fixation cross to increase subject alertness. Then, the whole
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session was repeated with 15 blocks of mental arithmetic and
5 min of relaxation. Due to the different response times, each
subject performed a different number of trials for each block.

A single trial was defined as the time interval between stimulus
onset and the last peak of θ (6 Hz) cycle1 before the subject
pressed the space bar.

Data Preprocessing
We performed independent component analysis (ICA; Onton
et al., 2006; Delorme et al., 2007; Romero et al., 2008) to suppress
artifactual activity, after first concatenating the trials using the
EEGLAB package (Delorme and Makeig, 2004). Independent
components (ICs) marked as artifacts (eyes, muscle, and cardiac
interference) were zeroed (Dimitriadis et al., 2010). Afterward, we
reconstructed the multichannel signal from the non-artifactual
ICs using the estimated mixing matrix.

Determining Frequency Bands and
Recording Sites of Interest
Previous works (Sauseng et al., 2005; Klimesch et al., 2008;
Kawasaki et al., 2010) revealed a distinct role of frequency bands
originating from brain areas related to specific cognitive roles
in WM and mental arithmetic tasks. Based on this knowledge,
we targeted our connectivity analysis to selected brain areas
with a characteristic frequency profile. In multiplication and
comparison tasks, an increment of θ power over frontal brain
areas in both hemispheres and a decrement of power in α2
frequency over PO sites in both hemispheres were detected
for both tasks (Micheloyannis et al., 2005). First, based on
preliminary analysis published in our previous study (Dimitriadis
et al., 2015b), we demonstrated that higher cognitive loads are
linked to: (i) increased power in θ (5–6 Hz) and α2 (10–13 Hz)
frequency bands over F brain areas bilaterally and (ii) increased
power in θ and α2 over PO regions bilaterally (for power
spectrum (PS) estimation see Supplementary Material Section 1).
Sensors located over bilateral F and PO that demonstrated this
tendency in θ (5–6 Hz) and α2 (10–13 Hz) power, respectively,
were selected for further analysis. The selected sensors included
FZ, FP1, AF3, F3, F7, FC5, FC1, FC6, FC2, F4, F8, FP2, AF4, PZ,
P7, P8, P5, P6, PO7, PO8, PO3, O1, OZ, O2, and PO4.

Different Types of Connectivity
Estimators
To uncover the different roles of amplitude and phase on
predicting task performance and determine their potential
causal relationship within and between different frequencies, we
adopted a repertoire of established connectivity estimators and a
novel one (Dimitriadis et al., 2016a). Specifically, we employed
the phase locking value (PLV; Lachaux et al., 1999), directed
phase lag index (dPLI; Stam and van Straaten, 2012), phase-to-
amplitude cross-frequency coupling (PAC; Cohen, 2008; Voytek
et al., 2010; Dimitriadis et al., 2015a, 2016b; Adamos et al., 2016),

1We detected the peaks of θ (6 Hz) cycles by estimating zero crossings from positive
to negative values of the derivative of the time series recorded from the FZ sensor
and filtered at 6 Hz. The same procedure was employed across trials, subjects, and
conditions

and delay symbolic transfer entropy (dSTE; Dimitriadis et al.,
2016a).

Within and Cross-Frequency Phase Synchronization
between Fθ and POα2

To quantify the phase interaction within Fθ and POα2 and also
between the two brain areas functioning on their prominent
frequency, we adopted PLV as an index to quantify phase
synchronization on a single-trial basis. The center frequency for
θ was 6 Hz, and the range for α2 was 10–13 Hz (for further
details see Supplementary Material Section 2). Briefly, PLVs were
estimated in a pairwise fashion from the brain signals recorded
at sensors k, l oscillating on prominent frequencies (i.e., θ for F
areas and α2 for PO areas) with the following formula:

PLV
(
xk (f , n), xl(f , n)

)
=

∣∣∣∣∣ 1
(W.1s)

W∑
n′ = 1

s2∑
s = s1

exp
(
i (ϕxk (f , n′, s)− ϕxl(f , n′, s))

)∣∣∣∣∣ (1)

Here, xk(n) denotes a single trial (correct or wrong response)
segment of length equal to Nw samples extracted from addition
of one of the CWLs. 8k(s1,n) defines the instantaneous phase
for the single-trial segment over Ns1 scales within either the θ or
α2 frequency bands. W equals the variable width in samples of
each trial. Phase estimation via Morlet wavelet transform with a
Gaussian envelope in the time domain (characterized by standard
deviation σt) produced a complex number located at a center
frequency f with resolution σf ranging from σ1 to σ2 (Tallon-
Baudry et al., 2001). Then, single-trial phase synchronization
was quantified with the PLV formula between preselected EEG
sensors over F and PO brain sites within θ or α2 frequency bands
(i.e., PLV(θxk, θxl) and PLV(α2xk, α2xl)).

We also estimated the phase-phase cross-frequency coupling
between Fθ and POα2 between every pair of sensors from
F and PO brain areas as a coordinated mechanism between
the two functionally distinct WM subsystems (i.e., central
executive and storage buffer). Adopting the concept of n:m
phase synchronization (Tass et al., 1998), we modified Eq. 1 to
estimate the cross-frequency phase-to-phase differences between
two cycles of θ phases (2 × 86Hz) and one cycle of the α2 phase
(810−13 Hz) between the preselected sensors over F and PO brain
areas:

PLV
(

xk (f θ, n), xl (f α2 , n)
)

=

∣∣∣∣∣ 1
(W.1s)

W∑
n′ = 1

s2∑
s = s1

exp
(
i(2∗ϕ6Hz

xk(f θ, n′, s)

− ϕ10−13Hz
xl(f α2 , n′, s))

)∣∣∣∣∣ (2)

PLV (f θxk, f α2xl) quantified the information exchange rate
between distinct WM subsystems (for further details – see
Supplementary Material Section 2). We previously found that
cross-frequency coupling significantly improved the classification
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performance of CWLs for correct trials (Dimitriadis et al.,
2015b).

To assess the statistical significance level of PLV estimates,
we used the Rayleigh test for the uniformity of PLV values as
previously described (Dimitriadis et al., 2013, 2015a,b,c,d,
2016a,b; for further details see Supplementary Material
Section 2B).

Effective Connectivity and Time Delay between Fθ

and POα2

Dynamic causal modeling, structural equation modeling, and
granger causality
Effective connectivity is defined as “the influence one system
exerts over another” (Friston, 2011). It is important to
mention that functional connectivity is not necessarily effective
connectivity. Only effective connections are directed from one
brain area to another. Many techniques have been proposed
to explain causal interactions in multichannel neuroimaging
recordings, including like dynamic causal modeling (DCM),
structural equation modeling (SEM), and Granger causality (GC).

GC is a statistical concept of causality that predicts the future
of an activity X based on the past activity Y. Two time series {X,Y}
(e.g., EEG/MEG/fMRI oscillations) have a causal relationship
when past values of X can be useful for predicting future values of
Y. This terminology of causality was first formulated by Granger
(1969). In the last 10 years, GC has gained much attention in
the neuroscience community (Kaminski et al., 2001; Barnett and
Seth, 2014).

The main goal of DCM in neuroimaging data based on a set
of regions of interest (ROIs) is to determine the causal influence
of each ROI on the others and study the experimental influence
on the connections’ strengths. The aforementioned procedure
demands: (i) biophysically and physiologically plausible models
of neuronal network dynamics that can predict the pattern
of the network topology that better described the connectivity
of a spatially distinct predefined subset of ROIs related to
the experimental stimuli and (ii) efficient and computationally
feasible statistical parametric estimations and model comparisons
that better fit the experimental data, leading to meaningful
directed networks that are supported by the literature (Friston
et al., 2003). DCM is a Bayesian model comparison procedure
between candidate models that better describes experimental
data. Dynamic causal models are described via ordinary
differential equations that are non-linear state-space models.
These equation-based models describe the dynamics of hidden
states in a set of nodes of a probabilistic graphical model where
their conditional dependencies are parameterized via directed
effective connectivity. The probabilistic graphs in DCM can be
cyclic (the estimated graphs cannot be cyclic in GC or SEM), and
DCM does not assume that random fluctuations are uncorrelated
(Downey and Hirschfeldt, 2010), unlike GC and SEM.

The aim of DCM is to infer the causal architecture of
coupled or distributed dynamical systems. This Bayesian model
comparison procedure rests on comparing models of how data
were generated. Dynamic causal models are formulated in
terms of stochastic or ordinary differential equations (i.e., non-
linear state-space models in continuous time). These equations

model the dynamics of hidden states in the nodes of a
probabilistic graphical model, where conditional dependencies
are parameterized in terms of directed effective connectivity.
Unlike Bayesian networks, the graphs used in DCM can be cyclic,
and unlike SEM and GCM, DCM does not depend on the theory
of algorithmic randomness (Downey and Hirschfeldt, 2010).

In fMRI, DCMs typically rely on two classes of states,
namely “neuronal” and “hemodynamic” states. The latter encodes
neurovascular coupling for modeling fMRI signal variance
generated by neural activity (Friston et al., 2003). Biophysical
models in DCMs for EEG/magnetoencephalography (MEG)/LFP
data are typically more complex than in DCMs for fMRI. This
is because the richness in temporal information contained by
electrophysiologically measured neuronal activity can only be
recorded by neurobiological models. The report introducing
DCM for EEG/MEG data (David et al., 2006) relied on a so-called
“neural mass” model.

Following the initial paper by David et al. (2006), a number
of extensions to this “neural mass model”-based DCM were
proposed that considered both spatial and temporal aspects of
MEG/EEG data. Concerning the spatial domain, one problem
is that the position and extent of cortical sources are difficult to
precisely specify a priori. Kiebel et al. (2006) proposed to estimate
the positions and orientations ϕ of “equivalent current dipoles.”
Concerning the temporal domain, computational problems can
arise when dealing with recordings of enduring brain responses
where it is more efficient to summarize the measured time series
in terms of their spectral profile. This is the approach developed
by Moran et al. (2007, 2008, 2009), which models LFP data based
on the neural mass model using a linearization of the evolution
function f around its steady state (Moran et al., 2007).

Structural equation modeling analyses start with a set of
ROIs and try to estimate the connection strengths between
the predefined ROIs leading to a model that best describes
the connectivity pattern. The connections in the model are
directional and represent the degree of correlation between
the time series describing ROI activities. SEM procedures
can vary, but most of them are based on general linear
modeling (GLM) searching through the space of possible
sets of connections that best fit the data (Graham, 2008).
A comparison between dynamic (DCM) and static (SEM)
effective connectivity analyses was published by Penny et al.
(2004a,b).

For a better understanding of the various techniques of
DCM, SEM and GC, an interested reader should refer to the
original papers, the main extensions of the techniques and to
well-presented reviews (Daunizeau et al., 2011; Friston, 2011;
McIntosh and Mišić, 2013).

Causal interactions and time delay between Fθ and POα2

To unfold both causal interactions and the time delay between
Fθ and POα2, we adopted the dSTE method (Dimitriadis et al.,
2016a). Compared to GC (Granger, 1969), the adopted technique
of STE is a model-free approach of effective connectivity that
is not affected by outliers or filtering and can be directly
applied to non-stationary multichannel recordings. This is in
comparison to GC that assumes only stationary signals and is
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affected by various filtering options (for a comparison study
see Papana et al., 2013). Partial direct coherence (PDC) and
direct transfer function (DTF) are the best options when
we analyze time series from linear systems that operate on
the same frequency. In our case, we proposed for the first
time a causality estimator called dSTE for time series with
different frequencies that can detect the strength, direction
and lag between non-linear and non-stationary multichannel
recordings (Dimitriadis et al., 2016a; see Supplementary Material
Section 3).

To strengthen our hypothesis that activity in frontal brain
regions precedes parietal activity in cognitive control (Brass
et al., 2005), we adopted a new technique that addresses the
time lag between two time-series based on cross-correlation of
instantaneous amplitudes of two oscillations (Adhikari et al.,
2010) (see Supplementary Material Section 4). The technique was
adopted supplementary to the time-lag detection based on our
target method (see Supplementary Material Section 3).

Uncovering Causal Phase Relationship between Fθ

and POα2

We detected and quantified the strength of causal phase
interactions between Fθ and POα2 brain areas via the dPLI (Stam
and van Straaten, 2012). The dPLI obtains the phase difference
between two time series (A and B) based on the following
formula:

dPLI =
1
N

N∑
t = 1

H
(
f (t)

)
(3)

There are three cases based upon the distribution of the phase
difference within [−π, π]:

(a) Most of the phase differences between two time series are in
the interval of 0 ≤ 8(t) ≤ π, and signal A is consistently
leading in phase domain signal B with a dPLI > 0.5

(b) Phase difference of the two signal are on average π radians
out of phase where we cannot say anything about who drives
who

(c) Most of the phase differences between two time series are
in the interval of π ≤ 8(t) < 0, and signal B is consistently
leading in phase domain signal A with a dPLI < 0.5

After applying the proper statistical filtering approach (see
Supplementary Material Section 5), we aggregated the strength
of the significant causal relationship between Fθ and POα2 brain
sites.

PAC between Fθ and POα2

Cross-frequency interactions between Fθ and POα2 were also
assessed via PAC. The algorithm was adopted to our EEG
multichannel recordings as described below. Let x(i, t) be the
EEG activity recorded at the ith site, x(j, t) be the EEG activity
recorded at the jth site, and t = 1, 2, . . ., T, represents the
successive time points. Given two frequency band-limited signals
x(i, t) and x(j, t), cross-frequency coupling and namely PAC
directly estimated the strength of the phase of the low-frequency
(LF) oscillations to modulate high-frequency (HF) oscillation
amplitude. The complex analytic representations of both signals

ZLF(t) and ZHF(t) are extracted via the Hilbert transfer (HT):

ZLF (t)= HT [XLF (t)] = ZLF eiφLF(t) = ALF (t) eiφLF(t)

ZHF (t)= HT [XHF (t)] = ZHF eiφHF(t) = AHF (t)iφHF(t) (4)

Then, the envelope of the HF oscillations, AHF(t) is filtered
within the range of LF oscillations (here in θ) and from the filtered
signal, phase dynamics ϕ’(t) are derived via an HT:

Z′ (t) = HT
[
AHF,LF (t)

]
=

∣∣∣Z′ (t)∣∣∣ eiφ
′

HF(t) = Z
′

(t)iφLF→HF(t)

(5)
The aforementioned formula describes the modulation of the
amplitude of HF-oscillations by the phase of LF-oscillations and
adopting PLV (Eq. 1) as an index of the PAC strength, we can
quantify the phase consistency of these two time series. Again,
we aggregated the strength of significant PAC estimates between
Fθ and POα2 (Dimitriadis et al., 2015a, 2016a; see Supplementary
Material Section 6).

Accessing Classification Performance
between Correct and Wrong Trials
We commence this subsection by including the classification
strategy using a set of features including signal characteristics,
behavioral data, PS, phase coupling, and dSTE. The total number
of wrong trials within the group was 277 and distributed
in each CWL as followed: Lv1 = 42, Lv2 = 53, Lv3 = 59,
Lv4 = 62, and Lv5 = 61 (Lv = level of difficulty). Since
the individual total number of wrong trials across CWL
ranged from 1 to 13, we trained the binary classifier by
manipulating correct and wrong trials from the whole group.
The above procedure will strengthen our results by presenting
the classification performance with a group-unified classifier.
The classification scheme was based on PS, phase coupling
within F and PO brain areas on their prominent frequency (θ
in F and α2 in PO), cross-frequency phase-to-phase coupling
between Fθ and POα2, PAC between the phase of Fθ and
the amplitude of POα2, directed cross-frequency amplitude-to-
amplitude coupling based on dPLI between Fθ and POα2, and
dSTE between Fθ and POα2. This scheme was followed for each
CWL independently between correct and wrong trials (binary
classification).

For PS and reaction time measurements, we employed the
Laplacian score as a feature extraction technique (He et al.,
2005), and a k-NN classifier served as the predictor of correct
versus wrong trials for each CWL. In the feature-extraction
step, signal-power was separately estimated from the selected
EEG sensors for each single-trial segment for θ band Pθ,
α2 band Pα2, and the corresponding ratio Pθ/Pα2 in both
PO and F brain areas. We augmented this large number of
features with the reaction time. We further normalized all
features within the [0, 1] range. Complementary to PS and
reaction times, we classified correct versus wrong trials based
on the different representations of FCGs estimated with a
large repertoire of connectivity estimators. For the classification
strategy, we adopted a previously published approach based
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on the tensorial treatment of FCGs (Dimitriadis et al.,
2013, 2015d,c; Antonakakis et al., 2016). We adopted a 10-
fold cross-validation scheme for both signal-power/reaction
time and different functional connectivity representations (see
Supplementary Material Section 7).

RESULTS

Behavioral Results
We first compared response times and subject performance
between consecutive CWLs. Adopting Wilcoxon rank-
sum tests and Bonferroni corrections, we revealed the
expected effect of difficulty for response time (p < 0.001,
Bonferroni corrected, p′ < p/4) with longer responses
to be linked to higher CWLs and higher difficulty. In
terms of accuracy, we demonstrated a decreasing trend
across the increment of difficulty, but it was not significant
after correcting for multiple comparisons (for p < 0.001,
Bonferroni corrected, p′ < p/4) (see Supplementary Material
Section 8). Additionally, no statistical differences were detected
between correct and wrong trials based on response times
(Figure 2).

Power Spectrum Evidence in Fθ and
POα2 Related with Arithmetic
Performance
We performed Wilcoxon rank-sum tests to find significant
differences between correct and wrong responses in terms of
the PS (see Supplementary Material Section 1). Our analysis
did not reveal any significant tendency of the PS in Fθ and
POα2 regarding the behavioral response (correct vs. wrong trials).
Interestingly, we found significant increasing trends for both Fθ

and POα2 following task difficulty in both correct and wrong
trials (Figure 3).

FIGURE 2 | Response times across five CWL in both correct and
wrong trials. Bars represent mean ± standard error of mean (SEM). No
significant difference was observed in the response time between correct and
wrong trails.

Intra- and Inter-frequency Phase
Coupling within and between WM
Subsystems
Any significant difference between correct and wrong responses
in terms of strength related to different types of phase interactions
was analyzed via Wilcoxon rank-sum testing. The subgraph
strength for either F or PO brain regions was the total weight
of all the connections within each of the brain areas and was
estimated for each subject by averaging across trials and for
each CWL. We found that the five different types of phase
memory synchronization showed a decrement tendency with
the increment of the CWL in both correct and wrong trials.
However, our analysis failed to reveal any significant difference
between correct and wrong responses. Phase interactions within
Fθ (Figure 4A) and POα2 (Figure 4D), n:m (2:1) θ-α2 phase
interactions between Fθ and POα2 (Figure 4C), within Fθ−α2

(Figure 4B), and within POθ−α2 brain regions (Figure 4E) did
not show any significant effect related to arithmetic performance
(Figure 4).

Strength of Phase Causal Interactions
and Phase-to-Amplitude Interactions
The significance level of the strength related to dPLI and PAC
was assessed with Wilcoxon rank-sum testing. Our analysis
failed to reveal any significant difference between correct
and wrong responses for both types of brain synchronization
(Figure 5). Additionally, dPLI did not demonstrate any effect
of task difficulty, whereas PAC strength diminished with greater
difficulty for both correct and wrong trials.

Causal Interactions and Time-Lag
between WM Subsystems
Before applying statistical tests to causal interactions
between correct and wrong answers, we adopted a two-step
averaging procedure: (i) averaging across trials for each subject
independently and (ii) averaging across subjects. Our statistical
analysis was based on Wilcoxon rank-sum tests (p < 0.001). To
correct for multiple testing, we adopted the false discovery rate
(FDR) method to correct for multiple testing and applied it to
each trial (Benjamini and Hochberg, 1995). Adopting dSTE to
estimate causal interactions between Fθ and POα2, we found
a significant trend: Fθ drives POα2 (Figure 6). The statistical
analysis uncovered Fθ-POα2 dysfunction in wrong trials to each
CWL compared to correct trials (Figure 6). Figure 6 shows
the significant interactions. Both dSTE and cross-correlation of
amplitude envelopes between Fθ and POα2 show that F activity
precedes that of PO in both correct and wrong trials. Importantly,
time-lag estimation with both dSTE and cross-correlation of
amplitude envelopes revealed an interesting trend in wrong
trials compared to correct: right PO (rPOα2) brain region (i.e.,
channels P6, P8, PO8, PO4, and O2) showed zero time-lag with
bilateral F brain regions (bFθ) across the five CWLs (Figure 7).
Table 1 summarizes the group-average time-lag (in ms) between
bFθ and rPOα

2 estimated with dSTENG for each CWL based on
correct trials.
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FIGURE 3 | Group-averaged power spectrum in θ band (5–6 Hz) (A) over frontal (F) bilaterally areas and (C) over parieto-occipital (PO) sites and in α2
band (10–13 Hz) (B) over F bilaterally areas and (D) over PO sites for the five CWLs in both correct and wrong trials. Bars represent mean ± standard
error of mean (SEM). No statistical significant differences were detected based on Wilcoxon rank sum test (p < 0.001; Bonferroni corrected across CWLs).

Classification Performance based on
Behavioral, Power Spectrum, and
Connectivity Analysis
The classification performance, based on PS expressed via a
group-averaged correct recognition rate, was 58.8 ± 11.2%
(Table 2). The Laplacian score only detected the PS as a
useful feature to improve the binary classification of correct
versus wrong trials at each CWL (see Supplementary Material
Section 7). The classification performance based on PS was
marginally at by chance classification performance (50%). We
present the results based on functional connectivity estimates
following alternative strategies with the goal of differentiating
correct from wrong trials for each CWL using the single-
trial subgraph connectivity estimates from all subjects. The
group-averaged performance of the tensor subspace analysis +
k-nearest neighbor classifier (TSA + k-NN) scheme based on
Fθ, POα2, and the CFC was 65.0 ± 12.1% (Table 2). When
we applied the TSA + k-NN strategy to the Fθ and POα2

subgraphs, the classification performances were 61.1 ± 8.4%
for θ and 56.5 ± 8.1% for α2, (Table 2) (for further details
see Supplementary Material Section 7). We further analyzed
correct and wrong trials based on cross-frequency phase-to-
phase coupling between Fθ and POα

2 where the maximum
classification performance was held on for the fifth CWL reaching

65.1 ± 12.1%. Phase-to-amplitude coupling between Fθ and
POα

2 improved the classification accuracy of phase-to-phase
coupling, but this was not significant and reached 68.35 ± 9.3%
in the fifth CWL. Cross-frequency coupling was also analyzed
via the directionality of the amplitude-to-amplitude activity in
Fθ and POα

2 using dPLI and the novel dSTE using the tensorial
approach for comparable purposes with the previous connectivity
estimators. Based on the strength, effective connectivity graphs
that incorporated dPLI showed the highest score for the fifth
CWL at 69.4 ± 13.5%. In contrast, effective connectivity graphs
that incorporated the strength of dSTE between Fθ and POα

2
(Figure 7) revealed a group-averaged performance of the TSA
+ k-NN scheme equals to 100% (Table 2). Additionally, we
previously stated that rPOα2 showed a zero time-lag with bFθ

across the five CWLs in the wrong but not correct trials
(Figure 7).

DISCUSSION

Two recent dual recording studies (EEG and LFP) uncovered
the different roles of amplitude and phase in brain activity (Ng
et al., 2013; Musall et al., 2014). Many neuroimaging studies have
demonstrated the different functional roles of WM subsystems
in various cognitive tasks. EEG WM rhythms such as θ and α are
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FIGURE 4 | Strength distribution of within- and between-phase interactions located over F brain regions: (A) within-phase interaction in Frontal (Fθ),
(B) between-phase interaction in Frontal (Fθ−α2), (D) within-phase interaction in Parieto-Occipital (POα2), and (E) between-phase interaction in
Parieto-Occipital (POθ−α2) and (C) cross-frequency coupling between them (F2 × θ – POα2) for both correct and wrong answers. Bars represent
mean ± standard deviations. No statistical significant differences were detected between correct and wrong trials.

FIGURE 5 | Strength of (A) dPLI and (B) PAC between Frontalθ and Parieto-Occipitalα2 (F2 × θ – POα2) for both correct and wrong answers. Bars
represent mean ± standard deviations. No statistical significant differences were detected between correct and wrong trials.

located in the well-defined F and PO brain regions, respectively
(Kawasaki et al., 2010). A WM study based on modeling
demonstrated that input information is stored in posterior
brain areas by α rhythm (Chik, 2013), while short-term-stored
representations are manipulated within the frontal executive
WM systems by the θ rhythm, which also connects frontal and

posterior brain sites (Kane and Engle, 2002). In the present study,
we attempted to demonstrate how the central executive and
storage buffer WM subsystems operate during an arithmetic task
and also how their coordination affects arithmetic performance.
We assessed the functionality of both WM subsystems oscillating
in the preferred phase with PS analysis, intra-/inter-frequency
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FIGURE 6 | To represent dSTE for each of the five cognitive workload levels [(A) Lv1, (B) Lv2, (C) Lv3, (D) Lv4, and (E) Lv5] and in both correct (left
panel) and wrong trials (right panel), we adopted a novel visualization scheme, in which the relative position of a single sensor u is used to embed a
whole brain’s topography that represents the dSTE(u,v) measurements related to it. A minute topography depicts the dSTEs from a particular sensor to all
other destinations (sensor locations). It serves as a natural display of a row in the dSTE matrix. The topographic representation illustrates only the Frontal sensors
because 1dSTE uncovered Fθ brain region as a leader.

FIGURE 7 | Time-lag effects between F and PO sites in (A) correct and
(B) wrong trials. The analysis detected time-lag effects for three out of four
combinations (right and left PO × correct and wrong trials) with the exception
of bilateral F and right Parieto-Occipital sites in wrong trials.

phase coupling (Palva et al., 2005; Kawasaki et al., 2010; Palva and
Palva, 2012; Dimitriadis et al., 2015b,a), and causal interactions
between different frequencies on both amplitude (Dimitriadis
et al., 2016a) and phase (Stam and van Straaten, 2012).

The current study aimed to shed light on the mechanisms and
EEG features that contribute to correct behavioral performance.
To validate our analysis, we used PS and different types of
connectivity estimators based on amplitude, phase, and their
causal interactions between F and PO brain areas. Apart
from identifying the best feature that can predict behavioral

performance in the mental arithmetic task, we wanted to
highlight the potential to link performance in a difficult
cognitive task with an individual’s brain activity. Our approach
could be used as a framework for alternative complex tasks
using either EEG or MEG imaging methods. Additionally, the
entire methodology can be employed to design an appropriate
intervention for dyscalculic subjects who face problems with
numeric calculations by focusing on specific attributes of brain
dynamics.

Our main results can be summarized in the following four
summary points:

• With regard to the level of oscillatory amplitudes in both WM
brain regions, the current study did not identify significant
differences between correct and wrong responses in terms the
PS estimated on both θ and α2 frequencies over F and PO brain
regions as an integrated estimator. Additionally, reaction times
did not reach a statistically significant level between correct
and wrong trials.
• Our connectivity analysis focused on various interaction types

within and between the WM subsystems oscillating on the
prominent frequencies. We adopted intra- and inter-frequency
estimators to uncover causal effects between the different
frequencies extracting both the time-lag and coupling strength.
The adopted estimators were amplitude and phase-oriented
as follows: n:m phase locking estimator (inter-frequency
coupling based on phase), dPLI (inter-frequency coupling
based on amplitude), PAC (inter-frequency estimator between
the phases and amplitudes of two different frequencies), and
PLV (intra-frequency coupling) failed to discriminate correct
from wrong trials for each CWL.

Frontiers in Human Neuroscience | www.frontiersin.org 10 September 2016 | Volume 10 | Article 454

http://www.frontiersin.org/Human_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Human_Neuroscience/archive


fnhum-10-00454 September 14, 2016 Time: 12:28 # 11

Dimitriadis et al. F-POCFC Predict Performance of Mental Task

• By employing dSTE to estimate causal interactions (both
strength and direction) between Fθ and POα

2, we successfully
classified 100% of correct from wrong trials for each subject
independently.
• Both dSTE and cross-correlation of amplitude envelopes

revealed that Fθ drives POα2 in both correct and wrong trials
with the only exception of bilateral F (bFθ) and right PO
(rPOα

2) sites in wrong trials (Figure 7).

Frontal Midline θ Implication to Mental
Arithmetic
Generators of frontal midline θ are located on the dorsal part
of the anterior cingulate cortex (ACC) and the adjacent medial
PFC; both structures are related to focused attention and many
cognitive functions associated with mental calculation (Ishihara
and Yoshi, 1972; Sasaki et al., 1996; Asada et al., 1999; Enriquez-
Geppert et al., 2014). The ACC encompasses various emotional,
cognitive, executive, and visuospatial functions (Bush et al., 2000;
Womelsdorf et al., 2010). A recent study based on continuous
subtraction noted a significant increment of θ power within the
ACC (Ishii et al., 2014). Additionally, the dorsal ACC is part of
the distributed attentional brain network (Bush et al., 2000). Our
results clearly demonstrate a statistically significant increment of
power in Fθ over task difficulty but no statistically significant
difference between correct and wrong trials (Figure 3).

WM and Mental Tasks
WM tasks like mental calculations require distinct functions such
as a storage buffer, central executive functions, and coordination
between them. The posterior brain regions play a general role
in maintaining actual contents of representations (Todd and
Marois, 2004; Vogel and Machizawa, 2004). Previous studies also
revealed an attentional control role for the PFC; it is responsible
for determining which information will be maintained and
updated within the WM but is not involved in the maintenance
of the relevant information (Cohen et al., 1997; Smith and
Jonides, 1999; Rowe et al., 2000; Kawasaki et al., 2006). Other
neuroimaging studies hypothesized that WM processes are

controlled via top-down signals from the PFC to the posterior
brain areas where the mental representation of the related
information is stored (Baddeley, 1992; Miller and Cohen, 2001;
Curtis and D’Esposito, 2003). A typical mental arithmetic study
involved a task-activated distributed network of brain areas
including the frontal cortex and bilateral parietal lobes (Dehaene
et al., 2004; Pinel et al., 2004).

WM and selective attention have been extensively viewed as
separate cognitive domains. In contrast, a growing number of
theoretical assessments and reviews in the fields of neuroscience
and psychology have reported that these two domains share
commonalities (Awh et al., 2006; Postle, 2006; Chun, 2011).
Research primate and human neuroimaging studies have already
shed light on the significant role of top-down signaling to
enhance brain activity in areas related to the stimuli modality
while simultaneously suppressing brain activity for distracted
stimuli to the targeted goals. Specifically in visual areas,
changes related to excitation levels reflected a simultaneous
competitive substrate for items represented in receptive fields
and a synchronized pattern of neural ensembles (Reynolds
and Chelazzi, 2004). The neuroscience community supports
the hypothesis that top-down modulation of external sensory
information relies on distant interactions (e.g., between the
PFC and parietal cortex) and not an intrinsic functionality of
modality-specific sensory cortices (Curtis and D’Esposito, 2003;
Gazzaley and D’Esposito, 2007). In a delayed recognition task,
Zanto et al. (2011) demonstrated that Frontal-Parietal α band
(7–14 Hz) phase coherence served as the substrate for long-
distance, top-down modulation and provided clear evidence that
top-down modulation mediated by the PFC causally links early
attentional processes and subsequent memory performance.

Prominent WM Frequencies of Frontal
and Parietal Brain Regions
It is well known that posterior brain areas maintain information
related to the modality while the frontal cortex actively
manipulates associated information (Postle et al., 1999; Smith and
Jonides, 1999; Curtis and D’Esposito, 2003; Wager and Smith,

TABLE 1 | Group-average time-lag (mean ± SD) between bFθ and rPOα2 estimated with dSTENG for each cognitive workload level (CWL) based on
correct trials.

Workload level Lv1 Lv2 Lv3 Lv4 Lv5

Time-lag (ms) 117 ± 14 121 ± 17 114 ± 21 132 ± 14 133 ± 17

TABLE 2 | Classification behavioral performance based on power spectrum (PS), phase coupling (PC), phase-to-amplitude cross-frequency coupling
(CFC), causal phase relationships directed phase lag index (dPLI) and delay symbolic transfer entropy (dSTE).

Lv1 Lv2 Lv3 Lv4 Lv5

PS 57.1 ± 13.2% 53.1 ± 10.2% 56.2 ± 9.2% 58.8 ± 11.2% 58.1 ± 9.8%

PCθ 55.6 ± 10.1% 56.2 ± 8.7% 61.1 ± 8.4% 54.3 ± 7.8% 57.3 ± 10.2%

PCα2 54.3 ± 8.2% 56.3 ± 12.3 55.3 ± 6.5% 56.5 ± 8.1% 53.4 ± 7.3%

PCCFC 58.4 ± 7.4% 59.3 ± 9.1% 58.9 ± 12.3% 60.1 ± 10.1% 65.1 ± 12.1%

PACCFC 60.2 ± 9.2% 61.7 ± 8.7% 64.4 ± 10.7% 63.3 ± 9.4% 68.4 ± 9.3%

dPLICFC 61.8 ± 10.1% 65.2 ± 11.3% 65.7 ± 9.5% 65.8 ± 12.5% 69.4 ± 13.5%

dSTE 100% 100% 100% 100% 100%
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2003). An increment of θ activity within frontal brain areas is an
indicator for increased cognitive demand and focused attention
(Yamada, 1998) while decrement of upper α is an index of
distinct functions related to task processing (Klimesch, 1999).
Even though our experimental paradigm was not designed with a
clear discrimination of the manipulation and retention periods,
various studies have established the roles of both frequencies
and WM brain areas in mnemonic processes (Micheloyannis
et al., 2005; Palva et al., 2005; Fell and Axmacher, 2011; Palva
and Palva, 2012). Our results based on signal power and
brain connectivity with both intra- and inter-frequency phase-
to-phase coupling further support the distinct role of both
oscillations θ for manipulation and α2 for maintenance, as
dominant frequency rhythms in WM subsystems in F and PO,
respectively. Additionally, the retention period of the adopted
experimental paradigm apart from representation maintenance
support other distinct functions like preparation and task-related
rule maintenance. Previous EEG studies demonstrated phase
synchronization between θ and α2 brain rhythms in many brain
areas in a high number of WM tasks (Jensen and Tesche,
2002; Mizuhara et al., 2004; Sauseng et al., 2005; Kawasaki and
Watanabe, 2007; Klimesch et al., 2008).

Interplay between Frontal and Parietal
Brain Regions
Although many neuroimaging studies suggest that PFC plays a
key role in the cognitive control, interplay between the PFC and
parietal cortex was emphasized (Brass et al., 2005). This raises a
fundamental question about the different contributions of these
brain areas in cognitive control. It was assumed that the PFC
biases processing in posterior brain regions (Miller and Cohen,
2001; Brass et al., 2005). This assumption led to the hypothesis
that neural activity in the PFC should precede parietal activity
in cognitive control (Brass et al., 2005). Our study uncovered a
causality effect between Fθ and POα2 brain regions in the five
CWLs (Figure 6). The PFC serves to add bias signals to other
brain structures (e.g., the parietal cortex) to guide stimulus and
response processing toward the desired behavior (Miller and
Cohen, 2001; Brass et al., 2005). Additionally, a zero time-lag
between rPOa2 and bFθ brain regions was detected in wrong
trials and across the five CWLs (Figure 7). A possible explanation
of the above significant observation could be attributed to the
arithmetic nature of the task and particularly to right posterior
parietal cortex oscillation in the preferred α2 frequency in which
both frequency and brain region are integrated for semantic
understanding (Sauseng et al., 2005; Klimesch et al., 2008) and
spatial representation of numbers (e.g., a mental number line
Hubbard et al., 2005, 2009; Gobel et al., 2006).

Involvement of Parietal Brain Areas in
Math Calculations
Based on findings from previous studies, the intraparietal
sulcus is a systematically activated brain area during number
manipulation independently of their notation (i.e., digits, dots,
plurals of nouns; Carreiras et al., 2015). For this reason, the
intraparietal sulcus is activated in all arithmetic tasks as the neural

substrate for manipulating quantities or numbers (Dehaene et al.,
2003, 2004; Kong et al., 2005). Both subtraction and addition
elicit higher intraparietal sulcus activation compared to other
arithmetic tasks like multiplication and division. Compared
to multiplication where part of the results are stored in rote
verbal memory, the addition of numbers is not learned by
rote and demands quantity manipulation (Dehaene et al., 2003,
2004). Inferior and postero-superior parietal lobules have been
linked to both counting and subtraction (Dehaene et al., 2003).
Compared to the intraparietal sulcus that is mainly activated
by number representations, the postero-superior parietal area
plays a key role in numerous visuospatial tasks that demand
attention with or without WM activation (Mitchell and Cusack,
2008; Olson and Berryhill, 2009). The aforementioned findings
suggest that postero-superior parietal cortex activation is related
to processing attended stimuli. For that reason, the well-
known mental number line, a quasi-spatial representation
of numbers organized on their proximity, can be the core
semantic abstract representation of numerical quantities. It
was clearly demonstrated that the process followed in covert
attention that is activated to select target locations in space
can also be engaged when numbers in arithmetic tasks are
manipulated independently of the notation over the mental
number line located in the parietal cortex (Dehaene et al.,
2004). The PSP lobule is involved in this spatial-attention
hypothesis in both visuospatial tasks where the information
is presented and in non-visual arithmetic tasks (Ishii et al.,
2014).

Untangling Arithmetic Performance via
the Causal Relationship
To summarize, our findings based on causal interactions of the
θ and α2 rhythms demonstrate the need for communication
between frontal and parietal WM subsystems for better mental
arithmetic paradigm outcomes (Fell and Axmacher, 2011). The
strength of the causality between Fθ and POα2 in correct
trials and the zero time-lag between bFθ and rPOα2 in wrong
trials explain arithmetic performance in the five CWLs and
unmask the executive role of the PFC in cognition (Miller
and Cohen, 2001; Brass et al., 2005). Additionally, the zero
time-lag between rPOα2 and bFθ in wrong trials improve
understanding of the hierarchical spatiotemporal functionality
of brain rhythms underlying cognition (Furl et al., 2013).
A scalp-EEG brain connectivity study that employed a WM
task revealed the need for connectivity between Fθ and POα

2
activity, supporting the need of hierarchical control between
F and PO in many spatiotemporal domains and for various
cognitive processes like WM (Kawasaki et al., 2010). Finally,
in primates, the PFC exerts executive control over cognition
by transmitting signals to parietal brain regions in a rule-
based spatial categorization task (Crowe et al., 2013). Studies
of lesion subjects revealed clear involvement of the right
parietal cortex in mental arithmetic processing. Dehaene and
Cohen (1997) presented the first report based on two acalculic
subjects with structural lesions affecting the right parietal cortex
or left subcortical areas. They demonstrated that the subject
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with a left structural lesion had impaired rote arithmetic
facts that were analyzed based on a priori knowledge of
numerical quantities. However, the patient with a right inferior
parietal lesion exhibited significant impairment of quantitative
numerical knowledge, which was more severe for subtraction
tasks (Dehaene and Cohen, 1997). In addition, a recent study
of cortical electrostimulation in patients with brain tumors
confirmed an anatomico-functional organization for arithmetic
processing within the right parietal cortex (Della Puppa et al.,
2013).

In general, neuronal oscillations at different frequencies were
recently connected with basic higher cognitive processes, further
supporting the distinct functional role of each brain rhythm
during WM [for a review, see (Roux and Uhlhaas, 2014)]. The
α brain rhythm expresses the level of inhibition of task-irrelevant
activity, while θ rhythm supports the temporal organization of
abstract items in the WM (e.g., the intermediate results from
the addition tasks in the present study). Pairs of cross-frequency
couplings like α-γ and θ-γ have a distinct role in managing WM
information [for a review, see (Roux and Uhlhaas, 2014].

Top-down manipulation of processing of sensory information
is supported by distant interactions like between the PFC
and parietal cortex (Curtis and D’Esposito, 2003; Miller and
D’Esposito, 2005; Gazzaley and D’Esposito, 2007) and on
interactions within these two subnetworks. Zanto et al. (2011)
demonstrated that Frontal-Parietal α band (7–14 Hz) phase-
coherence is the substrate for distant top-down modulation
via the PFC to other activated distributed brain areas and
links attentional processes and related memory performance.
Summarizing existing evidence in terms of the distinct role
of each frequency in WM tasks, the causal role of the
PFC over parietal brain areas, right parietal involvement in
quantitative numerical knowledge, and our findings, we can
untangle the significant prediction of arithmetic performance.
The loss of top-down control of the PFC over the right
PO area can be interpreted as an interruption between these
two brain areas and the major role of the PFC in overall
cognitive control (Brass et al., 2005). A possible explanation
of the above significant observation is the arithmetic nature
of the task; particularly, the right posterior parietal cortex
oscillates in the preferred α2 frequency, so both frequency
and brain region are integrated for semantic understanding
(Sauseng et al., 2005; Klimesch et al., 2008), spatial number
representation (similar to a mental number line; Hubbard
et al., 2005, 2009), and the loss of inhibition of task-irrelevant
activity.

Top-down modulation supports our ability to pay attention
to task-relevant stimuli and suppress irrelevant distracted
information. The common prediction of arithmetic performance
across subjects and in the five CWLs was the inability of
the subject to inhibit irrelevant distracted information; they
then lost the ability to give a correct answer even on the
first levels with simple addition. The current findings are
among the first cognitive neuroscience results that adopted a
large repertoire of connectivity estimators and succeeded in
clarifying the distinct role of each frequency distributed over
specific anatomical brain areas, each with a different role in

WM arithmetic mental tasks. Finally, our findings will be
useful for studying mental arithmetic tasks in aging adults
and dyscalculic children, as well as guiding neurofeedback
strategies.

Limitations
One of the major limitations of the present study is that the sensor
space connectivity analysis lacks the higher spatial resolution
that would be achieved by performing the same analysis in the
source space. Despite tremendous improvements in MEG and
EEG source localization algorithms, one should compare the
connectivity analysis between sensor and space to be aware of
the spatial filtering effect. Field spread effect can never be totally
diminished or abolished after applying a source localization
technique (Schoffelen and Gross, 2009); however, applying source
connectivity will further enhance both the results of the present
study and the interpretation of active areas related to the tasks
by taking the advantage of a larger number of fMRI arithmetic
studies.

CONCLUSION

In the present study, we attempted to provide the first
demonstration of dynamic orchestration between θ oscillations
and modality-specific high α2 oscillations as the link between
central executive system (Fθ) and storage buffer functions (POα

2)
in a WM-oriented multilevel mental task. Our analysis focused
on the comparison between correct and wrong answers to reveal
significant differences between and within WM subsystems.
To uncover the distinct roles of amplitude and phase under
the notion of connectivity, we adopted a large repertoire
of connectivity estimators including our novel approach,
which is one of the first techniques that can uncover the
strength, direction, and lag between different frequencies. We
successfully discriminated correct and wrong answers based
on FCGs tabulating the interactions between Fθ and POα

2
estimated with the novel dSTE. Zero time-lag between bilateral
Fθ and right POα

2 could also indicate mental calculation
performance independently of task difficulty. Overall, our results
highlight the significant role of integrated activity between
Fθ and POα

2 via the strength of their causal interactions
and the precise timing of their coordination for arithmetic
performance.
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